E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	36864
Number of I/O	68
Number of Gates	250000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p250-2vq100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 – ProASIC3 Device Family Overview

General Description

ProASIC3, the third-generation family of Microsemi flash FPGAs, offers performance, density, and features beyond those of the ProASIC^{PLUS®} family. Nonvolatile flash technology gives ProASIC3 devices the advantage of being a secure, low power, single-chip solution that is Instant On. ProASIC3 is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

ProASIC3 devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on an integrated phase-locked loop (PLL). The A3P015 and A3P030 devices have no PLL or RAM support. ProASIC3 devices have up to 1 million system gates, supported with up to 144 kbits of true dual-port SRAM and up to 300 user I/Os.

ProASIC3 devices support the ARM Cortex-M1 processor. The ARM-enabled devices have Microsemi ordering numbers that begin with M1A3P (Cortex-M1) and do not support AES decryption.

Flash Advantages

Reduced Cost of Ownership

Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAMbased FPGAs, flash-based ProASIC3 devices allow all functionality to be Instant On; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property (IP) cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The ProASIC3 family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the ProASIC3 family a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/ communications, computing, and avionics markets.

Security

The nonvolatile, flash-based ProASIC3 devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. ProASIC3 devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.

ProASIC3 devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of protection in the FPGA industry for intellectual property and configuration data. In addition, all FlashROM data in ProASIC3 devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. The AES standard was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. ProASIC3 devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. ProASIC3 devices with AES-based security provide a high level of protection for remote field updates over public networks such as the Internet, and are designed to ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves.

ARM-enabled ProASIC3 devices do not support user-controlled AES security mechanisms. Since the ARM core must be protected at all times, AES encryption is always on for the core logic, so bitstreams are always encrypted. There is no user access to encryption for the FlashROM programming data.

Security, built into the FPGA fabric, is an inherent component of the ProASIC3 family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. The ProASIC3 family, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks.

User Nonvolatile FlashROM

ProASIC3 devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications:

- Internet protocol addressing (wireless or fixed)
- System calibration settings
- Device serialization and/or inventory control
- Subscription-based business models (for example, set-top boxes)
- Secure key storage for secure communications algorithms
- Asset management/tracking
- Date stamping
- Version management

The FlashROM is written using the standard ProASIC3 IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks (except in the A3P015 and A3P030 devices), as in security keys stored in the FlashROM for a user design.

The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot

Output DDR Module

Figure 2-22 • Output DDR Timing Model

Table 2-103 • Parameter Definitions

Parameter Name	Parameter Definition	Measuring Nodes (from, to)	
t _{DDROCLKQ}	Clock-to-Out	B, E	
t _{DDROCLR2Q}	Asynchronous Clear-to-Out	C, E	
t _{DDROREMCLR}	Clear Removal	С, В	
t _{DDRORECCLR}	Clear Recovery	С, В	
t _{DDROSUD1}	Data Setup Data_F	А, В	
t _{DDROSUD2}	Data Setup Data_R	D, B	
t _{DDROHD1}	Data Hold Data_F	А, В	
t _{DDROHD2}	Data Hold Data_R	D, B	

Embedded SRAM and FIFO Characteristics

SRAM

Figure 2-30 • RAM Models

🌜 Microsemi.

Package Pin Assignments

QN132 – Bottom View

Notes:

- 1. The die attach paddle center of the package is tied to ground (GND).
- 2. Option corner pads come with this device and package combination. It is optional to tie them to ground or leave them floating.
- 3. The QN132 package is discontinued and is not available for ProASIC3 devices.
- 4. For more information on package drawings, see PD3068: Package Mechanical Drawings.

Package Pin Assignments

FG484		FG484			FG484	
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	
K19	IO88NDB1	M11	GND	P3	IO199NDB3	
K20	IO94NPB1	M12	GND	P4	IO202NDB3	
K21	IO98NDB1	M13	GND	P5	IO202PDB3	
K22	IO98PDB1	M14	VCC	P6	IO196PPB3	
L1	NC	M15	GCB2/IO95PPB1	P7	IO193PPB3	
L2	IO200PDB3	M16	GCA1/IO93PPB1	P8	VCCIB3	
L3	IO210NPB3	M17	GCC2/IO96PPB1	P9	GND	
L4	GFB0/IO208NPB3	M18	IO100PPB1	P10	VCC	
L5	GFA0/IO207NDB3	M19	GCA2/IO94PPB1	P11	VCC	
L6	GFB1/IO208PPB3	M20	IO101PPB1	P12	VCC	
L7	VCOMPLF	M21	IO99PPB1	P13	VCC	
L8	GFC0/IO209NPB3	M22	NC	P14	GND	
L9	VCC	N1	IO201NDB3	P15	VCCIB1	
L10	GND	N2	IO201PDB3	P16	GDB0/IO112NPB1	
L11	GND	N3	NC	P17	IO106NDB1	
L12	GND	N4	GFC2/IO204PDB3	P18	IO106PDB1	
L13	GND	N5	IO204NDB3	P19	IO107PDB1	
L14	VCC	N6	IO203NDB3	P20	NC	
L15	GCC0/IO91NPB1	N7	IO203PDB3	P21	IO104PDB1	
L16	GCB1/IO92PPB1	N8	VCCIB3	P22	IO103NDB1	
L17	GCA0/IO93NPB1	N9	VCC	R1	NC	
L18	IO96NPB1	N10	GND	R2	IO197PPB3	
L19	GCB0/IO92NPB1	N11	GND	R3	VCC	
L20	IO97PDB1	N12	GND	R4	IO197NPB3	
L21	IO97NDB1	N13	GND	R5	IO196NPB3	
L22	IO99NPB1	N14	VCC	R6	IO193NPB3	
M1	NC	N15	VCCIB1	R7	GEC0/IO190NPB3	
M2	IO200NDB3	N16	IO95NPB1	R8	VMV3	
M3	IO206NDB3	N17	IO100NPB1	R9	VCCIB2	
M4	GFA2/IO206PDB3	N18	IO102NDB1	R10	VCCIB2	
M5	GFA1/IO207PDB3	N19	IO102PDB1	R11	IO147RSB2	
M6	VCCPLF	N20	NC	R12	IO136RSB2	
M7	IO205NDB3	N21	IO101NPB1	R13	VCCIB2	
M8	GFB2/IO205PDB3	N22	IO103PDB1	R14	VCCIB2	
M9	VCC	P1	NC	R15	VMV2	
M10	GND	P2	IO199PDB3	R16	IO110NDB1	