

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	36864
Number of I/O	157
Number of Gates	250000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p250-fg256

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

0-I/O is set to drive out logic Low

Last Known State – I/O is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming

Z -Tristate: I/O is tristated

rom file Save to file			Show BSR De
Port Name	Macro Cell	Pin Number	1/O State (Output Only)
BIST	ADLIB:INBUF	T2	1
BYPASS_IO	ADLIB:INBUF	K1	1
CLK	ADLIB:INBUF	B1	1
ENOUT	ADLIB:INBUF	J16	1
LED	ADLIB:OUTBUF	M3	0
MONITOR(0)	ADLIB:OUTBUF	B5	0
MONITOR[1]	ADLIB:OUTBUF	C7	Z
MONITOR[2]	ADLIB:OUTBUF	D9	Z
MONITOR(3)	ADLIB:OUTBUF	D7	Z
MONITOR[4]	ADLIB:OUTBUF	A11	Z
OEa	ADLIB:INBUF	E4	Z
ОЕЬ	ADLIB:INBUF	F1	Z
OSC_EN	ADLIB:INBUF	K3	Z
PAD[10]	ADLIB:BIBUF_LVCMOS33U	M8	Z
PAD[11]	ADLIB:BIBUF_LVCMOS33D	R7	Z
PAD[12]	ADLIB:BIBUF_LVCMOS33U	D11	Z
PAD[13]	ADLIB:BIBUF_LVCMOS33D	C12	Z
PAD[14]	ADLIB:BIBUF_LVCMOS33U	R6	Z
1			-

Figure 1-4 • I/O States During Programming Window

- 6. Click OK to return to the FlashPoint Programming File Generator window.
- Note: I/O States During programming are saved to the ADB and resulting programming files after completing programming file generation.

2 – ProASIC3 DC and Switching Characteristics

General Specifications

Operating Conditions

Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions specified in Table 2-2 on page 2-2 is not implied.

Table 2-1 •	Absolute	Maximum	Ratings
-------------	----------	---------	---------

Symbol	Parameter	Limits	Units	
VCC	DC core supply voltage	-0.3 to 1.65	V	
VJTAG	JTAG DC voltage	-0.3 to 3.75	V	
VPUMP	Programming voltage	-0.3 to 3.75	V	
VCCPLL	CPLL Analog power supply (PLL) -0.3 to 1.65			
VCCI	DC I/O output buffer supply voltage	-0.3 to 3.75	V	
VMV	DC I/O input buffer supply voltage	-0.3 to 3.75	V	
VI	I/O input voltage	–0.3 V to 3.6 V	V	
		(when I/O hot insertion mode is enabled)		
		-0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower (when I/O hot-insertion mode is disabled)		
T _{STG} ²	Storage temperature	–65 to +150	°C	
T _J ²	Junction temperature	+125	°C	

Notes:

1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 2-4 on page 2-3.

2. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information.

3. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-3, and for recommended operating limits, refer to Table 2-2 on page 2-2.

Table 2-13 • Summary of I/O Output Buffer Power (Per Pin) – Default I/O Software Settings ¹ Applicable to Standard I/O Banks

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC3 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	35	3.3	_	431.08
3.3 V LVCMOS Wide Range ⁴	35	3.3	-	431.08
2.5 V LVCMOS	35	2.5	-	247.36
1.8 V LVCMOS	35	1.8	-	128.46
1.5 V LVCMOS (JESD8-11)	35	1.5	_	89.46

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. P_{DC3} is the static power (where applicable) measured on VCCI.

3. P_{AC10} is the total dynamic power measured on VCC and VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

F_{CLK} is the global clock signal frequency.

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

P_{AC1}, P_{AC2}, P_{AC3}, and P_{AC4} are device-dependent.

Sequential Cells Contribution—P_{S-CELL}

 $P_{S-CELL} = N_{S-CELL} * (P_{AC5} + \alpha_1 / 2 * P_{AC6}) * F_{CLK}$

 N_{S-CELL} is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-16 on page 2-14.

F_{CLK} is the global clock signal frequency.

Combinatorial Cells Contribution—P_{C-CELL}

 $P_{C-CELL} = N_{C-CELL} * \alpha_1 / 2 * P_{AC7} * F_{CLK}$

 $N_{C\mbox{-}C\mbox{-}E\mbox{-}L\mbox{-}L}$ is the number of VersaTiles used as combinatorial modules in the design.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-16 on page 2-14.

 $\mathsf{F}_{\mathsf{CLK}}$ is the global clock signal frequency.

Routing Net Contribution—P_{NET}

 $P_{NET} = (N_{S-CELL} + N_{C-CELL}) * \alpha_1 / 2 * P_{AC8} * F_{CLK}$

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

N_{C-CELL} is the number of VersaTiles used as combinatorial modules in the design.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-16 on page 2-14.

 F_{CLK} is the global clock signal frequency.

I/O Input Buffer Contribution—PINPUTS

 $P_{INPUTS} = N_{INPUTS} * \alpha_2 / 2 * P_{AC9} * F_{CLK}$

N_{INPUTS} is the number of I/O input buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-16 on page 2-14.

 F_{CLK} is the global clock signal frequency.

I/O Output Buffer Contribution—POUTPUTS

 $P_{OUTPUTS} = N_{OUTPUTS} * \alpha_2 / 2 * \beta_1 * P_{AC10} * F_{CLK}$

N_{OUTPUTS} is the number of I/O output buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-16 on page 2-14.

 β_1 is the I/O buffer enable rate—guidelines are provided in Table 2-17 on page 2-14.

F_{CLK} is the global clock signal frequency.

Table 2-30 • I/O Output Buffer Maximum Resistances¹ Applicable to Standard I/O Banks

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	R _{PULL-UP} (Ω) ³
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
3.3 V LVCMOS Wide Range ⁴	100 µA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
1.5 V LVCMOS	2 mA	200	224

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx.

2. R_(PULL-DOWN-MAX) = (VOLspec) / IOLspec

3. R_(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

Table 2-31 • I/O Weak Pull-Up/Pull-Down Resistances Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values

	R _{(WEAK}	PULL-UP) ¹ Ω)	R _{(WEAK} PULL-DOWN) ² (Ω)			
VCCI	Min	Мах	Min	Мах		
3.3 V	10 k	45 k	10 k	45 k		
3.3 V (wide range I/Os)	10 k	45 k	10 k	45 k		
2.5 V	11 k	55 k	12 k	74 k		
1.8 V	18 k	70 k	17 k	110 k		
1.5 V	19 k	90 k	19 k	140 k		

Notes:

R_(WEAK PULL-UP-MAX) = (VCCI_{MAX} - VOH_{spec}) / I_(WEAK PULL-UP-MIN)
R_(WEAK PULL-DOWN-MAX) = (VOL_{spec}) / I_(WEAK PULL-DOWN-MIN)

Table 2-52 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew	
Commercial-Case Conditions: $T_J = 70^{\circ}C$,	Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks	

Drive Strength	Equiv. Software Default Drive Strength Option ¹	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{zL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
100 µA	2 mA	Std.	0.60	11.14	0.04	1.52	0.43	11.14	9.54	3.51	3.61	14.53	12.94	ns
		-1	0.51	9.48	0.04	1.29	0.36	9.48	8.12	2.99	3.07	12.36	11.00	ns
		-2	0.45	8.32	0.03	1.14	0.32	8.32	7.13	2.62	2.70	10.85	9.66	ns
100 µA	4 mA	Std.	0.60	6.96	0.04	1.52	0.43	6.96	5.79	3.99	4.45	10.35	9.19	ns
		-1	0.51	5.92	0.04	1.29	0.36	5.92	4.93	3.39	3.78	8.81	7.82	ns
		-2	0.45	5.20	0.03	1.14	0.32	5.20	4.33	2.98	3.32	7.73	6.86	ns
100 µA	6 mA	Std.	0.60	6.96	0.04	1.52	0.43	6.96	5.79	3.99	4.45	10.35	9.19	ns
		-1	0.51	5.92	0.04	1.29	0.36	5.92	4.93	3.39	3.78	8.81	7.82	ns
		-2	0.45	5.20	0.03	1.14	0.32	5.20	4.33	2.98	3.32	7.73	6.86	ns
100 µA	8 mA	Std.	0.60	4.89	0.04	1.52	0.43	4.89	3.92	4.31	4.98	8.28	7.32	ns
		-1	0.51	4.16	0.04	1.29	0.36	4.16	3.34	3.67	4.24	7.04	6.22	ns
		-2	0.45	3.65	0.03	1.14	0.32	3.65	2.93	3.22	3.72	6.18	5.46	ns
100 µA	16 mA	Std.	0.60	4.89	0.04	1.52	0.43	4.89	3.92	4.31	4.98	8.28	7.32	ns
		-1	0.51	4.16	0.04	1.29	0.36	4.16	3.34	3.67	4.24	7.04	6.22	ns
		-2	0.45	3.65	0.03	1.14	0.32	3.65	2.93	3.22	3.72	6.18	5.46	ns

Notes:

The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
Software default selection bioblighted in group.

2. Software default selection highlighted in gray.

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-55 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard I/O Banks

Drive Strength	Equiv. Software Default Drive Strength Option ¹	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
100 µA	2 mA	Std.	0.60	14.64	0.04	1.52	0.43	14.64	12.97	3.21	3.15	ns
		-1	0.51	12.45	0.04	1.29	0.36	12.45	11.04	2.73	2.68	ns
		-2	0.45	10.93	0.03	1.13	0.32	10.93	9.69	2.39	2.35	ns
100 µA	4 mA	Std.	0.60	14.64	0.04	1.52	0.43	14.64	12.97	3.21	3.15	ns
		-1	0.51	12.45	0.04	1.29	0.36	12.45	11.04	2.73	2.68	ns
		-2	0.45	10.93	0.03	1.13	0.32	10.93	9.69	2.39	2.35	ns
100 µA	6 mA	Std.	0.60	10.16	0.04	1.52	0.43	10.16	9.08	3.71	3.98	ns
		-1	0.51	8.64	0.04	1.29	0.36	8.64	7.73	3.15	3.39	ns
		-2	0.45	7.58	0.03	1.13	0.32	7.58	6.78	2.77	2.97	ns
100 µA	8 mA	Std.	0.60	10.16	0.04	1.52	0.43	10.16	9.08	3.71	3.98	ns
		-1	0.51	8.64	0.04	1.29	0.36	8.64	7.73	3.15	3.39	ns
		-2	0.45	7.58	0.03	1.13	0.32	7.58	6.78	2.77	2.97	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is $\pm 100 \ \mu$ A. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

DC Parameter	Description	Min.	Тур.	Max.	Units
VCCI	Supply Voltage	2.375	2.5	2.625	V
VOL	Output Low Voltage	0.9	1.075	1.25	V
VOH	Output High Voltage	1.25	1.425	1.6	V
IOL ¹	Output Lower Current	0.65	0.91	1.16	mA
IOH ¹	Output High Current	0.65	0.91	1.16	mA
VI	Input Voltage	0		2.925	V
IIH ^{2,3}	Input High Leakage Current			10	μA
IIL ^{2,4}	Input Low Leakage Current			10	μA
VODIFF	Differential Output Voltage	250	350	450	mV
VOCM	Output Common Mode Voltage	1.125	1.25	1.375	V
VICM	Input Common Mode Voltage	0.05	1.25	2.35	V
VIDIFF	Input Differential Voltage	100	350		mV

Table 2-90 • LVDS Minimum and Maximum DC Input and Output Levels

Notes:

1. IOL/IOH defined by VODIFF/(Resistor Network)

2. Currents are measured at 85°C junction temperature.

- 3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN <VCCI. Input current is larger when operating outside recommended ranges.
- 4. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN <VIL.

Table 2-91 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)
1.075	1.325	Cross point

Note: *Measuring point = $V_{trip.}$ See Table 2-22 on page 2-22 for a complete table of trip points.

Timing Characteristics

Table 2-92 • LVDS

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.66	1.83	0.04	1.60	ns
-1	0.56	1.56	0.04	1.36	ns
-2	0.49	1.37	0.03	1.20	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Timing Waveforms

AFULL

QN132				
Pin Number A3P030 Function				
C17	IO51RSB1			
C18	NC			
C19	ТСК			
C20	NC			
C21	VPUMP			
C22	VJTAG			
C23	NC			
C24	NC			
C25	NC			
C26	GDB0/IO38RSB0			
C27	NC			
C28	VCCIB0			
C29	IO32RSB0			
C30	IO29RSB0			
C31	IO28RSB0			
C32	IO25RSB0			
C33	NC			
C34	NC			
C35	VCCIB0			
C36	IO17RSB0			
C37	IO14RSB0			
C38	IO11RSB0			
C39	IO07RSB0			
C40	IO04RSB0			
D1	GND			
D2	GND			
D3	GND			
D4	GND			

QN132				
Pin Number A3P125 Function				
C17	IO83RSB1			
C18	VCCIB1			
C19	ТСК			
C20	VMV1			
C21	VPUMP			
C22	VJTAG			
C23	VCCIB0			
C24	NC			
C25	NC			
C26	GCA1/IO55RSB0			
C27	GCC0/IO52RSB0			
C28	VCCIB0			
C29	IO42RSB0			
C30	GNDQ			
C31	GBA1/IO40RSB0			
C32	GBB0/IO37RSB0			
C33	VCC			
C34	IO24RSB0			
C35	IO19RSB0			
C36	IO16RSB0			
C37	IO10RSB0			
C38	VCCIB0			
C39	GAB1/IO03RSB0			
C40	VMV0			
D1	GND			
D2	GND			
D3	GND			
D4	GND			

FG144				
Pin Number A3P1000 Function				
K1	GEB0/IO189NDB3			
K2	GEA1/IO188PDB3			
K3	GEA0/IO188NDB3			
K4	GEA2/IO187RSB2			
K5	IO169RSB2			
K6	IO152RSB2			
K7	GND			
K8	IO117RSB2			
K9	GDC2/IO116RSB2			
K10	GND			
K11	GDA0/IO113NDB1			
K12	GDB0/IO112NDB1			
L1	GND			
L2	VMV3			
L3	GEB2/IO186RSB2			
L4	IO172RSB2			
L5	VCCIB2			
L6	IO153RSB2			
L7	IO144RSB2			
L8	IO140RSB2			
L9	TMS			
L10	VJTAG			
L11	VMV2			
L12	TRST			
M1	GNDQ			
M2	GEC2/IO185RSB2			
M3	IO173RSB2			
M4	IO168RSB2			
M5	IO161RSB2			
M6	IO156RSB2			
M7	IO145RSB2			
M8	IO141RSB2			
M9	TDI			
M10	VCCIB2			
M11	VPUMP			
M12	GNDQ			

FG256		FG256		FG256	
Pin Number	A3P600 Function	Pin Number	A3P600 Function	Pin Number	A3P600 Function
A1	GND	C5	GAC0/IO04RSB0	E9	IO31RSB0
A2	GAA0/IO00RSB0	C6	GAC1/IO05RSB0	E10	VCCIB0
A3	GAA1/IO01RSB0	C7	IO20RSB0	E11	VCCIB0
A4	GAB0/IO02RSB0	C8	IO24RSB0	E12	VMV1
A5	IO11RSB0	C9	IO33RSB0	E13	GBC2/IO62PDB1
A6	IO16RSB0	C10	IO39RSB0	E14	IO67PPB1
A7	IO18RSB0	C11	IO44RSB0	E15	IO64PPB1
A8	IO28RSB0	C12	GBC0/IO54RSB0	E16	IO66PDB1
A9	IO34RSB0	C13	IO51RSB0	F1	IO166NDB3
A10	IO37RSB0	C14	VMV0	F2	IO168NPB3
A11	IO41RSB0	C15	IO61NPB1	F3	IO167PPB3
A12	IO43RSB0	C16	IO63PDB1	F4	IO169PDB3
A13	GBB1/IO57RSB0	D1	IO171NDB3	F5	VCCIB3
A14	GBA0/IO58RSB0	D2	IO171PDB3	F6	GND
A15	GBA1/IO59RSB0	D3	GAC2/IO172PDB3	F7	VCC
A16	GND	D4	IO06RSB0	F8	VCC
B1	GAB2/IO173PDB3	D5	GNDQ	F9	VCC
B2	GAA2/IO174PDB3	D6	IO10RSB0	F10	VCC
B3	GNDQ	D7	IO19RSB0	F11	GND
B4	GAB1/IO03RSB0	D8	IO26RSB0	F12	VCCIB1
B5	IO13RSB0	D9	IO30RSB0	F13	IO62NDB1
B6	IO14RSB0	D10	IO40RSB0	F14	IO64NPB1
B7	IO21RSB0	D11	IO45RSB0	F15	IO65PPB1
B8	IO27RSB0	D12	GNDQ	F16	IO66NDB1
B9	IO32RSB0	D13	IO50RSB0	G1	IO165NDB3
B10	IO38RSB0	D14	GBB2/IO61PPB1	G2	IO165PDB3
B11	IO42RSB0	D15	IO53RSB0	G3	IO168PPB3
B12	GBC1/IO55RSB0	D16	IO63NDB1	G4	GFC1/IO164PPB3
B13	GBB0/IO56RSB0	E1	IO166PDB3	G5	VCCIB3
B14	IO52RSB0	E2	IO167NPB3	G6	VCC
B15	GBA2/IO60PDB1	E3	IO172NDB3	G7	GND
B16	IO60NDB1	E4	IO169NDB3	G8	GND
C1	IO173NDB3	E5	VMV0	G9	GND
C2	IO174NDB3	E6	VCCIB0	G10	GND
C3	VMV3	E7	VCCIB0	G11	VCC
C4	IO07RSB0	E8	IO25RSB0	G12	VCCIB1

FG484		FG484			FG484	
Pin Number	A3P600 Function	Pin Number	A3P600 Function	Pin Number	A3P600 Function	
K19	IO75NDB1	M11	GND	P3	IO153NDB3	
K20	NC	M12	GND	P4	IO159NDB3	
K21	IO76NDB1	M13	GND	P5	IO156NPB3	
K22	IO76PDB1	M14	VCC	P6	IO151PPB3	
L1	NC	M15	GCB2/IO73PPB1	P7	IO158PPB3	
L2	IO155PDB3	M16	GCA1/IO71PPB1	P8	VCCIB3	
L3	NC	M17	GCC2/IO74PPB1	P9	GND	
L4	GFB0/IO163NPB3	M18	IO80PPB1	P10	VCC	
L5	GFA0/IO162NDB3	M19	GCA2/IO72PDB1	P11	VCC	
L6	GFB1/IO163PPB3	M20	IO79PPB1	P12	VCC	
L7	VCOMPLF	M21	IO78PPB1	P13	VCC	
L8	GFC0/IO164NPB3	M22	NC	P14	GND	
L9	VCC	N1	IO154NDB3	P15	VCCIB1	
L10	GND	N2	IO154PDB3	P16	GDB0/IO87NPB1	
L11	GND	N3	NC	P17	IO85NDB1	
L12	GND	N4	GFC2/IO159PDB3	P18	IO85PDB1	
L13	GND	N5	IO161NPB3	P19	IO84PDB1	
L14	VCC	N6	IO156PPB3	P20	NC	
L15	GCC0/IO69NPB1	N7	IO129RSB2	P21	IO81PDB1	
L16	GCB1/IO70PPB1	N8	VCCIB3	P22	NC	
L17	GCA0/IO71NPB1	N9	VCC	R1	NC	
L18	IO67NPB1	N10	GND	R2	NC	
L19	GCB0/IO70NPB1	N11	GND	R3	VCC	
L20	IO77PDB1	N12	GND	R4	IO150PDB3	
L21	IO77NDB1	N13	GND	R5	IO151NPB3	
L22	IO78NPB1	N14	VCC	R6	IO147NPB3	
M1	NC	N15	VCCIB1	R7	GEC0/IO146NPB3	
M2	IO155NDB3	N16	IO73NPB1	R8	VMV3	
M3	IO158NPB3	N17	IO80NPB1	R9	VCCIB2	
M4	GFA2/IO161PPB3	N18	IO74NPB1	R10	VCCIB2	
M5	GFA1/IO162PDB3	N19	IO72NDB1	R11	IO117RSB2	
M6	VCCPLF	N20	NC	R12	IO110RSB2	
M7	IO160NDB3	N21	IO79NPB1	R13	VCCIB2	
M8	GFB2/IO160PDB3	N22	NC	R14	VCCIB2	
M9	VCC	P1	NC	R15	VMV2	
M10	GND	P2	IO153PDB3	R16	IO94RSB2	

🌜 Microsemi.

	FG484		FG484	FG484	
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function
A1	GND	B15	IO63RSB0	D7	GAB0/IO02RSB0
A2	GND	B16	IO66RSB0	D8	IO16RSB0
A3	VCCIB0	B17	IO68RSB0	D9	IO22RSB0
A4	IO07RSB0	B18	IO70RSB0	D10	IO28RSB0
A5	IO09RSB0	B19	NC	D11	IO35RSB0
A6	IO13RSB0	B20	NC	D12	IO45RSB0
A7	IO18RSB0	B21	VCCIB1	D13	IO50RSB0
A8	IO20RSB0	B22	GND	D14	IO55RSB0
A9	IO26RSB0	C1	VCCIB3	D15	IO61RSB0
A10	IO32RSB0	C2	IO220PDB3	D16	GBB1/IO75RSB0
A11	IO40RSB0	C3	NC	D17	GBA0/IO76RSB0
A12	IO41RSB0	C4	NC	D18	GBA1/IO77RSB0
A13	IO53RSB0	C5	GND	D19	GND
A14	IO59RSB0	C6	IO10RSB0	D20	NC
A15	IO64RSB0	C7	IO14RSB0	D21	NC
A16	IO65RSB0	C8	VCC	D22	NC
A17	IO67RSB0	C9	VCC	E1	IO219NDB3
A18	IO69RSB0	C10	IO30RSB0	E2	NC
A19	NC	C11	IO37RSB0	E3	GND
A20	VCCIB0	C12	IO43RSB0	E4	GAB2/IO224PDB3
A21	GND	C13	NC	E5	GAA2/IO225PDB3
A22	GND	C14	VCC	E6	GNDQ
B1	GND	C15	VCC	E7	GAB1/IO03RSB0
B2	VCCIB3	C16	NC	E8	IO17RSB0
B3	NC	C17	NC	E9	IO21RSB0
B4	IO06RSB0	C18	GND	E10	IO27RSB0
B5	IO08RSB0	C19	NC	E11	IO34RSB0
B6	IO12RSB0	C20	NC	E12	IO44RSB0
B7	IO15RSB0	C21	NC	E13	IO51RSB0
B8	IO19RSB0	C22	VCCIB1	E14	IO57RSB0
B9	IO24RSB0	D1	IO219PDB3	E15	GBC1/IO73RSB0
B10	IO31RSB0	D2	IO220NDB3	E16	GBB0/IO74RSB0
B11	IO39RSB0	D3	NC	E17	IO71RSB0
B12	IO48RSB0	D4	GND	E18	GBA2/IO78PDB1
B13	IO54RSB0	D5	GAA0/IO00RSB0	E19	IO81PDB1
B14	IO58RSB0	D6	GAA1/IO01RSB0	E20	GND

🌜 Microsemi.

	FG484		FG484		FG484
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function
K19	IO88NDB1	M11	GND	P3	IO199NDB3
K20	IO94NPB1	M12	GND	P4	IO202NDB3
K21	IO98NDB1	M13	GND	P5	IO202PDB3
K22	IO98PDB1	M14	VCC	P6	IO196PPB3
L1	NC	M15	GCB2/IO95PPB1	P7	IO193PPB3
L2	IO200PDB3	M16	GCA1/IO93PPB1	P8	VCCIB3
L3	IO210NPB3	M17	GCC2/IO96PPB1	P9	GND
L4	GFB0/IO208NPB3	M18	IO100PPB1	P10	VCC
L5	GFA0/IO207NDB3	M19	GCA2/IO94PPB1	P11	VCC
L6	GFB1/IO208PPB3	M20	IO101PPB1	P12	VCC
L7	VCOMPLF	M21	IO99PPB1	P13	VCC
L8	GFC0/IO209NPB3	M22	NC	P14	GND
L9	VCC	N1	IO201NDB3	P15	VCCIB1
L10	GND	N2	IO201PDB3	P16	GDB0/IO112NPB1
L11	GND	N3	NC	P17	IO106NDB1
L12	GND	N4	GFC2/IO204PDB3	P18	IO106PDB1
L13	GND	N5	IO204NDB3	P19	IO107PDB1
L14	VCC	N6	IO203NDB3	P20	NC
L15	GCC0/IO91NPB1	N7	IO203PDB3	P21	IO104PDB1
L16	GCB1/IO92PPB1	N8	VCCIB3	P22	IO103NDB1
L17	GCA0/IO93NPB1	N9	VCC	R1	NC
L18	IO96NPB1	N10	GND	R2	IO197PPB3
L19	GCB0/IO92NPB1	N11	GND	R3	VCC
L20	IO97PDB1	N12	GND	R4	IO197NPB3
L21	IO97NDB1	N13	GND	R5	IO196NPB3
L22	IO99NPB1	N14	VCC	R6	IO193NPB3
M1	NC	N15	VCCIB1	R7	GEC0/IO190NPB3
M2	IO200NDB3	N16	IO95NPB1	R8	VMV3
M3	IO206NDB3	N17	IO100NPB1	R9	VCCIB2
M4	GFA2/IO206PDB3	N18	IO102NDB1	R10	VCCIB2
M5	GFA1/IO207PDB3	N19	IO102PDB1	R11	IO147RSB2
M6	VCCPLF	N20	NC	R12	IO136RSB2
M7	IO205NDB3	N21	IO101NPB1	R13	VCCIB2
M8	GFB2/IO205PDB3	N22	IO103PDB1	R14	VCCIB2
M9	VCC	P1	NC	R15	VMV2
M10	GND	P2	IO199PDB3	R16	IO110NDB1

Revision	Changes	Page	
v2.0 (continued)	Table 3-20 • Summary of I/O Timing Characteristics—Software Default Settings (Advanced) and Table 3-21 • Summary of I/O Timing Characteristics—Software Default Settings (Standard Plus) were updated.		
	Table 3-11 • Different Components Contributing to Dynamic Power Consumptionin ProASIC3 Devices was updated.	3-9	
	Table 3-24 • I/O Output Buffer Maximum Resistances1 (Advanced) and Table 3-25 • I/O Output Buffer Maximum Resistances1 (Standard Plus) were updated.	3-22 to 3-22	
	Table 3-17 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions was updated.	3-18	
	Table 3-28 • I/O Short Currents IOSH/IOSL (Advanced) and Table 3-29 • I/O Short Currents IOSH/IOSL (Standard Plus) were updated.	3-24 to 3-26	
	The note in Table 3-32 • I/O Input Rise Time, Fall Time, and Related I/O Reliability was updated.	3-27	
	Figure 3-33 • Write Access After Write onto Same Address, Figure 3-34 • Read Access After Write onto Same Address, and Figure 3-35 • Write Access After Read onto Same Address are new.	3-82 to 3-84	
	Figure 3-43 • Timing Diagram was updated.	3-96	
	Ambient was deleted from the "Speed Grade and Temperature Grade Matrix".	iv	
	Notes were added to the package diagrams identifying if they were top or bottom view.		
	The A3P030 "132-Pin QFN" table is new.	4-2	
	The A3P060 "132-Pin QFN" table is new.	4-4	
	The A3P125 "132-Pin QFN" table is new.	4-6	
	The A3P250 "132-Pin QFN" table is new.	4-8	
	The A3P030 "100-Pin VQFP" table is new.	4-11	
Advance v0.7 (January 2007)	In the "I/Os Per Package" table, the I/O numbers were added for A3P060, A3P125, and A3P250. The A3P030-VQ100 I/O was changed from 79 to 77.	ii	
Advance v0.6 (April 2006)	The term flow-through was changed to pass-through.	N/A	
	Table 1 was updated to include the QN132.	ii	
	The "I/Os Per Package" table was updated with the QN132. The footnotes were also updated. The A3P400-FG144 I/O count was updated.	ii	
	"Automotive ProASIC3 Ordering Information" was updated with the QN132.	iii	
	"Temperature Grade Offerings" was updated with the QN132.	iii	
	B-LVDS and M-LDVS are new I/O standards added to the datasheet.	N/A	
	The term flow-through was changed to pass-through.	N/A	
	Figure 2-7 • Efficient Long-Line Resources was updated.	2-7	
	The footnotes in Figure 2-15 • Clock Input Sources Including CLKBUF, CLKBUF_LVDS/LVPECL, and CLKINT were updated.		
	The Delay Increments in the Programmable Delay Blocks specification in Figure 2-24 • ProASIC3E CCC Options.	2-24	
	The "SRAM and FIFO" section was updated.	2-21	

Revision	Changes	Page
Advance v0.2, (continued)	Table 2-43 was updated.	2-64
	Table 2-18 was updated.	2-45
	Pin descriptions in the "JTAG Pins" section were updated.	2-51
	The "User I/O Naming Convention" section was updated.	2-48
	Table 3-7 was updated.	3-6
	The "Methodology" section was updated.	
	Table 3-40 and Table 3-39 were updated.	3-33,3-32
	The A3P250 "100-Pin VQFP*" pin table was updated.	4-14
	The A3P250 "208-Pin PQFP*" pin table was updated.	4-23
	The A3P1000 "208-Pin PQFP*" pin table was updated.	4-29
	The A3P250 "144-Pin FBGA*" pin table was updated.	4-36
	The A3P1000 "144-Pin FBGA*" pin table was updated.	4-32
	The A3P250 "256-Pin FBGA*" pin table was updated.	4-45
	The A3P1000 "256-Pin FBGA*" pin table was updated.	4-54
	The A3P1000 "484-Pin FBGA*" pin table was updated.	4-68

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2016 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi Corporation (MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense and security, aerospace, and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet Solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has approximately 4,800 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.