

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	
Total RAM Bits	36864
Number of I/O	157
Number of Gates	250000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p250-fgg256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2-2 • Recommended Operating Conditions¹

Symbol	Parameters ¹		Commercial	Industrial	Units
TJ	Junction temperature		0 to 85 ²	-40 to 100 ²	°C
VCC ³	1.5 V DC core supply volta	ge	1.425 to 1.575	1.425 to 1.575	V
VJTAG	JTAG DC voltage		1.4 to 3.6	1.4 to 3.6	V
VPUMP	Programming voltage	Programming Mode	3.15 to 3.45 3.15 to 3		V
		Operation ⁴	0 to 3.6	0 to 3.6	V
VCCPLL	Analog power supply (PLL)		1.425 to 1.575	1.425 to 1.575	V
VCCI and VMV ⁵	1.5 V DC supply voltage		1.425 to 1.575	1.425 to 1.575	V
	1.8 V DC supply voltage		1.7 to 1.9	1.7 to 1.9	V
	2.5 V DC supply voltage		2.3 to 2.7	2.3 to 2.7	V
	3.3 V DC supply voltage		3.0 to 3. <u>6</u>	3.0 to 3. <u>6</u>	V
	3.3 V wide range DC supply voltage ⁶		2.7 to 3.6	2.7 to 3.6	V
	LVDS/B-LVDS/M-LVDS differential I/O		2.375 to 2.625	2.375 to 2.625	V
	LVPECL differential I/O		3.0 to 3.6	3.0 to 3.6	V

Notes:

1. All parameters representing voltages are measured with respect to GND unless otherwise specified.

- 2. Software Default Junction Temperature Range in the Libero[®] System-on-Chip (SoC) software is set to 0°C to +70°C for commercial, and -40°C to +85°C for industrial. To ensure targeted reliability standards are met across the full range of junction temperatures, Microsemi recommends using custom settings for temperature range before running timing and power analysis tools. For more information regarding custom settings, refer to the New Project Dialog Box in the Libero SoC Online Help.
- 3. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-18 on page 2-19.
- 4. VPUMP can be left floating during operation (not programming mode).
- 5. VMV and VCCI should be at the same voltage within a given I/O bank. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information.
- 6. 3.3 V wide range is compliant to the JESD8-B specification and supports 3.0 V VCCI operation.

	Definition		Device Specific Static Power (mW						
Parameter		A3P1000	A3P600	A3P400	A3P250	A3P125	A3P060	A3P030	A3P015
PDC1	Array static power in Active mode		See Table 2-7 on page 2-7.						
PDC2	I/O input pin static power (standard-dependent)		See Table 2-8 on page 2-7 through Table 2-10 on page 2-8.						
PDC3	I/O output pin static power (standard-dependent)		See Table 2-11 on page 2-9 throu Table 2-13 on page 2-10.			rough			
PDC4	Static PLL contribution		2.55 mW						
PDC5	Bank quiescent power (VCCI-dependent)		S	See Ta	ble 2-7	' on pa	age 2-7		

Table 2-15 • Different Components Contributing to the Static Power Consumption in ProASIC3 Devices

Note: *For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi Power spreadsheet calculator or SmartPower tool in Libero SoC software.

Power Calculation Methodology

This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in Libero SoC software.

The power calculation methodology described below uses the following variables:

- The number of PLLs as well as the number and the frequency of each output clock generated
- · The number of combinatorial and sequential cells used in the design
- · The internal clock frequencies
- The number and the standard of I/O pins used in the design
- · The number of RAM blocks used in the design
- Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-16 on page 2-14.
- Enable rates of output buffers—guidelines are provided for typical applications in Table 2-17 on page 2-14.
- Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-17 on page 2-14. The calculation should be repeated for each clock domain defined in the design.

Methodology

Total Power Consumption—PTOTAL

 $P_{TOTAL} = P_{STAT} + P_{DYN}$

P_{STAT} is the total static power consumption.

P_{DYN} is the total dynamic power consumption.

Total Static Power Consumption—P_{STAT}

 $P_{STAT} = P_{DC1} + N_{INPUTS} + P_{DC2} + N_{OUTPUTS} + P_{DC3}$

N_{INPUTS} is the number of I/O input buffers used in the design.

N_{OUTPUTS} is the number of I/O output buffers used in the design.

Total Dynamic Power Consumption—P_{DYN}

P_{DYN} = P_{CLOCK} + P_{S-CELL} + P_{C-CELL} + P_{NET} + P_{INPUTS} + P_{OUTPUTS} + P_{MEMORY} + P_{PLL}

Global Clock Contribution—P_{CLOCK}

 $P_{CLOCK} = (P_{AC1} + N_{SPINE}*P_{AC2} + N_{ROW}*P_{AC3} + N_{S-CELL}*P_{AC4})*F_{CLK}$

N_{SPINE} is the number of global spines used in the user design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *ProASIC3 FPGA Fabric User's Guide*.

N_{ROW} is the number of VersaTile rows used in the design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *ProASIC3 FPGA Fabric User's Guide*.

Table 2-29 • I/O Output Buffer Maximum Resistances ¹ Applicable to Standard Plus I/O Banks

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	R _{PULL-UP} (Ω) ³
3.3 V LVTTL / 3.3 V	2 mA	100	300
LVCMOS	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
	12 mA	25	75
	16 mA	25	75
3.3 V LVCMOS Wide Range ⁴	100 µA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
	12 mA	25	50
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
	6 mA	50	56
	8 mA	50	56
1.5 V LVCMOS	2 mA	200	224
	4 mA	100	112
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	25	75

Notes:

 These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

^{2.} R_(PULL-DOWN-MAX) = (VOLspec) / IOLspec

^{3.} R_(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec

Table 2-93 • Minimum and Maximum DC Input and Output Levels

DC Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
VCCI	Supply Voltage	3.	.0	3	.3	3	.6	V
VOL	Output Low Voltage	0.96	1.27	1.06	1.43	1.30	1.57	V
VOH	Output High Voltage	1.8	2.11	1.92	2.28	2.13	2.41	V
VIL, VIH	Input Low, Input High Voltages	0	3.6	0	3.6	0	3.6	V
VODIFF	Differential Output Voltage	0.625	0.97	0.625	0.97	0.625	0.97	V
VOCM	Output Common-Mode Voltage	1.762	1.98	1.762	1.98	1.762	1.98	V
VICM	Input Common-Mode Voltage	1.01	2.57	1.01	2.57	1.01	2.57	V
VIDIFF	Input Differential Voltage	300		300		300		mV

Table 2-94 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)
1.64	1.94	Cross point

Note: **Measuring point* = $V_{trip.}$ See Table 2-22 on page 2-22 for a complete table of trip points.

Timing Characteristics

Table 2-95 • LVPECL

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.66	1.80	0.04	1.40	ns
-1	0.56	1.53	0.04	1.19	ns
-2	0.49	1.34	0.03	1.05	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

I/O Register Specifications

Figure 2-15 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

DDR Module Specifications

Input DDR Module

Figure 2-20 • Input DDR Timing Model

	Table 2	2-101 •	Parameter	Definitions
--	---------	---------	-----------	-------------

Parameter Name	Parameter Definition	Measuring Nodes (from, to)
t _{DDRICLKQ1}	Clock-to-Out Out_QR	B, D
t _{DDRICLKQ2}	Clock-to-Out Out_QF	B, E
t _{DDRISUD}	Data Setup Time of DDR input	А, В
t _{DDRIHD}	Data Hold Time of DDR input	А, В
t _{DDRICLR2Q1}	Clear-to-Out Out_QR	C, D
t _{DDRICLR2Q2}	Clear-to-Out Out_QF	C, E
t _{DDRIREMCLR}	Clear Removal	С, В
t _{DDRIRECCLR}	Clear Recovery	С, В

VersaTile Characteristics

VersaTile Specifications as a Combinatorial Module

The ProASIC3 library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the *Fusion, IGLOO®/e, and ProASIC3/E Macro Library Guide*.

Figure 2-24 • Sample of Combinatorial Cells

Table 2-111 • A3P250 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

			-2		-1		Std.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.80	1.01	0.91	1.15	1.07	1.36	ns
t _{RCKH}	Input High Delay for Global Clock	0.78	1.04	0.89	1.18	1.04	1.39	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-112 • A3P400 Global Resource

```
Commercial-Case Conditions: T<sub>J</sub> = 70°C, VCC = 1.425 V
```

		-	-2	-	-1	S	td.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.87	1.09	0.99	1.24	1.17	1.46	ns
t _{RCKH}	Input High Delay for Global Clock	0.86	1.11	0.98	1.27	1.15	1.49	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Timing Waveforms

Figure 2-32 • RAM Read for Pipelined Output. Applicable to Both RAM4K9 and RAM512x18.

Figure 2-35 • RAM Reset. Applicable to Both RAM4K9 and RAM512x18.

3 – Pin Descriptions

Supply Pins

Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always be connected to GND on the board.

VCC

GND

Core Supply Voltage

Supply voltage to the FPGA core, nominally 1.5 V. VCC is required for powering the JTAG state machine in addition to VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the device.

VCCIBx I/O Supply Voltage

Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to eight I/O banks on low power flash devices plus a dedicated VJTAG bank. Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. In general, unused I/O banks should have their corresponding VCCIX pins tied to GND. If an output pad is terminated to ground through any resistor and if the corresponding VCCIX is left floating, then the leakage current to ground is ~ 0uA. However, if an output pad is terminated to ground is ~ 3 uA. For unused banks the aforementioned behavior is to be taken into account while deciding if it's better to float VCCIX of unused bank or tie it to GND.

VMVx I/O Supply Voltage (quiet)

Quiet supply voltage to the input buffers of each I/O bank. *x* is the bank number. Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks. This minimizes the noise transfer within the package and improves input signal integrity. Each bank must have at least one VMV connection, and no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be connected to the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1, etc.).

VCCPLA/B/C/D/E/F PLL Supply Voltage

Supply voltage to analog PLL, nominally 1.5 V.

When the PLLs are not used, the Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple VCC noise from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning Circuits in IGLOO and ProASIC3 Devices" chapter of the *ProASIC3 FPGA Fabric User's Guide* for a complete board solution for the PLL analog power supply and ground.

There is one VCCPLF pin on ProASIC3 devices.

VCOMPLA/B/C/D/E/F PLL Ground

Ground to analog PLL power supplies. When the PLLs are not used, the Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground.

There is one VCOMPLF pin on ProASIC3 devices.

QN132				
Pin Number	A3P060 Function			
C17	IO57RSB1			
C18	NC			
C19	ТСК			
C20	VMV1			
C21	VPUMP			
C22	VJTAG			
C23	VCCIB0			
C24	NC			
C25	NC			
C26	GCA1/IO42RSB0			
C27	GCC0/IO39RSB0			
C28	VCCIB0			
C29	IO29RSB0			
C30	GNDQ			
C31	GBA1/IO27RSB0			
C32	GBB0/IO24RSB0			
C33	VCC			
C34	IO19RSB0			
C35	IO16RSB0			
C36	IO13RSB0			
C37	GAC1/IO10RSB0			
C38	NC			
C39	GAA0/IO05RSB0			
C40	VMV0			
D1	GND			
D2	GND			
D3	GND			
D4	GND			

QN132			
Pin Number A3P250 Function			
C17	IO74RSB2		
C18	VCCIB2		
C19	ТСК		
C20	VMV2		
C21	VPUMP		
C22	VJTAG		
C23	VCCIB1		
C24	IO53NSB1		
C25	IO51NPB1		
C26	GCA1/IO50PPB1		
C27	GCC0/IO48NDB1		
C28	VCCIB1		
C29	IO42NDB1		
C30	GNDQ		
C31	GBA1/IO40RSB0		
C32	GBB0/IO37RSB0		
C33	VCC		
C34	IO24RSB0		
C35	IO19RSB0		
C36	IO16RSB0		
C37	IO10RSB0		
C38	VCCIB0		
C39	GAB1/IO03RSB0		
C40	VMV0		
D1	GND		
D2	GND		
D3	GND		
D4	GND		

	PQ208	Q208 PQ208 PQ208		PQ208	
Pin Number	A3P250 Function	Pin Number	A3P250 Function	Pin Number	A3P250 Function
1	GND	37	IO104PDB3	73	IO83RSB2
2	GAA2/IO118UDB3	38	IO104NDB3	74	IO82RSB2
3	IO118VDB3	39	IO103PSB3	75	IO81RSB2
4	GAB2/IO117UDB3	40	VCCIB3	76	IO80RSB2
5	IO117VDB3	41	GND	77	IO79RSB2
6	GAC2/IO116UDB3	42	IO101PDB3	78	IO78RSB2
7	IO116VDB3	43	IO101NDB3	79	IO77RSB2
8	IO115UDB3	44	GEC1/IO100PDB3	80	IO76RSB2
9	IO115VDB3	45	GEC0/IO100NDB3	81	GND
10	IO114UDB3	46	GEB1/IO99PDB3	82	IO75RSB2
11	IO114VDB3	47	GEB0/IO99NDB3	83	IO74RSB2
12	IO113PDB3	48	GEA1/IO98PDB3	84	IO73RSB2
13	IO113NDB3	49	GEA0/IO98NDB3	85	IO72RSB2
14	IO112PDB3	50	VMV3	86	IO71RSB2
15	IO112NDB3	51	GNDQ	87	IO70RSB2
16	VCC	52	GND	88	VCC
17	GND	53	NC	89	VCCIB2
18	VCCIB3	54	NC	90	IO69RSB2
19	IO111PDB3	55	GEA2/IO97RSB2	91	IO68RSB2
20	IO111NDB3	56	GEB2/IO96RSB2	92	IO67RSB2
21	GFC1/IO110PDB3	57	GEC2/IO95RSB2	93	IO66RSB2
22	GFC0/IO110NDB3	58	IO94RSB2	94	IO65RSB2
23	GFB1/IO109PDB3	59	IO93RSB2	95	IO64RSB2
24	GFB0/IO109NDB3	60	IO92RSB2	96	GDC2/IO63RSB2
25	VCOMPLF	61	IO91RSB2	97	GND
26	GFA0/IO108NPB3	62	VCCIB2	98	GDB2/IO62RSB2
27	VCCPLF	63	IO90RSB2	99	GDA2/IO61RSB2
28	GFA1/IO108PPB3	64	IO89RSB2	100	GNDQ
29	GND	65	GND	101	ТСК
30	GFA2/IO107PDB3	66	IO88RSB2	102	TDI
31	IO107NDB3	67	IO87RSB2	103	TMS
32	GFB2/IO106PDB3	68	IO86RSB2	104	VMV2
33	IO106NDB3	69	IO85RSB2	105	GND
34	GFC2/IO105PDB3	70	IO84RSB2	106	VPUMP
35	IO105NDB3	71	VCC	107	NC
36	NC	72	VCCIB2	108	TDO

F	PQ208	F	PQ208		PQ208
Pin Number	A3P600 Function	Pin Number	A3P600 Function	Pin Number	A3P600 Function
109	TRST	145	IO64PDB1	181	IO27RSB0
110	VJTAG	146	IO63NDB1	182	IO26RSB0
111	GDA0/IO88NDB1	147	IO63PDB1	183	IO25RSB0
112	GDA1/IO88PDB1	148	IO62NDB1	184	IO24RSB0
113	GDB0/IO87NDB1	149	GBC2/IO62PDB1	185	IO23RSB0
114	GDB1/IO87PDB1	150	IO61NDB1	186	VCCIB0
115	GDC0/IO86NDB1	151	GBB2/IO61PDB1	187	VCC
116	GDC1/IO86PDB1	152	IO60NDB1	188	IO20RSB0
117	IO84NDB1	153	GBA2/IO60PDB1	189	IO19RSB0
118	IO84PDB1	154	VMV1	190	IO18RSB0
119	IO82NDB1	155	GNDQ	191	IO17RSB0
120	IO82PDB1	156	GND	192	IO16RSB0
121	IO81PSB1	157	VMV0	193	IO14RSB0
122	GND	158	GBA1/IO59RSB0	194	IO12RSB0
123	VCCIB1	159	GBA0/IO58RSB0	195	GND
124	IO77NDB1	160	GBB1/IO57RSB0	196	IO10RSB0
125	IO77PDB1	161	GBB0/IO56RSB0	197	IO09RSB0
126	NC	162	GND	198	IO08RSB0
127	IO74NDB1	163	GBC1/IO55RSB0	199	IO07RSB0
128	GCC2/IO74PDB1	164	GBC0/IO54RSB0	200	VCCIB0
129	GCB2/IO73PSB1	165	IO52RSB0	201	GAC1/IO05RSB0
130	GND	166	IO50RSB0	202	GAC0/IO04RSB0
131	GCA2/IO72PSB1	167	IO48RSB0	203	GAB1/IO03RSB0
132	GCA1/IO71PDB1	168	IO46RSB0	204	GAB0/IO02RSB0
133	GCA0/IO71NDB1	169	IO44RSB0	205	GAA1/IO01RSB0
134	GCB0/IO70NDB1	170	VCCIB0	206	GAA0/IO00RSB0
135	GCB1/IO70PDB1	171	VCC	207	GNDQ
136	GCC0/IO69NDB1	172	IO36RSB0	208	VMV0
137	GCC1/IO69PDB1	173	IO35RSB0		+
138	IO67NDB1	174	IO34RSB0		
139	IO67PDB1	175	IO33RSB0		
140	VCCIB1	176	IO32RSB0		
141	GND	177	IO31RSB0		
142	VCC	178	GND		
143	IO65PSB1	179	IO29RSB0		
144	IO64NDB1	180	IO28RSB0		

FG144			
Pin Number	A3P600 Function		
K1	GEB0/IO145NDB3		
K2	GEA1/IO144PDB3		
K3	GEA0/IO144NDB3		
K4	GEA2/IO143RSB2		
K5	IO119RSB2		
K6	IO111RSB2		
K7	GND		
K8	IO94RSB2		
K9	GDC2/IO91RSB2		
K10	GND		
K11	GDA0/IO88NDB1		
K12	GDB0/IO87NDB1		
L1	GND		
L2	VMV3		
L3	GEB2/IO142RSB2		
L4	IO136RSB2		
L5	VCCIB2		
L6	IO115RSB2		
L7	IO103RSB2		
L8	IO97RSB2		
L9	TMS		
L10	VJTAG		
L11	VMV2		
L12	TRST		
M1	GNDQ		
M2	GEC2/IO141RSB2		
M3	IO138RSB2		
M4	IO123RSB2		
M5	IO126RSB2		
M6	IO134RSB2		
M7	IO108RSB2		
M8	IO99RSB2		
M9	TDI		
M10	VCCIB2		
M11	VPUMP		
M12	GNDQ		

🌜 Microsemi.

	FG256	FG256		FG256	
Pin Number	A3P250 Function	Pin Number	A3P250 Function	Pin Number	A3P250 Function
G13	GCC1/IO48PPB1	K1	GFC2/IO105PDB3	M5	VMV3
G14	IO47NPB1	K2	IO107NPB3	M6	VCCIB2
G15	IO54PDB1	K3	IO104PPB3	M7	VCCIB2
G16	IO54NDB1	K4	NC	M8	NC
H1	GFB0/IO109NPB3	K5	VCCIB3	M9	IO74RSB2
H2	GFA0/IO108NDB3	K6	VCC	M10	VCCIB2
H3	GFB1/IO109PPB3	K7	GND	M11	VCCIB2
H4	VCOMPLF	K8	GND	M12	VMV2
H5	GFC0/IO110NPB3	K9	GND	M13	NC
H6	VCC	K10	GND	M14	GDB1/IO59UPB1
H7	GND	K11	VCC	M15	GDC1/IO58UDB1
H8	GND	K12	VCCIB1	M16	IO56NDB1
H9	GND	K13	IO52NPB1	N1	IO103NDB3
H10	GND	K14	IO55RSB1	N2	IO101PPB3
H11	VCC	K15	IO53NPB1	N3	GEC1/IO100PPB3
H12	GCC0/IO48NPB1	K16	IO51NDB1	N4	NC
H13	GCB1/IO49PPB1	L1	IO105NDB3	N5	GNDQ
H14	GCA0/IO50NPB1	L2	IO104NPB3	N6	GEA2/IO97RSB2
H15	NC	L3	NC	N7	IO86RSB2
H16	GCB0/IO49NPB1	L4	IO102RSB3	N8	IO82RSB2
J1	GFA2/IO107PPB3	L5	VCCIB3	N9	IO75RSB2
J2	GFA1/IO108PDB3	L6	GND	N10	IO69RSB2
J3	VCCPLF	L7	VCC	N11	IO64RSB2
J4	IO106NDB3	L8	VCC	N12	GNDQ
J5	GFB2/IO106PDB3	L9	VCC	N13	NC
J6	VCC	L10	VCC	N14	VJTAG
J7	GND	L11	GND	N15	GDC0/IO58VDB1
J8	GND	L12	VCCIB1	N16	GDA1/IO60UDB1
J9	GND	L13	GDB0/IO59VPB1	P1	GEB1/IO99PDB3
J10	GND	L14	IO57VDB1	P2	GEB0/IO99NDB3
J11	VCC	L15	IO57UDB1	P3	NC
J12	GCB2/IO52PPB1	L16	IO56PDB1	P4	NC
J13	GCA1/IO50PPB1	M1	IO103PDB3	P5	IO92RSB2
J14	GCC2/IO53PPB1	M2	NC	P6	IO89RSB2
J15	NC	M3	IO101NPB3	P7	IO85RSB2
J16	GCA2/IO51PDB1	M4	GEC0/IO100NPB3	P8	IO81RSB2

FG256			
Pin Number	A3P600 Function		
P9	IO107RSB2		
P10	IO104RSB2		
P11	IO97RSB2		
P12	VMV1		
P13	ТСК		
P14	VPUMP		
P15	TRST		
P16	GDA0/IO88NDB1		
R1	GEA1/IO144PDB3		
R2	GEA0/IO144NDB3		
R3	IO139RSB2		
R4	GEC2/IO141RSB2		
R5	IO132RSB2		
R6	IO127RSB2		
R7	IO121RSB2		
R8	IO114RSB2		
R9	IO109RSB2		
R10	IO105RSB2		
R11	IO98RSB2		
R12	IO96RSB2		
R13	GDB2/IO90RSB2		
R14	TDI		
R15	GNDQ		
R16	TDO		
T1	GND		
T2	IO137RSB2		
Т3	GEB2/IO142RSB2		
T4	IO134RSB2		
T5	IO125RSB2		
Т6	IO123RSB2		
T7	IO118RSB2		
Т8	IO115RSB2		
Т9	IO111RSB2		
T10	IO106RSB2		
T11	IO102RSB2		
T12	GDC2/IO91RSB2		

FG256		
Pin Number	A3P600 Function	
T13	IO93RSB2	
T14	GDA2/IO89RSB2	
T15	TMS	
T16	GND	

	FG484	FG484	
Pin Number	A3P400 Function	Pin Number	A3P400 Function
R17	GDB1/IO78UPB1	U9	IO122RSB2
R18	GDC1/IO77UDB1	U10	IO115RSB2
R19	IO75NDB1	U11	IO110RSB2
R20	VCC	U12	IO98RSB2
R21	NC	U13	IO95RSB2
R22	NC	U14	IO88RSB2
T1	NC	U15	IO84RSB2
T2	NC	U16	ТСК
Т3	NC	U17	VPUMP
T4	IO140NDB3	U18	TRST
Т5	IO138PPB3	U19	GDA0/IO79VDB1
Т6	GEC1/IO137PPB3	U20	NC
Τ7	IO131RSB2	U21	NC
Т8	GNDQ	U22	NC
Т9	GEA2/IO134RSB2	V1	NC
T10	IO117RSB2	V2	NC
T11	IO111RSB2	V3	GND
T12	IO99RSB2	V4	GEA1/IO135PDB3
T13	IO94RSB2	V5	GEA0/IO135NDB3
T14	IO87RSB2	V6	IO127RSB2
T15	GNDQ	V7	GEC2/IO132RSB2
T16	IO93RSB2	V8	IO123RSB2
T17	VJTAG	V9	IO118RSB2
T18	GDC0/IO77VDB1	V10	IO112RSB2
T19	GDA1/IO79UDB1	V11	IO106RSB2
T20	NC	V12	IO100RSB2
T21	NC	V13	IO96RSB2
T22	NC	V14	IO89RSB2
U1	NC	V15	IO85RSB2
U2	NC	V16	GDB2/IO81RSB2
U3	NC	V17	TDI
U4	GEB1/IO136PDB3	V18	NC
U5	GEB0/IO136NDB3	V19	TDO
U6	VMV2	V20	GND
U7	IO129RSB2	V21	NC
U8	IO128RSB2	V22	NC

FG484		
Pin Number A3P400 Function		
W1	NC	
W2	NC	
W3	NC	
W4	GND	
W5	IO126RSB2	
W6	GEB2/IO133RSB2	
W7	IO124RSB2	
W8	IO116RSB2	
W9	IO113RSB2	
W10	IO107RSB2	
W11	IO105RSB2	
W12	IO102RSB2	
W13	IO97RSB2	
W14	IO92RSB2	
W15	GDC2/IO82RSB2	
W16	IO86RSB2	
W17	GDA2/IO80RSB2	
W18	TMS	
W19	GND	
W20	NC	
W21	NC	
W22	NC	
Y1	VCCIB3	
Y2	NC	
Y3	NC	
Y4	NC	
Y5	GND	
Y6	NC	
Y7	NC	
Y8	VCC	
Y9	VCC	
Y10	NC	
Y11	NC	
Y12	NC	
Y13	NC	
Y14	VCC	

Revision	Changes	Page
Advance v0.6 (continued)	The "Programming" section was updated to include information concerning serialization.	2-53
	The "JTAG 1532" section was updated to include SAMPLE/PRELOAD information.	2-54
	"DC and Switching Characteristics" chapter was updated with new information.	3-1
	The A3P060 "100-Pin VQFP" pin table was updated.	4-13
	The A3P125 "100-Pin VQFP" pin table was updated.	4-13
	The A3P060 "144-Pin TQFP" pin table was updated.	4-16
	The A3P125 "144-Pin TQFP" pin table was updated.	4-18
	The A3P125 "208-Pin PQFP" pin table was updated.	4-21
	The A3P400 "208-Pin PQFP" pin table was updated.	4-25
	The A3P060 "144-Pin FBGA" pin table was updated.	4-32
	The A3P125 "144-Pin FBGA" pin table is new.	4-34
	The A3P400 "144-Pin FBGA" is new.	4-38
	The A3P400 "256-Pin FBGA" was updated.	4-48
	The A3P1000 "256-Pin FBGA" was updated.	4-54
	The A3P400 "484-Pin FBGA" was updated.	4-58
	The A3P1000 "484-Pin FBGA" was updated.	4-68
	The A3P250 "100-Pin VQFP*" pin table was updated.	4-14
	The A3P250 "208-Pin PQFP*" pin table was updated.	4-23
	The A3P1000 "208-Pin PQFP*" pin table was updated.	4-29
	The A3P250 "144-Pin FBGA*" pin table was updated.	4-36
	The A3P1000 "144-Pin FBGA*" pin table was updated.	4-32
	The A3P250 "256-Pin FBGA*" pin table was updated.	4-45
	The A3P1000 "256-Pin FBGA*" pin table was updated.	4-54
	The A3P1000 "484-Pin FBGA*" pin table was updated.	4-68
Advance v0.5 (November 2005)	The "I/Os Per Package" table was updated for the following devices and packages:	ii
	Device Package A3P250/M7ACP250 VQ100 A3P250/M7ACP250 FG144 A3P1000 FG256	
Advance v0.4	M7 device information is new.	N/A
	The I/O counts in the "I/Os Per Package" table were updated.	ii
Advance v0.3	The "I/Os Per Package" table was updated.	ii
	M7 device information is new.	N/A
	Table 2-4 • ProASIC3 Globals/Spines/Rows by Device was updated to include the number or rows in each top or bottom spine.	2-16
	EXTFB was removed from Figure 2-24 • ProASIC3E CCC Options.	2-24