E·XFL

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	55296
Number of I/O	151
Number of Gates	400000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p400-2pqg208

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 – ProASIC3 Device Family Overview

General Description

ProASIC3, the third-generation family of Microsemi flash FPGAs, offers performance, density, and features beyond those of the ProASIC^{PLUS®} family. Nonvolatile flash technology gives ProASIC3 devices the advantage of being a secure, low power, single-chip solution that is Instant On. ProASIC3 is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

ProASIC3 devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on an integrated phase-locked loop (PLL). The A3P015 and A3P030 devices have no PLL or RAM support. ProASIC3 devices have up to 1 million system gates, supported with up to 144 kbits of true dual-port SRAM and up to 300 user I/Os.

ProASIC3 devices support the ARM Cortex-M1 processor. The ARM-enabled devices have Microsemi ordering numbers that begin with M1A3P (Cortex-M1) and do not support AES decryption.

Flash Advantages

Reduced Cost of Ownership

Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAMbased FPGAs, flash-based ProASIC3 devices allow all functionality to be Instant On; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property (IP) cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The ProASIC3 family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the ProASIC3 family a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/ communications, computing, and avionics markets.

Security

The nonvolatile, flash-based ProASIC3 devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. ProASIC3 devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.

ProASIC3 devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of protection in the FPGA industry for intellectual property and configuration data. In addition, all FlashROM data in ProASIC3 devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. The AES standard was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. ProASIC3 devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. ProASIC3 devices with AES-based security provide a high level of protection for remote field updates over public networks such as the Internet, and are designed to ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves.

ARM-enabled ProASIC3 devices do not support user-controlled AES security mechanisms. Since the ARM core must be protected at all times, AES encryption is always on for the core logic, so bitstreams are always encrypted. There is no user access to encryption for the FlashROM programming data.

Security, built into the FPGA fabric, is an inherent component of the ProASIC3 family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. The ProASIC3 family, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks.

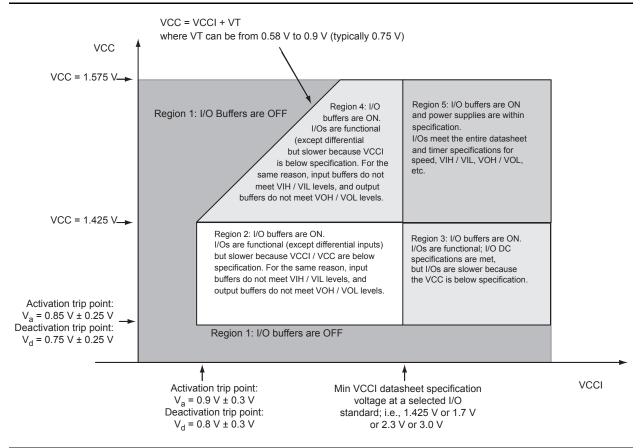


Figure 2-2 • I/O State as a Function of VCCI and VCC Voltage Levels

Package Thermal Characteristics

The device junction-to-case thermal resistivity is θ_{jc} and the junction-to-ambient air thermal resistivity is θ_{ja} . The thermal characteristics for θ_{ia} are shown for two air flow rates.

2-5

Table 2-26 • Summary of I/O Timing Characteristics—Software Default Settings

-2 Speed Grade, Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst Case VCC = 1.425 V, Worst-Case VCCI (per standard)

Standard I/O Banks

I/O Standard	Drive Strength	Equiv. Software Default Drive Strength Option ¹	Slew Rate	Capacitive Load (pF)	External Resistor	t _{bour} (ns)	t _{DP} (ns)	t _{DIN} (ns)	t _{pY} (ns)	t _{EOUT} (ns)	t _{zL} (ns)	t _{ZH} (ns)	t _{LZ} (ns)	t _{HZ} (ns)	Units
3.3 V LVTTL / 3.3 V LVCMOS	8 mA	8 mA	High	35	-	0.45	3.29	0.03	0.75	0.32	3.36	2.80	1.79	2.01	ns
3.3 V LVCMOS Wide Range ²	100 µA	8 mA	High	35	-	0.45	5.09	0.03	1.13	0.32	5.09	4.25	2.77	3.11	ns
2.5 V LVCMOS	8 mA	8 mA	High	35	Ι	0.45	3.56	0.03	0.96	0.32	3.40	3.56	1.78	1.91	ns
1.8 V LVCMOS	4 mA	4 mA	High	35	I	0.45	4.74	0.03	0.90	0.32	4.02	4.74	1.80	1.85	ns
1.5 V LVCMOS	2 mA	2 mA	High	35	-	0.45	5.71	0.03	1.06	0.32	4.71	5.71	1.83	1.83	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is $\pm 100 \ \mu$ A. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-34 • I/O Short Currents IOSH/IOSL Applicable to Standard I/O Banks

	Drive Strength	IOSL (mA) ¹	IOSH (mA) ¹
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	27	25
	4 mA	27	25
	6 mA	54	51
	8 mA	54	51
3.3 V LVCMOS Wide Range ²	100 µA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	2 mA	18	16
	4 mA	18	16
	6 mA	37	32
	8 mA	37	32
1.8 V LVCMOS	2 mA	11	9
	4 mA	22	17
1.5 V LVCMOS	2 mA	16	13

Notes:

- 1. $T_{.1} = 100^{\circ}C$
- Applicable to 3.3 V LVCMOS Wide Range. I_{OSL}/I_{OSH} dependent on the I/O buffer drive strength selected for wide range applications. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The reliability data below is based on a 3.3 V, 12 mA I/O setting, which is the worst case for this type of analysis.

For example, at 100°C, the short current condition would have to be sustained for more than six months to cause a reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions.

Table 2-35 • Duration of Short Circuit Event Before Failure

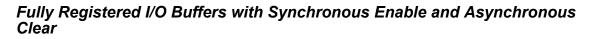

Temperature	Time before Failure
–40°C	> 20 years
0°C	> 20 years
25°C	> 20 years
70°C	5 years
85°C	2 years
100°C	0.5 years

Table 2-36 • I/O Input Rise Time, Fall Time, and Related I/O Reliability

Input Buffer	Input Rise/Fall Time (min)	Input Rise/Fall Time (max)	Reliability
LVTTL/LVCMOS	No requirement	10 ns *	20 years (110°C)
LVDS/B-LVDS/ M-LVDS/LVPECL	No requirement	10 ns *	10 years (100°C)

Note: *The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low, then the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Microsemi recommends signal integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals.

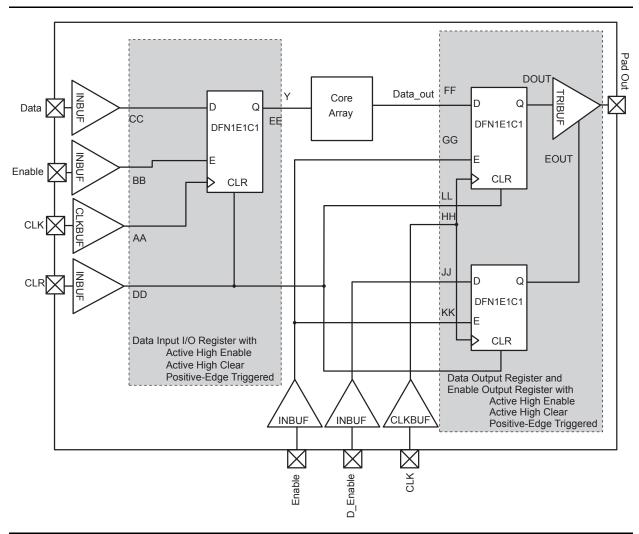
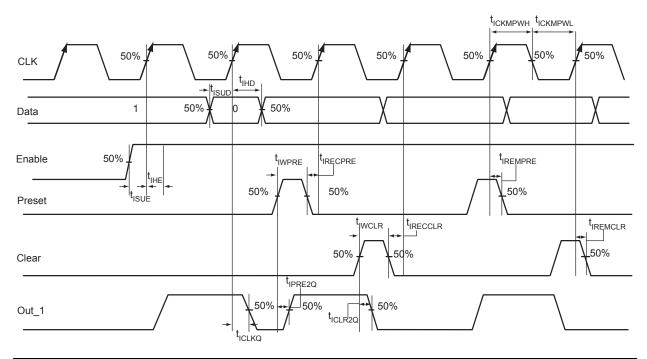
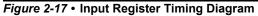
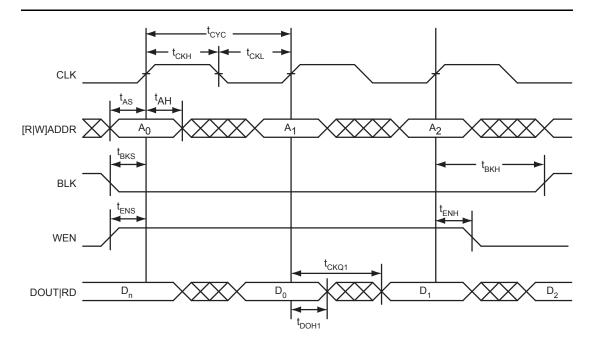




Figure 2-16 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

Input Register

Timing Characteristics


Table 2-98 • Input Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ICLKQ}	Clock-to-Q of the Input Data Register	0.24	0.27	0.32	ns
t _{ISUD}	Data Setup Time for the Input Data Register	0.26	0.30	0.35	ns
t _{IHD}	Data Hold Time for the Input Data Register	0.00	0.00	0.00	ns
t _{ISUE}	Enable Setup Time for the Input Data Register	0.37	0.42	0.50	ns
t _{IHE}	Enable Hold Time for the Input Data Register	0.00	0.00	0.00	ns
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	0.45	0.52	0.61	ns
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	0.45	0.52	0.61	ns
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	0.00	0.00	0.00	ns
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	0.22	0.25	0.30	ns
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	0.00	0.00	0.00	ns
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	0.22	0.25	0.30	ns
t _{IWCLR}	Asynchronous Clear Minimum Pulse Width for the Input Data Register	0.22	0.25	0.30	ns
t _{IWPRE}	Asynchronous Preset Minimum Pulse Width for the Input Data Register	0.22	0.25	0.30	ns
t _{ICKMPWH}	Clock Minimum Pulse Width High for the Input Data Register	0.36	0.41	0.48	ns
t _{ICKMPWL}	Clock Minimum Pulse Width Low for the Input Data Register	0.32	0.37	0.43	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Timing Waveforms

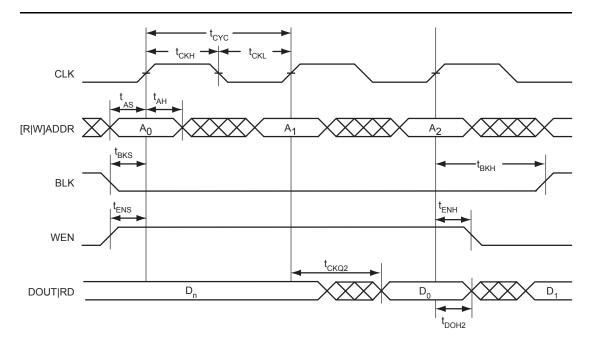


Figure 2-32 • RAM Read for Pipelined Output. Applicable to Both RAM4K9 and RAM512x18.

Table 2-121 • A3P250 FIFO 1k×4 Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ENS}	REN, WEN Setup Time	4.05	4.61	5.42	ns
t _{ENH}	REN, WEN Hold Time	0.00	0.00	0.00	ns
t _{BKS}	BLK Setup Time	0.19	0.22	0.26	ns
t _{BKH}	BLK Hold Time	0.00	0.00	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.18	0.21	0.25	ns
t _{DH}	Input Data (WD) Hold Time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	2.36	2.68	3.15	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	0.89	1.02	1.20	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	1.72	1.96	2.30	ns
t _{WCKFF}	WCLK High to Full Flag Valid	1.63	1.86	2.18	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	6.19	7.05	8.29	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	1.69	1.93	2.27	ns
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	6.13	6.98	8.20	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	0.92	1.05	1.23	ns
	RESET Low to Data Out Low on RD (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET Removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET Recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.21	0.24	0.29	ns
t _{CYC}	Clock Cycle Time	3.23	3.68	4.32	ns
F _{MAX}	Maximum Frequency for FIFO	310	272	231	MHz

JTAG 1532 Characteristics

JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to the corresponding standard selected; refer to the I/O timing characteristics in the "User I/O Characteristics" section on page 2-15 for more details.

Timing Characteristics

Table 2-125 • JTAG 1532

```
Commercial-Case Conditions: T<sub>J</sub> = 70°C, Worst-Case VCC = 1.425 V
```

Parameter	Description	-2	-1	Std.	Units
t _{DISU}	Test Data Input Setup Time	0.50	0.57	0.67	ns
t _{DIHD}	Test Data Input Hold Time	1.00	1.13	1.33	ns
t _{TMSSU}	Test Mode Select Setup Time	0.50	0.57	0.67	ns
t _{TMDHD}	Test Mode Select Hold Time	1.00	1.13	1.33	ns
t _{TCK2Q}	Clock to Q (data out)	6.00	6.80	8.00	ns
t _{RSTB2Q}	Reset to Q (data out)	20.00	22.67	26.67	ns
F _{TCKMAX}	TCK Maximum Frequency	25.00	22.00	19.00	MHz
t _{TRSTREM}	ResetB Removal Time	0.00	0.00	0.00	ns
t _{TRSTREC}	ResetB Recovery Time	0.20	0.23	0.27	ns
t _{TRSTMPW}	ResetB Minimum Pulse	TBD	TBD	TBD	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

VJTAG

JTAG Supply Voltage

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design.

If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND.

It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

VPUMP Programming Supply Voltage

ProASIC3 devices support single-voltage ISP of the configuration flash and FlashROM. For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in Table 2-2 on page 2-2.

When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

User Pins

I/O

User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected.

During programming, I/Os become tristated and weakly pulled up to V_{CCI} . With V_{CCI} , VMV, and V_{CC} supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

- Output buffer is disabled (with tristate value of high impedance)
- Input buffer is disabled (with tristate value of high impedance)
- Weak pull-up is programmed

GL Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.

See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in IGLOO and ProASIC3 Devices" chapter of the *ProASIC3 FPGA Fabric User's Guide*. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input.

Refer to the I/O Structure section of the handbook for the device you are using for an explanation of the naming of global pins.

FF Flash*Freeze Mode Activation Pin

Flash*Freeze is available on IGLOO, ProASIC3L, and RT ProASIC3 devices. It is not supported on ProASIC3/E devices. The FF pin is a dedicated input pin used to enter and exit Flash*Freeze mode. The FF pin is active-low, has the same characteristics as a single-ended I/O, and must meet the maximum rise and fall times. When Flash*Freeze

Pin NumberA3P125 FunctionPin1GND-2GAA2/IO67RSB1-3IO68RSB1-4GAB2/IO69RSB1-5IO132RSB1-6GAC2/IO131RSB1-7IO130RSB1-	Number 37 38 39 40 41 42 43	A3P125 Function VCC GND VCCIB1 IO87RSB1 IO84RSB1 IO81RSB1	Pin Number 73 74 75 76 77	A3P125 Function GBA2/IO41RSB0 VMV0 GNDQ GBA1/IO40RSB0
2 GAA2/IO67RSB1 3 IO68RSB1 4 GAB2/IO69RSB1 5 IO132RSB1 6 GAC2/IO131RSB1	38 39 40 41 42 43	GND VCCIB1 IO87RSB1 IO84RSB1 IO81RSB1	74 75 76	VMV0 GNDQ GBA1/IO40RSB0
3 IO68RSB1 4 GAB2/IO69RSB1 5 IO132RSB1 6 GAC2/IO131RSB1	39 40 41 42 43	VCCIB1 IO87RSB1 IO84RSB1 IO81RSB1	75 76	GNDQ GBA1/IO40RSB0
4 GAB2/IO69RSB1 5 IO132RSB1 6 GAC2/IO131RSB1	40 41 42 43	IO87RSB1 IO84RSB1 IO81RSB1	76	GBA1/IO40RSB0
5 IO132RSB1 6 GAC2/IO131RSB1	41 42 43	IO84RSB1 IO81RSB1		
6 GAC2/IO131RSB1	42 43	IO81RSB1	77	
	43			GBA0/IO39RSB0
7 IO130RSB1			78	GBB1/IO38RSB0
	4.4	IO75RSB1	79	GBB0/IO37RSB0
8 IO129RSB1	44	GDC2/IO72RSB1	80	GBC1/IO36RSB0
9 GND	45	GDB2/IO71RSB1	81	GBC0/IO35RSB0
10 GFB1/IO124RSB1	46	GDA2/IO70RSB1	82	IO32RSB0
11 GFB0/IO123RSB1	47	ТСК	83	IO28RSB0
12 VCOMPLF	48	TDI	84	IO25RSB0
13 GFA0/IO122RSB1	49	TMS	85	IO22RSB0
14 VCCPLF	50	VMV1	86	IO19RSB0
15 GFA1/IO121RSB1	51	GND	87	VCCIB0
16 GFA2/IO120RSB1	52	VPUMP	88	GND
17 VCC	53	NC	89	VCC
18 VCCIB1	54	TDO	90	IO15RSB0
19 GEC0/IO111RSB1	55	TRST	91	IO13RSB0
20 GEB1/IO110RSB1	56	VJTAG	92	IO11RSB0
21 GEB0/IO109RSB1	57	GDA1/IO65RSB0	93	IO09RSB0
22 GEA1/IO108RSB1	58	GDC0/IO62RSB0	94	IO07RSB0
23 GEA0/IO107RSB1	59	GDC1/IO61RSB0	95	GAC1/IO05RSB0
24 VMV1	60	GCC2/IO59RSB0	96	GAC0/IO04RSB0
25 GNDQ	61	GCB2/IO58RSB0	97	GAB1/IO03RSB0
26 GEA2/IO106RSB1	62	GCA0/IO56RSB0	98	GAB0/IO02RSB0
27 GEB2/IO105RSB1	63	GCA1/IO55RSB0	99	GAA1/IO01RSB0
28 GEC2/IO104RSB1	64	GCC0/IO52RSB0	100	GAA0/IO00RSB0
29 IO102RSB1	65	GCC1/IO51RSB0		
30 IO100RSB1	66	VCCIB0		
31 IO99RSB1	67	GND		
32 IO97RSB1	68	VCC		
33 IO96RSB1	69	IO47RSB0		
34 IO95RSB1	70	GBC2/IO45RSB0		
35 IO94RSB1	71	GBB2/IO43RSB0		
36 IO93RSB1	72	IO42RSB0		

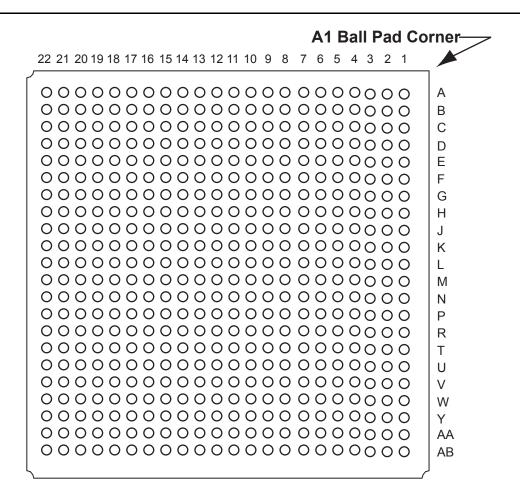
Microsemi

PQ208			PQ208	PQ208		
Pin Number	A3P125 Function	Pin Number	A3P125 Function	Pin Number	A3P125 Function	
109	TRST	145	IO46RSB0	181	IO21RSB0	
110	VJTAG	146	NC	182	IO20RSB0	
111	GDA0/IO66RSB0	147	NC	183	IO19RSB0	
112	GDA1/IO65RSB0	148	NC	184	IO18RSB0	
113	GDB0/IO64RSB0	149	GBC2/IO45RSB0	185	IO17RSB0	
114	GDB1/IO63RSB0	150	IO44RSB0	186	VCCIB0	
115	GDC0/IO62RSB0	151	GBB2/IO43RSB0	187	VCC	
116	GDC1/IO61RSB0	152	IO42RSB0	188	IO16RSB0	
117	NC	153	GBA2/IO41RSB0	189	IO15RSB0	
118	NC	154	VMV0	190	IO14RSB0	
119	NC	155	GNDQ	191	IO13RSB0	
120	NC	156	GND	192	IO12RSB0	
121	NC	157	NC	193	IO11RSB0	
122	GND	158	GBA1/IO40RSB0	194	IO10RSB0	
123	VCCIB0	159	GBA0/IO39RSB0	195	GND	
124	NC	160	GBB1/IO38RSB0	196	IO09RSB0	
125	NC	161	GBB0/IO37RSB0	197	IO08RSB0	
126	VCC	162	GND	198	IO07RSB0	
127	IO60RSB0	163	GBC1/IO36RSB0	199	IO06RSB0	
128	GCC2/IO59RSB0	164	GBC0/IO35RSB0	200	VCCIB0	
129	GCB2/IO58RSB0	165	IO34RSB0	201	GAC1/IO05RSB0	
130	GND	166	IO33RSB0	202	GAC0/IO04RSB0	
131	GCA2/IO57RSB0	167	IO32RSB0	203	GAB1/IO03RSB0	
132	GCA0/IO56RSB0	168	IO31RSB0	204	GAB0/IO02RSB0	
133	GCA1/IO55RSB0	169	IO30RSB0	205	GAA1/IO01RSB0	
134	GCB0/IO54RSB0	170	VCCIB0	206	GAA0/IO00RSB0	
135	GCB1/IO53RSB0	171	VCC	207	GNDQ	
136	GCC0/IO52RSB0	172	IO29RSB0	208	VMV0	
137	GCC1/IO51RSB0	173	IO28RSB0			
138	IO50RSB0	174	IO27RSB0			
139	IO49RSB0	175	IO26RSB0			
140	VCCIB0	176	IO25RSB0			
141	GND	177	IO24RSB0			
142	VCC	178	GND			
143	IO48RSB0	179	IO23RSB0			
144	IO47RSB0	180	IO22RSB0			

🌜 Microsemi.

PQ208		P	PQ208	PQ208		
Pin Number	A3P400 Function	Pin Number	A3P400 Function	Pin Number	A3P400 Function	
109	TRST	145	IO64PDB1	181	IO27RSB0	
110	VJTAG	146	IO63NDB1	182	IO26RSB0	
111	GDA0/IO79VDB1	147	IO63PDB1	183	IO25RSB0	
112	GDA1/IO79UDB1	148	IO62NDB1	184	IO24RSB0	
113	GDB0/IO78VDB1	149	GBC2/IO62PDB1	185	IO23RSB0	
114	GDB1/IO78UDB1	150	IO61NDB1	186	VCCIB0	
115	GDC0/IO77VDB1	151	GBB2/IO61PDB1	187	VCC	
116	GDC1/IO77UDB1	152	IO60NDB1	188	IO21RSB0	
117	IO76VDB1	153	GBA2/IO60PDB1	189	IO20RSB0	
118	IO76UDB1	154	VMV1	190	IO19RSB0	
119	IO75NDB1	155	GNDQ	191	IO18RSB0	
120	IO75PDB1	156	GND	192	IO17RSB0	
121	IO74RSB1	157	VMV0	193	IO16RSB0	
122	GND	158	GBA1/IO59RSB0	194	IO15RSB0	
123	VCCIB1	159	GBA0/IO58RSB0	195	GND	
124	NC	160	GBB1/IO57RSB0	196	IO13RSB0	
125	NC	161	GBB0/IO56RSB0	197	IO11RSB0	
126	VCC	162	GND	198	IO09RSB0	
127	IO72NDB1	163	GBC1/IO55RSB0	199	IO07RSB0	
128	GCC2/IO72PDB1	164	GBC0/IO54RSB0	200	VCCIB0	
129	GCB2/IO71PSB1	165	IO52RSB0	201	GAC1/IO05RSB0	
130	GND	166	IO49RSB0	202	GAC0/IO04RSB0	
131	GCA2/IO70PSB1	167	IO46RSB0	203	GAB1/IO03RSB0	
132	GCA1/IO69PDB1	168	IO43RSB0	204	GAB0/IO02RSB0	
133	GCA0/IO69NDB1	169	IO40RSB0	205	GAA1/IO01RSB0	
134	GCB0/IO68NDB1	170	VCCIB0	206	GAA0/IO00RSB0	
135	GCB1/IO68PDB1	171	VCC	207	GNDQ	
136	GCC0/IO67NDB1	172	IO36RSB0	208	VMV0	
137	GCC1/IO67PDB1	173	IO35RSB0			
138	IO66NDB1	174	IO34RSB0			
139	IO66PDB1	175	IO33RSB0			
140	VCCIB1	176	IO32RSB0			
141	GND	177	IO31RSB0			
142	VCC	178	GND			
143	IO65RSB1	179	IO29RSB0			
144	IO64NDB1	180	IO28RSB0			

FG144					
Pin Number	A3P600 Function				
K1	GEB0/IO145NDB3				
K2	GEA1/IO144PDB3				
K3	GEA0/IO144NDB3				
K4	GEA2/IO143RSB2				
K5	IO119RSB2				
K6	IO111RSB2				
K7	GND				
K8	IO94RSB2				
K9	GDC2/IO91RSB2				
K10	GND				
K11	GDA0/IO88NDB1				
K12	GDB0/IO87NDB1				
L1	GND				
L2	VMV3				
L3	GEB2/IO142RSB2				
L4	IO136RSB2				
L5	VCCIB2				
L6	IO115RSB2				
L7	IO103RSB2				
L8	IO97RSB2				
L9	TMS				
L10	VJTAG				
L11	VMV2				
L12	TRST				
M1	GNDQ				
M2	GEC2/IO141RSB2				
M3	IO138RSB2				
M4	IO123RSB2				
M5	IO126RSB2				
M6	IO134RSB2				
M7	IO108RSB2				
M8	IO99RSB2				
M9	TDI				
M10	VCCIB2				
M11	VPUMP				
M12	GNDQ				


Microsemi

FG144		FG144		FG144		
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	
A1	GNDQ	D1	IO213PDB3	G1	GFA1/IO207PPB3	
A2	VMV0	D2	IO213NDB3	G2	GND	
A3	GAB0/IO02RSB0	D3	IO223NDB3	G3	VCCPLF	
A4	GAB1/IO03RSB0	D4	GAA2/IO225PPB3	G4	GFA0/IO207NPB3	
A5	IO10RSB0	D5	GAC0/IO04RSB0	G5	GND	
A6	GND	D6	GAC1/IO05RSB0	G6	GND	
A7	IO44RSB0	D7	GBC0/IO72RSB0	G7	GND	
A8	VCC	D8	GBC1/IO73RSB0	G8	GDC1/IO111PPB1	
A9	IO69RSB0	D9	GBB2/IO79PDB1	G9	IO96NDB1	
A10	GBA0/IO76RSB0	D10	IO79NDB1	G10	GCC2/IO96PDB1	
A11	GBA1/IO77RSB0	D11	IO80NPB1	G11	IO95NDB1	
A12	GNDQ	D12	GCB1/IO92PPB1	G12	GCB2/IO95PDB1	
B1	GAB2/IO224PDB3	E1	VCC	H1	VCC	
B2	GND	E2	GFC0/IO209NDB3	H2	GFB2/IO205PDB3	
B3	GAA0/IO00RSB0	E3	GFC1/IO209PDB3	H3	GFC2/IO204PSB3	
B4	GAA1/IO01RSB0	E4	VCCIB3	H4	GEC1/IO190PDB3	
B5	IO13RSB0	E5	IO225NPB3	H5	VCC	
B6	IO26RSB0	E6	VCCIB0	H6	IO105PDB1	
B7	IO35RSB0	E7	VCCIB0	H7	IO105NDB1	
B8	IO60RSB0	E8	GCC1/IO91PDB1	H8	GDB2/IO115RSB2	
B9	GBB0/IO74RSB0	E9	VCCIB1	H9	GDC0/IO111NPB1	
B10	GBB1/IO75RSB0	E10	VCC	H10	VCCIB1	
B11	GND	E11	GCA0/IO93NDB1	H11	IO101PSB1	
B12	VMV1	E12	IO94NDB1	H12	VCC	
C1	IO224NDB3	F1	GFB0/IO208NPB3	J1	GEB1/IO189PDB3	
C2	GFA2/IO206PPB3	F2	VCOMPLF	J2	IO205NDB3	
C3	GAC2/IO223PDB3	F3	GFB1/IO208PPB3	J3	VCCIB3	
C4	VCC	F4	IO206NPB3	J4	GEC0/IO190NDB3	
C5	IO16RSB0	F5	GND	J5	IO160RSB2	
C6	IO29RSB0	F6	GND	J6	IO157RSB2	
C7	IO32RSB0	F7	GND	J7	VCC	
C8	IO63RSB0	F8	GCC0/IO91NDB1	J8	ТСК	
C9	IO66RSB0	F9	GCB0/IO92NPB1	J9	GDA2/IO114RSB2	
C10	GBA2/IO78PDB1	F10	GND	J10	TDO	
C11	IO78NDB1	F11	GCA1/IO93PDB1	J11	GDA1/IO113PDB1	
C12	GBC2/IO80PPB1	F12	GCA2/IO94PDB1	J12	GDB1/IO112PDB1	

🌜 Microsemi.

FG256		FG256		FG256		
Pin Number	A3P250 Function	Pin Number	A3P250 Function	Pin Number	A3P250 Function	
G13	GCC1/IO48PPB1	K1	GFC2/IO105PDB3	M5	VMV3	
G14	IO47NPB1	K2	IO107NPB3	M6	VCCIB2	
G15	IO54PDB1	K3	IO104PPB3	M7	VCCIB2	
G16	IO54NDB1	K4	NC	M8	NC	
H1	GFB0/IO109NPB3	K5	VCCIB3	M9	IO74RSB2	
H2	GFA0/IO108NDB3	K6	VCC	M10	VCCIB2	
H3	GFB1/IO109PPB3	K7	GND	M11	VCCIB2	
H4	VCOMPLF	K8	GND	M12	VMV2	
H5	GFC0/IO110NPB3	K9	GND	M13	NC	
H6	VCC	K10	GND	M14	GDB1/IO59UPB1	
H7	GND	K11	VCC	M15	GDC1/IO58UDB1	
H8	GND	K12	VCCIB1	M16	IO56NDB1	
H9	GND	K13	IO52NPB1	N1	IO103NDB3	
H10	GND	K14	IO55RSB1	N2	IO101PPB3	
H11	VCC	K15	IO53NPB1	N3	GEC1/IO100PPB3	
H12	GCC0/IO48NPB1	K16	IO51NDB1	N4	NC	
H13	GCB1/IO49PPB1	L1	IO105NDB3	N5	GNDQ	
H14	GCA0/IO50NPB1	L2	IO104NPB3	N6	GEA2/IO97RSB2	
H15	NC	L3	NC	N7	IO86RSB2	
H16	GCB0/IO49NPB1	L4	IO102RSB3	N8	IO82RSB2	
J1	GFA2/IO107PPB3	L5	VCCIB3	N9	IO75RSB2	
J2	GFA1/IO108PDB3	L6	GND	N10	IO69RSB2	
J3	VCCPLF	L7	VCC	N11	IO64RSB2	
J4	IO106NDB3	L8	VCC	N12	GNDQ	
J5	GFB2/IO106PDB3	L9	VCC	N13	NC	
J6	VCC	L10	VCC	N14	VJTAG	
J7	GND	L11	GND	N15	GDC0/IO58VDB1	
J8	GND	L12	VCCIB1	N16	GDA1/IO60UDB1	
J9	GND	L13	GDB0/IO59VPB1	P1	GEB1/IO99PDB3	
J10	GND	L14	IO57VDB1	P2	GEB0/IO99NDB3	
J11	VCC	L15	IO57UDB1	P3	NC	
J12	GCB2/IO52PPB1	L16	IO56PDB1	P4	NC	
J13	GCA1/IO50PPB1	M1	IO103PDB3	P5	IO92RSB2	
J14	GCC2/IO53PPB1	M2	NC	P6	IO89RSB2	
J15	NC	M3	IO101NPB3	P7	IO85RSB2	
J16	GCA2/IO51PDB1	M4	GEC0/IO100NPB3	P8	IO81RSB2	

FG484 – Bottom View

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

🌜 Microsemi.

	FG484		FG484		FG484		
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function		
K19	IO88NDB1	M11	GND	P3	IO199NDB3		
K20	IO94NPB1	M12	GND	P4	IO202NDB3		
K21	IO98NDB1	M13	GND	P5	IO202PDB3		
K22	IO98PDB1	M14	VCC	P6	IO196PPB3		
L1	NC	M15	GCB2/IO95PPB1	P7	IO193PPB3		
L2	IO200PDB3	M16	GCA1/IO93PPB1	P8	VCCIB3		
L3	IO210NPB3	M17	GCC2/IO96PPB1	P9	GND		
L4	GFB0/IO208NPB3	M18	IO100PPB1	P10	VCC		
L5	GFA0/IO207NDB3	M19	GCA2/IO94PPB1	P11	VCC		
L6	GFB1/IO208PPB3	M20	IO101PPB1	P12	VCC		
L7	VCOMPLF	M21	IO99PPB1	P13	VCC		
L8	GFC0/IO209NPB3	M22	NC	P14	GND		
L9	VCC	N1	IO201NDB3	P15	VCCIB1		
L10	GND	N2	IO201PDB3	P16	GDB0/IO112NPB1		
L11	GND	N3	NC	P17	IO106NDB1		
L12	GND	N4	GFC2/IO204PDB3	P18	IO106PDB1		
L13	GND	N5	IO204NDB3	P19	IO107PDB1		
L14	VCC	N6	IO203NDB3	P20	NC		
L15	GCC0/IO91NPB1	N7	IO203PDB3	P21	IO104PDB1		
L16	GCB1/IO92PPB1	N8	VCCIB3	P22	IO103NDB1		
L17	GCA0/IO93NPB1	N9	VCC	R1	NC		
L18	IO96NPB1	N10	GND	R2	IO197PPB3		
L19	GCB0/IO92NPB1	N11	GND	R3	VCC		
L20	IO97PDB1	N12	GND	R4	IO197NPB3		
L21	IO97NDB1	N13	GND	R5	IO196NPB3		
L22	IO99NPB1	N14	VCC	R6	IO193NPB3		
M1	NC	N15	VCCIB1	R7	GEC0/IO190NPB3		
M2	IO200NDB3	N16	IO95NPB1	R8	VMV3		
M3	IO206NDB3	N17	IO100NPB1	R9	VCCIB2		
M4	GFA2/IO206PDB3	N18	IO102NDB1	R10	VCCIB2		
M5	GFA1/IO207PDB3	N19	IO102PDB1	R11	IO147RSB2		
M6	VCCPLF	N20	NC	R12	IO136RSB2		
M7	IO205NDB3	N21	IO101NPB1	R13	VCCIB2		
M8	GFB2/IO205PDB3	N22	IO103PDB1	R14	VCCIB2		
M9	VCC	P1	NC	R15	VMV2		
M10	GND	P2	IO199PDB3	R16	IO110NDB1		

Revision	Changes	Page	
v2.0 (continued)	Table 3-20 • Summary of I/O Timing Characteristics—Software Default Settings (Advanced) and Table 3-21 • Summary of I/O Timing Characteristics—Software Default Settings (Standard Plus) were updated.		
	Table 3-11 • Different Components Contributing to Dynamic Power Consumptionin ProASIC3 Devices was updated.		
	Table 3-24 • I/O Output Buffer Maximum Resistances1 (Advanced) and Table 3-25 • I/O Output Buffer Maximum Resistances1 (Standard Plus) were updated.	3-22 to 3-22	
	Table 3-17 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions was updated.		
	Table 3-28 • I/O Short Currents IOSH/IOSL (Advanced) and Table 3-29 • I/O Short Currents IOSH/IOSL (Standard Plus) were updated.		
	The note in Table 3-32 • I/O Input Rise Time, Fall Time, and Related I/O Reliability was updated.	3-27	
	Figure 3-33 • Write Access After Write onto Same Address, Figure 3-34 • Read Access After Write onto Same Address, and Figure 3-35 • Write Access After Read onto Same Address are new.	3-82 to 3-84	
	Figure 3-43 • Timing Diagram was updated.	3-96	
	Ambient was deleted from the "Speed Grade and Temperature Grade Matrix".	iv	
	Notes were added to the package diagrams identifying if they were top or bottom view.	N/A	
	The A3P030 "132-Pin QFN" table is new.	4-2	
	The A3P060 "132-Pin QFN" table is new.	4-4	
	The A3P125 "132-Pin QFN" table is new.	4-6	
	The A3P250 "132-Pin QFN" table is new.	4-8	
	The A3P030 "100-Pin VQFP" table is new.	4-11	
Advance v0.7 (January 2007)	In the "I/Os Per Package" table, the I/O numbers were added for A3P060, A3P125, and A3P250. The A3P030-VQ100 I/O was changed from 79 to 77.	ii	
Advance v0.6 (April 2006)	The term flow-through was changed to pass-through.	N/A	
	Table 1 was updated to include the QN132.	ii	
	The "I/Os Per Package" table was updated with the QN132. The footnotes were also updated. The A3P400-FG144 I/O count was updated.	ii	
	"Automotive ProASIC3 Ordering Information" was updated with the QN132.	iii	
	"Temperature Grade Offerings" was updated with the QN132.	iii	
	B-LVDS and M-LDVS are new I/O standards added to the datasheet.	N/A	
	The term flow-through was changed to pass-through.	N/A	
	Figure 2-7 • Efficient Long-Line Resources was updated.	2-7	
	The footnotes in Figure 2-15 • Clock Input Sources Including CLKBUF, CLKBUF_LVDS/LVPECL, and CLKINT were updated.	2-16	
	The Delay Increments in the Programmable Delay Blocks specification in Figure 2-24 • ProASIC3E CCC Options.	2-24	
	The "SRAM and FIFO" section was updated.	2-21	

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2016 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi Corporation (MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense and security, aerospace, and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet Solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has approximately 4,800 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.