E·XFL

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	55296
Number of I/O	151
Number of Gates	400000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p400-pqg208

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

User Nonvolatile FlashROM

ProASIC3 devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications:

- Internet protocol addressing (wireless or fixed)
- System calibration settings
- Device serialization and/or inventory control
- Subscription-based business models (for example, set-top boxes)
- · Secure key storage for secure communications algorithms
- Asset management/tracking
- Date stamping
- Version management

The FlashROM is written using the standard ProASIC3 IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks (except in the A3P015 and A3P030 devices), as in security keys stored in the FlashROM for a user design.

The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array.

The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte.

The ProASIC3 development software solutions, Libero[®] System-on-Chip (SoC) and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents.

SRAM and FIFO

ProASIC3 devices (except the A3P015 and A3P030 devices) have embedded SRAM blocks along their north and south sides. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro (except in A3P015 and A3P030 devices).

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations.

PLL and CCC

ProASIC3 devices provide designers with very flexible clock conditioning capabilities. Each member of the ProASIC3 family contains six CCCs. One CCC (center west side) has a PLL. The A3P015 and A3P030 devices do not have a PLL.

The six CCC blocks are located at the four corners and the centers of the east and west sides.

All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay operations as well as clock spine access.

The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs located near the CCC that have dedicated connections to the CCC block.

The CCC block has these key features:

- Wide input frequency range (f_{IN CCC}) = 1.5 MHz to 350 MHz
- Output frequency range (f_{OUT CCC}) = 0.75 MHz to 350 MHz
- Clock delay adjustment via programmable and fixed delays from -7.56 ns to +11.12 ns
- 2 programmable delay types for clock skew minimization
- Clock frequency synthesis (for PLL only)

Additional CCC specifications:

- Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider configuration (for PLL only).
- Output duty cycle = 50% ± 1.5% or better (for PLL only)
- Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global network used (for PLL only)
- Maximum acquisition time = 300 µs (for PLL only)
- Low power consumption of 5 mW
- Exceptional tolerance to input period jitter— allowable input jitter is up to 1.5 ns (for PLL only)
- Four precise phases; maximum misalignment between adjacent phases of 40 ps × (350 MHz / f_{OUT_CCC}) (for PLL only)

Global Clocking

ProASIC3 devices have extensive support for multiple clocking domains. In addition to the CCC and PLL support described above, there is a comprehensive global clock distribution network.

Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high fanout nets.

2 – ProASIC3 DC and Switching Characteristics

General Specifications

Operating Conditions

Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions specified in Table 2-2 on page 2-2 is not implied.

Table 2-1 • Absolute Maximum Ratings	Table 2-1 •	Absolute	Maximum	Ratings
--------------------------------------	-------------	----------	---------	---------

Symbol	Parameter	Limits	Units
VCC	DC core supply voltage	–0.3 to 1.65	V
VJTAG	JTAG DC voltage	-0.3 to 3.75	V
VPUMP	Programming voltage	-0.3 to 3.75	V
VCCPLL	Analog power supply (PLL)	–0.3 to 1.65	V
VCCI	DC I/O output buffer supply voltage	-0.3 to 3.75	V
VMV	DC I/O input buffer supply voltage	–0.3 to 3.75	V
VI	I/O input voltage	–0.3 V to 3.6 V	V
		(when I/O hot insertion mode is enabled)	
		-0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower (when I/O hot-insertion mode is disabled)	
T _{STG} ²	Storage temperature	-65 to +150	°C
T _J ²	Junction temperature	+125	°C

Notes:

1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 2-4 on page 2-3.

2. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information.

3. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-3, and for recommended operating limits, refer to Table 2-2 on page 2-2.

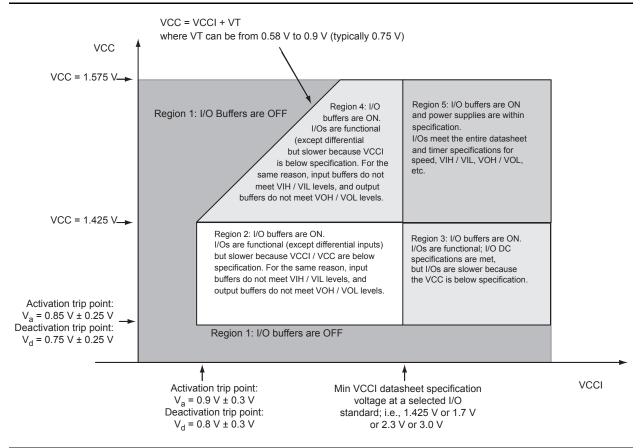


Figure 2-2 • I/O State as a Function of VCCI and VCC Voltage Levels

Package Thermal Characteristics

The device junction-to-case thermal resistivity is θ_{jc} and the junction-to-ambient air thermal resistivity is θ_{ja} . The thermal characteristics for θ_{ia} are shown for two air flow rates.

2-5

Calculating Power Dissipation

Quiescent Supply Current

Table 2-7 • Quiescent Supply Current Characteristics

	A3P015	A3P030	A3P060	A3P125	A3P250	A3P400	A3P600	A3P1000
Typical (25°C)	2 mA	2 mA	2 mA	2 mA	3 mA	3 mA	5 mA	8 mA
Max. (Commercial)	10 mA	10 mA	10 mA	10 mA	20 mA	20 mA	30 mA	50 mA
Max. (Industrial)	15 mA	15 mA	15 mA	15 mA	30 mA	30 mA	45 mA	75 mA

Note: IDD Includes VCC, VPUMP, VCCI, and VMV currents. Values do not include I/O static contribution, which is shown in Table 2-11 and Table 2-12 on page 2-9.

Power per I/O Pin

Table 2-8 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Advanced I/O Banks

	VMV (V)	Static Power P _{DC2} (mW) ¹	Dynamic Power PAC9 (μW/MHz) ²
Single-Ended		1	
3.3 V LVTTL / 3.3 V LVCMOS	3.3	-	16.22
3.3 V LVCMOS Wide Range ³	3.3	-	16.22
2.5 V LVCMOS	2.5	-	5.12
1.8 V LVCMOS	1.8	-	2.13
1.5 V LVCMOS (JESD8-11)	1.5	-	1.45
3.3 V PCI	3.3	-	18.11
3.3 V PCI-X	3.3	-	18.11
Differential			
LVDS	2.5	2.26	1.20
LVPECL	3.3	5.72	1.87

Notes:

- 1. PDC2 is the static power (where applicable) measured on VMV.
- 2. PAC9 is the total dynamic power measured on VCC and VMV.
- 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Table 2-9 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Standard Plus I/O Banks

	VMV (V)	Static Power PDC2 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
Single-Ended			
3.3 V LVTTL / 3.3 V LVCMOS	3.3	-	16.23
3.3 V LVCMOS Wide Range ³	3.3	-	16.23

Notes:

- 1. PDC2 is the static power (where applicable) measured on VMV.
- 2. PAC9 is the total dynamic power measured on VCC and VMV.
- 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

I/O DC Characteristics

Table 2-27 • Input Capacitance

Symbol	Definition	Conditions	Min	Max	Units
C _{IN}	Input capacitance	VIN = 0, f = 1.0 MHz	-	8	pF
CINCLK	Input capacitance on the clock pin	VIN = 0, f = 1.0 MHz	-	8	pF

Table 2-28 • I/O Output Buffer Maximum Resistances¹ Applicable to Advanced I/O Banks

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	R _{PULL-UP} (Ω) ³
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
	12 mA	25	75
	16 mA	17	50
	24 mA	11	33
3.3 V LVCMOS Wide Range ⁴	100 µA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
	12 mA	25	50
	16 mA	20	40
	24 mA	11	22
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
	6 mA	50	56
	8 mA	50	56
	12 mA	20	22
	16 mA	20	22
1.5 V LVCMOS	2 mA	200	224
	4 mA	100	112
	6 mA	67	75
	8 mA	33	37
	12 mA	33	37
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	25	75

Notes:

- 2. R_(PULL-DOWN-MAX) = (VOLspec) / IOLspec
- 3. R_(PULL-UP-MAX) = (VCCImax VOHspec) / IOHspec

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

^{1.} These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx.

Table 2-43 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.66	7.20	0.04	1.00	0.43	7.34	6.29	2.27	2.34	9.57	8.52	ns
	-1	0.56	6.13	0.04	0.85	0.36	6.24	5.35	1.93	1.99	8.14	7.25	ns
	-2	0.49	5.38	0.03	0.75	0.32	5.48	4.69	1.70	1.75	7.15	6.36	ns
4 mA	Std.	0.66	7.20	0.04	1.00	0.43	7.34	6.29	2.27	2.34	9.57	8.52	ns
	-1	0.56	6.13	0.04	0.85	0.36	6.24	5.35	1.93	1.99	8.14	7.25	ns
	-2	0.49	5.38	0.03	0.75	0.32	5.48	4.69	1.70	1.75	7.15	6.36	ns
6 mA	Std.	0.66	4.50	0.04	1.00	0.43	4.58	3.82	2.58	2.88	6.82	6.05	ns
	-1	0.56	3.83	0.04	0.85	0.36	3.90	3.25	2.19	2.45	5.80	5.15	ns
	-2	0.49	3.36	0.03	0.75	0.32	3.42	2.85	1.92	2.15	5.09	4.52	ns
8 mA	Std.	0.66	4.50	0.04	1.00	0.43	4.58	3.82	2.58	2.88	6.82	6.05	ns
	-1	0.56	3.83	0.04	0.85	0.36	3.90	3.25	2.19	2.45	5.80	5.15	ns
	-2	0.49	3.36	0.03	0.75	0.32	3.42	2.85	1.92	2.15	5.09	4.52	ns
12 mA	Std.	0.66	3.16	0.04	1.00	0.43	3.22	2.58	2.79	3.22	5.45	4.82	ns
	-1	0.56	2.69	0.04	0.85	0.36	2.74	2.20	2.37	2.74	4.64	4.10	ns
	-2	0.49	2.36	0.03	0.75	0.32	2.40	1.93	2.08	2.41	4.07	3.60	ns
16 mA	Std.	0.66	3.16	0.04	1.00	0.43	3.22	2.58	2.79	3.22	5.45	4.82	ns
	-1	0.56	2.69	0.04	0.85	0.36	2.74	2.20	2.37	2.74	4.64	4.10	ns
	-2	0.49	2.36	0.03	0.75	0.32	2.40	1.93	2.08	2.41	4.07	3.60	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

3.3 V LVCMOS Wide Range

Table 2-47 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

3.3 V LVCMOS Wide Range	Equiv. Software Default	v	IL	v	ІН	VOL	voн	IOL	ЮН	IOSL	IOSH	IIL ²	IIH ³
Drive Strength	Drive Strength Option ¹	Min V	Max V	Min V	Max V	Max V	Min V	μA	μA	Max mA ⁴	Max mA ⁴	µA⁵	μΑ ⁵
100 µA	2 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	25	27	10	10
100 µA	4 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	25	27	10	10
100 µA	6 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	51	54	10	10
100 µA	8 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	51	54	10	10
100 µA	12 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	103	109	10	10
100 µA	16 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	132	127	10	10
100 µA	24 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	268	181	10	10

Notes:

 The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

4. Currents are measured at 85°C junction temperature.

5. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

6. Software default selection highlighted in gray.

Table 2-48 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks

3.3 V LVCMOS Wide Range	Equiv. Software	V	L	v	ΊH	VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL²	IIH ³
Drive Strength	Default Drive Strength Option ¹	Min V	Max V	Min V	Max V	Max V	Min V	μA	μΑ	Max mA ⁴	Max mA ⁴	μA ⁵	μ Α ⁵
100 µA	2 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	25	27	10	10
100 µA	4 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	25	27	10	10
100 µA	6 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	51	54	10	10
100 µA	8 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	51	54	10	10
100 µA	12 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	103	109	10	10
100 μA	16 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	103	109	10	10

Notes:

 The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

4. Currents are measured at 85°C junction temperature.

5. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

6. Software default selection highlighted in gray.

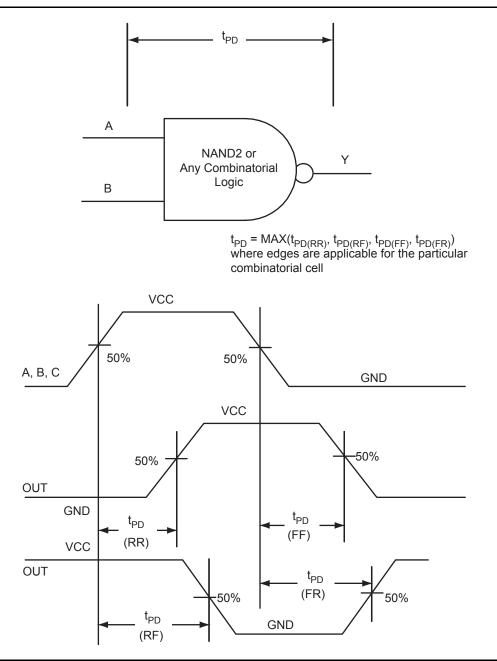


Figure 2-25 • Timing Model and Waveforms

Timing Characteristics

Table 2-118 • FIFO (for all dies except A3P250)Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ENS}	REN, WEN Setup Time	1.34	1.52	1.79	ns
t _{ENH}	REN, WEN Hold Time	0.00	0.00	0.00	ns
t _{BKS}	BLK Setup Time	0.19	0.22	0.26	ns
t _{BKH}	BLK Hold Time	0.00	0.00	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.18	0.21	0.25	ns
t _{DH}	Input Data (WD) Hold Time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	2.17	2.47	2.90	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	0.94	1.07	1.26	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	1.72	1.96	2.30	ns
t _{WCKFF}	WCLK High to Full Flag Valid	1.63	1.86	2.18	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	6.19	7.05	8.29	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	1.69	1.93	2.27	ns
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	6.13	6.98	8.20	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	0.92	1.05	1.23	ns
	RESET Low to Data Out Low on RD (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET Removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET Recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.21	0.24	0.29	ns
t _{CYC}	Clock Cycle Time	3.23	3.68	4.32	ns
F _{MAX}	Maximum Frequency for FIFO	310	272	231	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

3 – Pin Descriptions

Supply Pins

Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always be connected to GND on the board.

VCC

GND

Core Supply Voltage

Supply voltage to the FPGA core, nominally 1.5 V. VCC is required for powering the JTAG state machine in addition to VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the device.

VCCIBx I/O Supply Voltage

Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to eight I/O banks on low power flash devices plus a dedicated VJTAG bank. Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. In general, unused I/O banks should have their corresponding VCCIX pins tied to GND. If an output pad is terminated to ground through any resistor and if the corresponding VCCIX is left floating, then the leakage current to ground is ~ 0uA. However, if an output pad is terminated to ground is ~ 3 uA. For unused banks the aforementioned behavior is to be taken into account while deciding if it's better to float VCCIX of unused bank or tie it to GND.

VMVx I/O Supply Voltage (quiet)

Quiet supply voltage to the input buffers of each I/O bank. *x* is the bank number. Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks. This minimizes the noise transfer within the package and improves input signal integrity. Each bank must have at least one VMV connection, and no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be connected to the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1, etc.).

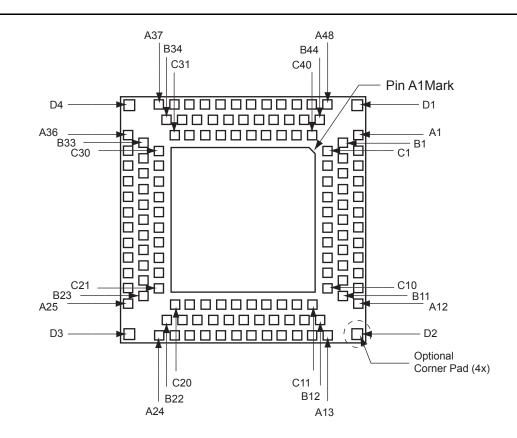
VCCPLA/B/C/D/E/F PLL Supply Voltage

Supply voltage to analog PLL, nominally 1.5 V.

When the PLLs are not used, the Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple VCC noise from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning Circuits in IGLOO and ProASIC3 Devices" chapter of the *ProASIC3 FPGA Fabric User's Guide* for a complete board solution for the PLL analog power supply and ground.

There is one VCCPLF pin on ProASIC3 devices.

VCOMPLA/B/C/D/E/F PLL Ground


Ground to analog PLL power supplies. When the PLLs are not used, the Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground.

There is one VCOMPLF pin on ProASIC3 devices.

static Microsemi.

Package Pin Assignments

QN132 – Bottom View

Notes:

- 1. The die attach paddle center of the package is tied to ground (GND).
- 2. Option corner pads come with this device and package combination. It is optional to tie them to ground or leave them floating.
- 3. The QN132 package is discontinued and is not available for ProASIC3 devices.
- 4. For more information on package drawings, see PD3068: Package Mechanical Drawings.

QN132		QN132		QN132	
Pin Number	A3P125 Function	Pin Number	A3P125 Function	Pin Number	A3P125 Function
A1	GAB2/IO69RSB1	A37	GBB1/IO38RSB0	B25	GND
A2	IO130RSB1	A38	GBC0/IO35RSB0	B26	NC
A3	VCCIB1	A39	VCCIB0	B27	GCB2/IO58RSB0
A4	GFC1/IO126RSB1	A40	IO28RSB0	B28	GND
A5	GFB0/IO123RSB1	A41	IO22RSB0	B29	GCB0/IO54RSB0
A6	VCCPLF	A42	IO18RSB0	B30	GCC1/IO51RSB0
A7	GFA1/IO121RSB1	A43	IO14RSB0	B31	GND
A8	GFC2/IO118RSB1	A44	IO11RSB0	B32	GBB2/IO43RSB0
A9	IO115RSB1	A45	IO07RSB0	B33	VMV0
A10	VCC	A46	VCC	B34	GBA0/IO39RSB0
A11	GEB1/IO110RSB1	A47	GAC1/IO05RSB0	B35	GBC1/IO36RSB0
A12	GEA0/IO107RSB1	A48	GAB0/IO02RSB0	B36	GND
A13	GEC2/IO104RSB1	B1	IO68RSB1	B37	IO26RSB0
A14	IO100RSB1	B2	GAC2/IO131RSB1	B38	IO21RSB0
A15	VCC	B3	GND	B39	GND
A16	IO99RSB1	B4	GFC0/IO125RSB1	B40	IO13RSB0
A17	IO96RSB1	B5	VCOMPLF	B41	IO08RSB0
A18	IO94RSB1	B6	GND	B42	GND
A19	IO91RSB1	B7	GFB2/IO119RSB1	B43	GAC0/IO04RSB0
A20	IO85RSB1	B8	IO116RSB1	B44	GNDQ
A21	IO79RSB1	B9	GND	C1	GAA2/IO67RSB1
A22	VCC	B10	GEB0/IO109RSB1	C2	IO132RSB1
A23	GDB2/IO71RSB1	B11	VMV1	C3	VCC
A24	TDI	B12	GEB2/IO105RSB1	C4	GFB1/IO124RSB1
A25	TRST	B13	IO101RSB1	C5	GFA0/IO122RSB1
A26	GDC1/IO61RSB0	B14	GND	C6	GFA2/IO120RSB1
A27	VCC	B15	IO98RSB1	C7	IO117RSB1
A28	IO60RSB0	B16	IO95RSB1	C8	VCCIB1
A29	GCC2/IO59RSB0	B17	GND	C9	GEA1/IO108RSB1
A30	GCA2/IO57RSB0	B18	IO87RSB1	C10	GNDQ
A31	GCA0/IO56RSB0	B19	IO81RSB1	C11	GEA2/IO106RSB1
A32	GCB1/IO53RSB0	B20	GND	C12	IO103RSB1
A33	IO49RSB0	B21	GNDQ	C13	VCCIB1
A34	VCC	B22	TMS	C14	IO97RSB1
A35	IO44RSB0	B23	TDO	C15	IO93RSB1
A36	GBA2/IO41RSB0	B24	GDC0/IO62RSB0	C16	IO89RSB1

Package Pin Assignments

CS121		(CS121	CS121	
Pin Number	A3P060 Function	Pin Number	A3P060 Function	Pin Number	A3P060 Function
A1	GNDQ	D4	IO10RSB0	G7	VCC
A2	IO01RSB0	D5	IO11RSB0	G8	GDC0/IO46RSB0
A3	GAA1/IO03RSB0	D6	IO18RSB0	G9	GDA1/IO49RSB0
A4	GAC1/IO07RSB0	D7	IO32RSB0	G10	GDB0/IO48RSB0
A5	IO15RSB0	D8	IO31RSB0	G11	GCA0/IO40RSB0
A6	IO13RSB0	D9	GCA2/IO41RSB0	H1	IO75RSB1
A7	IO17RSB0	D10	IO30RSB0	H2	IO76RSB1
A8	GBB1/IO22RSB0	D11	IO33RSB0	H3	GFC2/IO78RSB1
A9	GBA1/IO24RSB0	E1	IO87RSB1	H4	GFA2/IO80RSB1
A10	GNDQ	E2	GFC0/IO85RSB1	H5	IO77RSB1
A11	VMV0	E3	IO92RSB1	H6	GEC2/IO66RSB1
B1	GAA2/IO95RSB1	E4	IO94RSB1	H7	IO54RSB1
B2	IO00RSB0	E5	VCC	H8	GDC2/IO53RSB1
B3	GAA0/IO02RSB0	E6	VCCIB0	H9	VJTAG
B4	GAC0/IO06RSB0	E7	GND	H10	TRST
B5	IO08RSB0	E8	GCC0/IO36RSB0	H11	IO44RSB0
B6	IO12RSB0	E9	IO34RSB0	J1	GEC1/IO74RSB1
B7	IO16RSB0	E10	GCB1/IO37RSB0	J2	GEC0/IO73RSB1
B8	GBC1/IO20RSB0	E11	GCC1/IO35RSB0	J3	GEB1/IO72RSB1
B9	GBB0/IO21RSB0	F1	VCOMPLF	J4	GEA0/IO69RSB1
B10	GBB2/IO27RSB0	F2	GFB0/IO83RSB1	J5	GEB2/IO67RSB1
B11	GBA2/IO25RSB0	F3	GFA0/IO82RSB1	J6	IO62RSB1
C1	IO89RSB1	F4	GFC1/IO86RSB1	J7	GDA2/IO51RSB1
C2	GAC2/IO91RSB1	F5	VCCIB1	J8	GDB2/IO52RSB1
C3	GAB1/IO05RSB0	F6	VCC	J9	TDI
C4	GAB0/IO04RSB0	F7	VCCIB0	J10	TDO
C5	IO09RSB0	F8	GCB2/IO42RSB0	J11	GDC1/IO45RSB0
C6	IO14RSB0	F9	GCC2/IO43RSB0	K1	GEB0/IO71RSB1
C7	GBA0/IO23RSB0	F10	GCB0/IO38RSB0	K2	GEA1/IO70RSB1
C8	GBC0/IO19RSB0	F11	GCA1/IO39RSB0	K3	GEA2/IO68RSB1
C9	IO26RSB0	G1	VCCPLF	K4	IO64RSB1
C10	IO28RSB0	G2	GFB2/IO79RSB1	K5	IO60RSB1
C11	GBC2/IO29RSB0	G3	GFA1/IO81RSB1	K6	IO59RSB1
D1	IO88RSB1	G4	GFB1/IO84RSB1	K7	IO56RSB1
D2	IO90RSB1	G5	GND	K8	ТСК
D3	GAB2/IO93RSB1	G6	VCCIB1	K9	TMS

TQ144				
Pin Number	A3P060 Function			
109	NC			
110	NC			
111	GBA1/IO24RSB0			
112	GBA0/IO23RSB0			
113	GBB1/IO22RSB0			
114	GBB0/IO21RSB0			
115	GBC1/IO20RSB0			
116	GBC0/IO19RSB0			
117	VCCIB0			
118	GND			
119	VCC			
120	IO18RSB0			
121	IO17RSB0			
122	IO16RSB0			
123	IO15RSB0			
124	IO14RSB0			
125	IO13RSB0			
126	IO12RSB0			
127	IO11RSB0			
128	NC			
129	IO10RSB0			
130	IO09RSB0			
131	IO08RSB0			
132	GAC1/IO07RSB0			
133	GAC0/IO06RSB0			
134	NC			
135	GND			
136	NC			
137	GAB1/IO05RSB0			
138	GAB0/IO04RSB0			
139	GAA1/IO03RSB0			
140	GAA0/IO02RSB0			
141	IO01RSB0			
142	IO00RSB0			
143	GNDQ			
144	VMV0			

FG484				
Pin Number	A3P600 Function			
Y15	VCC			
Y16	NC			
Y17	NC			
Y18	GND			
Y19	NC			
Y20	NC			
Y21	NC			
Y22	VCCIB1			
AA1	GND			
AA2	VCCIB3			
AA3	NC			
AA4	NC			
AA5	NC			
AA6	IO135RSB2			
AA7	IO133RSB2			
AA8	NC			
AA9	NC			
AA10	NC			
AA11	NC			
AA12	NC			
AA13	NC			
AA14	NC			
AA15	NC			
AA16	IO101RSB2			
AA17	NC			
AA18	NC			
AA19	NC			
AA20	NC			
AA21	VCCIB1			
AA22	GND			
AB1	GND			
AB2	GND			
AB3	VCCIB2			
AB4	NC			
AB5	NC			
AB6	IO130RSB2			

FG484				
Pin Number	A3P600 Function			
AB7	IO128RSB2			
AB8	IO122RSB2			
AB9	IO116RSB2			
AB10	NC			
AB11	NC			
AB12	IO113RSB2			
AB13	IO112RSB2			
AB14	NC			
AB15	NC			
AB16	IO100RSB2			
AB17	IO95RSB2			
AB18	NC			
AB19	NC			
AB20	VCCIB2			
AB21	GND			
AB22	GND			

🌜 Microsemi.

Package Pin Assignments

	FG484		FG484	FG484	
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function
K19	IO88NDB1	M11	GND	P3	IO199NDB3
K20	IO94NPB1	M12	GND	P4	IO202NDB3
K21	IO98NDB1	M13	GND	P5	IO202PDB3
K22	IO98PDB1	M14	VCC	P6	IO196PPB3
L1	NC	M15	GCB2/IO95PPB1	P7	IO193PPB3
L2	IO200PDB3	M16	GCA1/IO93PPB1	P8	VCCIB3
L3	IO210NPB3	M17	GCC2/IO96PPB1	P9	GND
L4	GFB0/IO208NPB3	M18	IO100PPB1	P10	VCC
L5	GFA0/IO207NDB3	M19	GCA2/IO94PPB1	P11	VCC
L6	GFB1/IO208PPB3	M20	IO101PPB1	P12	VCC
L7	VCOMPLF	M21	IO99PPB1	P13	VCC
L8	GFC0/IO209NPB3	M22	NC	P14	GND
L9	VCC	N1	IO201NDB3	P15	VCCIB1
L10	GND	N2	IO201PDB3	P16	GDB0/IO112NPB1
L11	GND	N3	NC	P17	IO106NDB1
L12	GND	N4	GFC2/IO204PDB3	P18	IO106PDB1
L13	GND	N5	IO204NDB3	P19	IO107PDB1
L14	VCC	N6	IO203NDB3	P20	NC
L15	GCC0/IO91NPB1	N7	IO203PDB3	P21	IO104PDB1
L16	GCB1/IO92PPB1	N8	VCCIB3	P22	IO103NDB1
L17	GCA0/IO93NPB1	N9	VCC	R1	NC
L18	IO96NPB1	N10	GND	R2	IO197PPB3
L19	GCB0/IO92NPB1	N11	GND	R3	VCC
L20	IO97PDB1	N12	GND	R4	IO197NPB3
L21	IO97NDB1	N13	GND	R5	IO196NPB3
L22	IO99NPB1	N14	VCC	R6	IO193NPB3
M1	NC	N15	VCCIB1	R7	GEC0/IO190NPB3
M2	IO200NDB3	N16	IO95NPB1	R8	VMV3
M3	IO206NDB3	N17	IO100NPB1	R9	VCCIB2
M4	GFA2/IO206PDB3	N18	IO102NDB1	R10	VCCIB2
M5	GFA1/IO207PDB3	N19	IO102PDB1	R11	IO147RSB2
M6	VCCPLF	N20	NC	R12	IO136RSB2
M7	IO205NDB3	N21	IO101NPB1	R13	VCCIB2
M8	GFB2/IO205PDB3	N22	IO103PDB1	R14	VCCIB2
M9	VCC	P1	NC	R15	VMV2
M10	GND	P2	IO199PDB3	R16	IO110NDB1

FG484			FG484		FG484	
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	
R17	GDB1/IO112PPB1	U9	IO165RSB2	W1	NC	
R18	GDC1/IO111PDB1	U10	IO159RSB2	W2	IO191PDB3	
R19	IO107NDB1	U11	IO151RSB2	W3	NC	
R20	VCC	U12	IO137RSB2	W4	GND	
R21	IO104NDB1	U13	IO134RSB2	W5	IO183RSB2	
R22	IO105PDB1	U14	IO128RSB2	W6	GEB2/IO186RSB2	
T1	IO198PDB3	U15	VMV1	W7	IO172RSB2	
T2	IO198NDB3	U16	тск	W8	IO170RSB2	
Т3	NC	U17	VPUMP	W9	IO164RSB2	
T4	IO194PPB3	U18	TRST	W10	IO158RSB2	
T5	IO192PPB3	U19	GDA0/IO113NDB1	W11	IO153RSB2	
T6	GEC1/IO190PPB3	U20	NC	W12	IO142RSB2	
T7	IO192NPB3	U21	IO108NDB1	W13	IO135RSB2	
Т8	GNDQ	U22	IO109PDB1	W14	IO130RSB2	
Т9	GEA2/IO187RSB2	V1	NC	W15	GDC2/IO116RSB2	
T10	IO161RSB2	V2	NC	W16	IO120RSB2	
T11	IO155RSB2	V3	GND	W17	GDA2/IO114RSB2	
T12	IO141RSB2	V4	GEA1/IO188PDB3	W18	TMS	
T13	IO129RSB2	V5	GEA0/IO188NDB3	W19	GND	
T14	IO124RSB2	V6	IO184RSB2	W20	NC	
T15	GNDQ	V7	GEC2/IO185RSB2	W21	NC	
T16	IO110PDB1	V8	IO168RSB2	W22	NC	
T17	VJTAG	V9	IO163RSB2	Y1	VCCIB3	
T18	GDC0/IO111NDB1	V10	IO157RSB2	Y2	IO191NDB3	
T19	GDA1/IO113PDB1	V11	IO149RSB2	Y3	NC	
T20	NC	V12	IO143RSB2	Y4	IO182RSB2	
T21	IO108PDB1	V13	IO138RSB2	Y5	GND	
T22	IO105NDB1	V14	IO131RSB2	Y6	IO177RSB2	
U1	IO195PDB3	V15	IO125RSB2	Y7	IO174RSB2	
U2	IO195NDB3	V16	GDB2/IO115RSB2	Y8	VCC	
U3	IO194NPB3	V17	TDI	Y9	VCC	
U4	GEB1/IO189PDB3	V18	GNDQ	Y10	IO154RSB2	
U5	GEB0/IO189NDB3	V19	TDO	Y11	IO148RSB2	
U6	VMV2	V20	GND	Y12	IO140RSB2	
U7	IO179RSB2	V21	NC	Y13	NC	
U8	IO171RSB2	V22	IO109NDB1	Y14	VCC	

Revision	Changes	Page
Revision 9 (Oct 2009) Product Brief v1.3	The CS121 package was added to table under "Features and Benefits" section, the "I/Os Per Package 1" table, Table 1 • ProASIC3 FPGAs Package Sizes Dimensions, "ProASIC3 Ordering Information", and the "Temperature Grade Offerings" table.	I – IV
	"ProASIC3 Ordering Information" was revised to include the fact that some RoHS compliant packages are halogen-free.	IV
Packaging v1.5	The "CS121 – Bottom View" figure and pin table for A3P060 are new.	4-15
Revision 8 (Aug 2009) Product Brief v1.2	All references to M7 devices (CoreMP7) and speed grade –F were removed from this document.	N/A
	Table 1-1 I/O Standards supported is new.	1-7
	The I/Os with Advanced I/O Standards section was revised to add definitions of hot-swap and cold-sparing.	1-7
DC and Switching Characteristics v1.4	$3.3~\rm V$ LVCMOS and $1.2~\rm V$ LVCMOS Wide Range support was added to the datasheet. This affects all tables that contained $3.3~\rm V$ LVCMOS and $1.2~\rm V$ LVCMOS data.	N/A
	$\rm I_{\rm IL}$ and $\rm I_{\rm IH}$ input leakage current information was added to all "Minimum and Maximum DC Input and Output Levels" tables.	N/A
	-F was removed from the datasheet. The speed grade is no longer supported.	N/A
	The notes in Table 2-2 • Recommended Operating Conditions 1 were updated.	2-2
	Table 2-4 • Overshoot and Undershoot Limits 1 was updated.	2-3
	Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays was updated.	2-6
	In Table 2-116 • RAM4K9, the following specifications were removed: t _{WRO} t _{CCKH}	2-96
	In Table 2-117 • RAM512X18, the following specifications were removed: t _{WRO} t _{CCKH}	2-97
	In the title of Table 2-74 • 1.8 V LVCMOS High Slew, VCCI had a typo. It was changed from 3.0 V to 1.7 V.	2-58
Revision 7 (Feb 2009) Product Brief v1.1	The "Advanced I/O" section was revised to add a bullet regarding wide range power supply voltage support.	I
	The table under "Features and Benefits" section, was updated to include a value for typical equivalent macrocells for A3P250.	I
	The QN48 package was added to the following tables: the table under "Features and Benefits" section, "I/Os Per Package 1" "ProASIC3 FPGAs Package Sizes Dimensions", and "Temperature Grade Offerings".	N/A
	The number of singled-ended I/Os for QN68 was added to the "I/Os Per Package 1" table.	
	The Wide Range I/O Support section is new.	1-7
Revision 6 (Dec 2008)	The "QN48 – Bottom View" section is new.	4-1
Packaging v1.4	The "QN68" pin table for A3P030 is new.	4-5

Datasheet Information

Revision	Changes	Page
Revision 5 (Aug 2008) DC and Switching Characteristics v1.3	TJ, Maximum Junction Temperature, was changed to 100° from 110° in the "Thermal Characteristics" section and EQ 1. The calculated result of Maximum Power Allowed has thus changed to 1.463 W from 1.951 W.	2-6
	Values for the A3P015 device were added to Table 2-7 • Quiescent Supply Current Characteristics.	2-7
	Values for the A3P015 device were added to Table 2-14 • Different Components Contributing to Dynamic Power Consumption in ProASIC3 Devices. P_{AC14} was removed. Table 2-15 • Different Components Contributing to the Static Power Consumption in ProASIC3 Devices is new.	2-11, 2-12
	The "PLL Contribution—PPLL" section was updated to change the P _{PLL} formula from $P_{AC13} + P_{AC14} * F_{CLKOUT}$ to $P_{DC4} + P_{AC13} * F_{CLKOUT}$.	2-14
	Both fall and rise values were included for $t_{\mbox{DDRISUD}}$ and $t_{\mbox{DDRIHD}}$ in Table 2-102 \bullet Input DDR Propagation Delays.	2-78
	Table 2-107 • A3P015 Global Resource is new.	2-86
	The typical value for Delay Increments in Programmable Delay Blocks was changed from 160 to 200 in Table 2-115 • ProASIC3 CCC/PLL Specification.	2-90
Revision 4 (Jun 2008) DC and Switching Characteristics v1.2	Table note references were added to Table 2-2 • Recommended Operating Conditions 1, and the order of the table notes was changed.	2-2
	The title for Table 2-4 • Overshoot and Undershoot Limits 1 was modified to remove "as measured on quiet I/Os." Table note 1 was revised to remove "estimated SSO density over cycles." Table note 2 was revised to remove "refers only to overshoot/undershoot limits for simultaneous switching I/Os."	2-3
	The "Power per I/O Pin" section was updated to include 3 additional tables pertaining to input buffer power and output buffer power.	2-7
	Table 2-29 • I/O Output Buffer Maximum Resistances 1 was revised to include values for 3.3 V PCI/PCI-X.	2-27
	Table 2-90 • LVDS Minimum and Maximum DC Input and Output Levels was updated.	2-66
Revision 3 (Jun 2008) Packaging v1.3	Pin numbers were added to the "QN68 – Bottom View" package diagram. Note 2 was added below the diagram.	4-3
	The "QN132 – Bottom View" package diagram was updated to include D1 to D4. In addition, note 1 was changed from top view to bottom view, and note 2 is new.	4-6
Revision 2 (Feb 2008) Product Brief v1.0	This document was divided into two sections and given a version number, starting at v1.0. The first section of the document includes features, benefits, ordering information, and temperature and speed grade offerings. The second section is a device family overview.	N/A
	This document was updated to include A3P015 device information. QN68 is a new package that was added because it is offered in the A3P015. The following sections were updated:	N/A
	"Features and Benefits"	
	"ProASIC3 Ordering Information"	
	"Temperature Grade Offerings"	
	"ProASIC3 Flash Family FPGAs"	
	"A3P015 and A3P030" note	
	Introduction and Overview (NA)	