

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	110592
Number of I/O	97
Number of Gates	600000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LBGA
Supplier Device Package	144-FPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p600-1fg144

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

I/Os Per Package ¹

ProASIC3 Devices	A3P015 ²	A3P030	A3P060	A3P125	A3P	250 ³	A3P	400 ³	A3F	P600	A3P	1000
Cortex-M1 Devices				M1A3P250 ^{3,5} M1A3P400 ³ M1A3P600								P1000
					I/C) Type						
Package	Single-Ended I/O	Single-Ended I/O	Single-Ended I/O	Single-Ended I/O	Single-Ended I/O ⁴	Differential I/O Pairs						
QN48	_	34	_	_	-	_		_	_	_	_	_
QN68	49	49	_	_	_	_	_	_		_	_	_
QN132 ⁷	_	81	80	84	87	19	-	-		_	_	_
CS121	_	_	96	_	-	_	_	_	_	_	_	_
VQ100	_	77	71	71	68	13	_	_		_	_	_
TQ144	_	_	91	100	-	_	_	_	_	_	_	_
PQ208	_	-	-	133	151	34	151	34	154	35	154	35
FG144	_	_	96	97	97	24	97	25	97	25	97	25
FG256 ^{5,6}	_	-	-	-	157	38	178	38	177	43	177	44
FG484 ⁶	_	_	_	_	-	_	194	38	235	60	300	74

Notes

- 1. When considering migrating your design to a lower- or higher-density device, refer to the ProASIC3 FPGA Fabric User Guide to ensure complying with design and board migration requirements.
- 2. A3P015 is not recommended for new designs.
- 3. For A3P250 and A3P400 devices, the maximum number of LVPECL pairs in east and west banks cannot exceed 15. Refer to the ProASIC3 FPGA Fabric Users Guide for position assignments of the 15 LVPECL pairs.
- 4. Each used differential I/O pair reduces the number of single-ended I/Os available by two.
- 5. The M1A3P250 device does not support FG256 package.
- 6. FG256 and FG484 are footprint-compatible packages.
- 7. Package not available.

Table 1 • ProASIC3 FPGAs Package Sizes Dimensions

Package	CS121	QN48	QN68	QN132 *	VQ100	TQ144	PQ208	FG144	FG256	FG484
Length × Width (mm × mm)	6 × 6	6 × 6	8 × 8	8 × 8	14 × 14	20 × 20	28 × 28	13 × 13	17 × 17	23 × 23
Nominal Area (mm ²)	36	36	64	64	196	400	784	169	289	529
Pitch (mm)	0.5	0.4	0.4	0.5	0.5	0.5	0.5	1.0	1.0	1.0
Height (mm)	0.99	0.90	0.90	0.75	1.00	1.40	3.40	1.45	1.60	2.23

Note: * Package not available

Revision 18 III

Your valuable IP is protected with industry-standard security, making remote ISP possible. A ProASIC3 device provides the best available security for programmable logic designs.

Single Chip

Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure, and no external configuration data needs to be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based ProASIC3 FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system reliability.

Instant On

Flash-based ProASIC3 devices support Level 0 of the Instant On classification standard. This feature helps in system component initialization, execution of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock generation, and bus activity management. The Instant On feature of flash-based ProASIC3 devices greatly simplifies total system design and reduces total system cost, often eliminating the need for CPLDs and clock generation PLLs that are used for these purposes in a system. In addition, glitches and brownouts in system power will not corrupt the ProASIC3 device's flash configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based ProASIC3 devices simplify total system design and reduce cost and design risk while increasing system reliability and improving system initialization time.

Firm Errors

Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not exist in the configuration memory of ProASIC3 flash-based FPGAs. Once it is programmed, the flash cell configuration element of ProASIC3 FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

Low Power

Flash-based ProASIC3 devices exhibit power characteristics similar to an ASIC, making them an ideal choice for power-sensitive applications. ProASIC3 devices have only a very limited power-on current surge and no high-current transition period, both of which occur on many FPGAs.

ProASIC3 devices also have low dynamic power consumption to further maximize power savings.

User Nonvolatile FlashROM

ProASIC3 devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications:

- · Internet protocol addressing (wireless or fixed)
- System calibration settings
- · Device serialization and/or inventory control
- Subscription-based business models (for example, set-top boxes)
- · Secure key storage for secure communications algorithms
- Asset management/tracking
- Date stamping
- · Version management

The FlashROM is written using the standard ProASIC3 IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks (except in the A3P015 and A3P030 devices), as in security keys stored in the FlashROM for a user design.

The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array.

The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte.

The ProASIC3 development software solutions, Libero[®] System-on-Chip (SoC) and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents.

SRAM and FIFO

ProASIC3 devices (except the A3P015 and A3P030 devices) have embedded SRAM blocks along their north and south sides. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro (except in A3P015 and A3P030 devices).

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations.

PLL and CCC

ProASIC3 devices provide designers with very flexible clock conditioning capabilities. Each member of the ProASIC3 family contains six CCCs. One CCC (center west side) has a PLL. The A3P015 and A3P030 devices do not have a PLL.

The six CCC blocks are located at the four corners and the centers of the east and west sides.

All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay operations as well as clock spine access.

The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs located near the CCC that have dedicated connections to the CCC block.

1-5 Revision 18

The absolute maximum junction temperature is 100°C. EQ 1 shows a sample calculation of the absolute maximum power dissipation allowed for a 484-pin FBGA package at commercial temperature and in still air.

$$\text{Maximum Power Allowed } = \frac{\text{Max. junction temp. (°C)} - \text{Max. ambient temp. (°C)}}{\theta_{ja}(°\text{C/W})} = \frac{100°\text{C} - 70°\text{C}}{20.5°\text{C/W}} = 1.463~\dot{\text{W}}$$

EQ 1

Table 2-5 • Package Thermal Resistivities

					θ_{ja}		
Package Type	Device	Pin Count	$\theta_{ extsf{jc}}$	Still Air	200 ft/min	500 ft/min	Units
Quad Flat No Lead	A3P030	132	0.4	21.4	16.8	15.3	°C/W
	A3P060	132	0.3	21.2	16.6	15.0	°C/W
	A3P125	132	0.2	21.1	16.5	14.9	°C/W
	A3P250	132	0.1	21.0	16.4	14.8	°C/W
Very Thin Quad Flat Pack (VQFP)	All devices	100	10.0	35.3	29.4	27.1	°C/W
Thin Quad Flat Pack (TQFP)	All devices	144	11.0	33.5	28.0	25.7	°C/W
Plastic Quad Flat Pack (PQFP)	All devices	208	8.0	26.1	22.5	20.8	°C/W
Fine Pitch Ball Grid Array (FBGA)	See note*	144	3.8	26.9	22.9	21.5	°C/W
	See note*	256	3.8	26.6	22.8	21.5	°C/W
	See note*	484	3.2	20.5	17.0	15.9	°C/W
	A3P1000	144	6.3	31.6	26.2	24.2	°C/W
	A3P1000	256	6.6	28.1	24.4	22.7	°C/W
	A3P1000	484	8.0	23.3	19.0	16.7	°C/W

Note: *This information applies to all ProASIC3 devices except the A3P1000. Detailed device/package thermal information will be available in future revisions of the datasheet.

Temperature and Voltage Derating Factors

Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays (normalized to T_{.J} = 70°C, VCC = 1.425 V)

Array Voltage VCC	Junction Temperature (°C)											
(V)	-40°C	0°C	25°C	70°C	85°C	100°C						
1.425	0.88	0.93	0.95	1.00	1.02	1.04						
1.500	0.83	0.88	0.90	0.95	0.96	0.98						
1.575	0.80	0.84	0.87	0.91	0.93	0.94						

Table 2-13 • Summary of I/O Output Buffer Power (Per Pin) – Default I/O Software Settings ¹
Applicable to Standard I/O Banks

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC3 (mW) ²	Dynamic Power PAC10 (μW/MHz) ³
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	35	3.3	_	431.08
3.3 V LVCMOS Wide Range ⁴	35	3.3	_	431.08
2.5 V LVCMOS	35	2.5	-	247.36
1.8 V LVCMOS	35	1.8	_	128.46
1.5 V LVCMOS (JESD8-11)	35	1.5	-	89.46

Notes:

- 1. Dynamic power consumption is given for standard load and software default drive strength and output slew.
- 2. P_{DC3} is the static power (where applicable) measured on VCCI.
- 3. P_{AC10} is the total dynamic power measured on VCC and VCCI.
- 4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

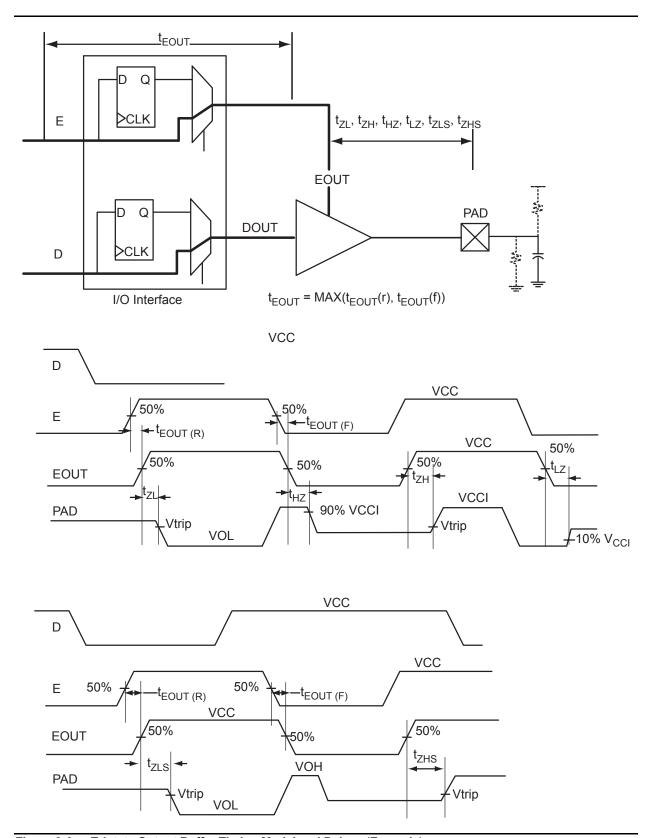


Figure 2-6 • Tristate Output Buffer Timing Model and Delays (Example)

I/O DC Characteristics

Table 2-27 • Input Capacitance

Symbol	Definition	Conditions	Min	Max	Units
C _{IN}	Input capacitance	VIN = 0, f = 1.0 MHz	-	8	pF
C _{INCLK}	Input capacitance on the clock pin	VIN = 0, f = 1.0 MHz	_	8	pF

Table 2-28 • I/O Output Buffer Maximum Resistances¹
Applicable to Advanced I/O Banks

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	$R_{PULL-UP}(\Omega)^3$
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
	12 mA	25	75
	16 mA	17	50
	24 mA	11	33
3.3 V LVCMOS Wide Range ⁴	100 μΑ	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
	12 mA	25	50
	16 mA	20	40
	24 mA	11	22
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
	6 mA	50	56
	8 mA	50	56
	12 mA	20	22
	16 mA	20	22
1.5 V LVCMOS	2 mA	200	224
	4 mA	100	112
	6 mA	67	75
	8 mA	33	37
	12 mA	33	37
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	25	75

Notes:

- These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx.
- 2. $R_{(PULL-DOWN-MAX)} = (VOLspec) / IOLspec$
- 3. $R_{(PULL-UP-MAX)} = (VCCImax VOHspec) / IOHspec$
- 4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

Single-Ended I/O Characteristics

3.3 V LVTTL / 3.3 V LVCMOS

Low-Voltage Transistor–Transistor Logic (LVTTL) is a general-purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer.

Table 2-37 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS	V	TL T	v	TH .	VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min V	Max V	Min V	Max V	Max V	Min V	mA	mA	Max mA ³	Max mA ³	μ Α ⁴	μ Α ⁴
2 mA	-0.3	0.8	2	3.6	0.4	2.4	2	2	27	25	10	10
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	27	25	10	10
6 mA	-0.3	0.8	2	3.6	0.4	2.4	6	6	54	51	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	54	51	10	10
12 mA	-0.3	0.8	2	3.6	0.4	2.4	12	12	109	103	10	10
16 mA	-0.3	0.8	2	3.6	0.4	2.4	16	16	127	132	10	10
24 mA	-0.3	0.8	2	3.6	0.4	2.4	24	24	181	268	10	10

Notes:

- 1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.
- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Table 2-38 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS	V	ΊL	V	ΙΗ	VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min V	Max V	Min V	Max V	Max V	Min V	mA	mA	Max mA ³	Max mA ³	μ Α ⁴	μ Α ⁴
2 mA	-0.3	0.8	2	3.6	0.4	2.4	2	2	27	25	10	10
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	27	25	10	10
6 mA	-0.3	0.8	2	3.6	0.4	2.4	6	6	54	51	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	54	51	10	10
12 mA	-0.3	0.8	2	3.6	0.4	2.4	12	12	109	103	10	10
16 mA	-0.3	0.8	2	3.6	0.4	2.4	16	16	109	103	10	10

Notes:

- 1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.
- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Timing Characteristics

Table 2-41 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks

	1 -	ī	ı		T	I	T	T	T		I		I 1
Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.66	7.66	0.04	1.02	0.43	7.80	6.59	2.65	2.61	10.03	8.82	ns
	-1	0.56	6.51	0.04	0.86	0.36	6.63	5.60	2.25	2.22	8.54	7.51	ns
	-2	0.49	5.72	0.03	0.76	0.32	5.82	4.92	1.98	1.95	7.49	6.59	ns
4 mA	Std.	0.66	7.66	0.04	1.02	0.43	7.80	6.59	2.65	2.61	10.03	8.82	ns
	-1	0.56	6.51	0.04	0.86	0.36	6.63	5.60	2.25	2.22	8.54	7.51	ns
	-2	0.49	5.72	0.03	0.76	0.32	5.82	4.92	1.98	1.95	7.49	6.59	ns
6 mA	Std.	0.66	4.91	0.04	1.02	0.43	5.00	4.07	2.99	3.20	7.23	6.31	ns
	-1	0.56	4.17	0.04	0.86	0.36	4.25	3.46	2.54	2.73	6.15	5.36	ns
	-2	0.49	3.66	0.03	0.76	0.32	3.73	3.04	2.23	2.39	5.40	4.71	ns
8 mA	Std.	0.66	4.91	0.04	1.02	0.43	5.00	4.07	2.99	3.20	7.23	6.31	ns
	-1	0.56	4.17	0.04	0.86	0.36	4.25	3.46	2.54	2.73	6.15	5.36	ns
	-2	0.49	3.66	0.03	0.76	0.32	3.73	3.04	2.23	2.39	5.40	4.71	ns
12 mA	Std.	0.66	3.53	0.04	1.02	0.43	3.60	2.82	3.21	3.58	5.83	5.06	ns
	– 1	0.56	3.00	0.04	0.86	0.36	3.06	2.40	2.73	3.05	4.96	4.30	ns
	-2	0.49	2.64	0.03	0.76	0.32	2.69	2.11	2.40	2.68	4.36	3.78	ns
16 mA	Std.	0.66	3.33	0.04	1.02	0.43	3.39	2.56	3.26	3.68	5.63	4.80	ns
	-1	0.56	2.83	0.04	0.86	0.36	2.89	2.18	2.77	3.13	4.79	4.08	ns
	-2	0.49	2.49	0.03	0.76	0.32	2.53	1.91	2.44	2.75	4.20	3.58	ns
24 mA	Std.	0.66	3.08	0.04	1.02	0.43	3.13	2.12	3.32	4.06	5.37	4.35	ns
	-1	0.56	2.62	0.04	0.86	0.36	2.66	1.80	2.83	3.45	4.57	3.70	ns
	-2	0.49	2.30	0.03	0.76	0.32	2.34	1.58	2.48	3.03	4.01	3.25	ns

Notes:

- 1. Software default selection highlighted in gray.
- 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

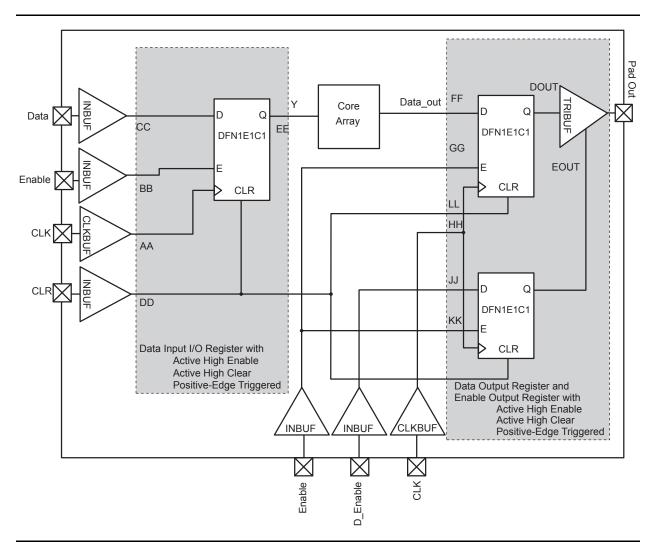


Figure 2-16 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

2-71 Revision 18

 $\begin{aligned} t_{PD} &= \text{MAX}(t_{PD(RR)}, \, t_{PD(RF)}, \, t_{PD(FF)}, \, t_{PD(FR)}) \\ \text{where edges are applicable for the particular} \\ \text{combinatorial cell} \end{aligned}$

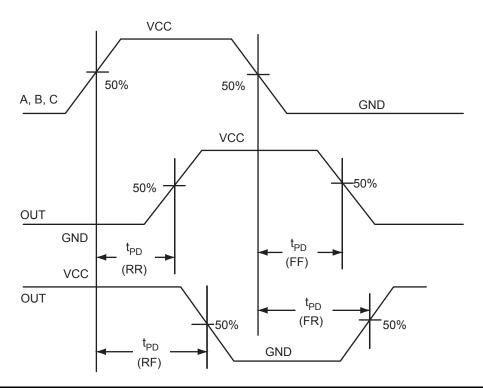


Figure 2-25 • Timing Model and Waveforms

Timing Waveforms

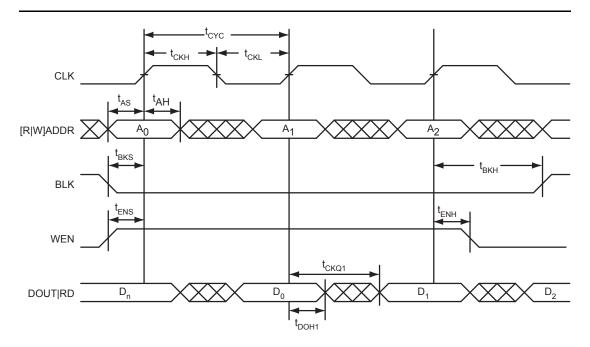


Figure 2-31 • RAM Read for Pass-Through Output. Applicable to Both RAM4K9 and RAM512x18.

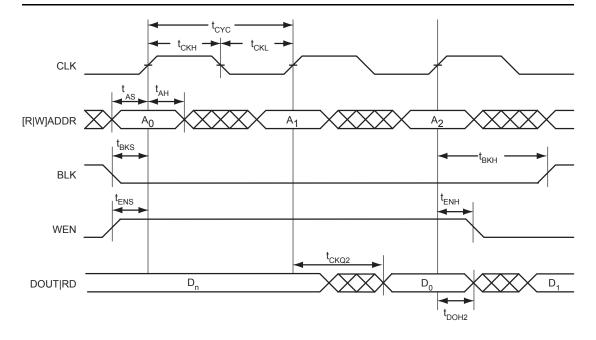


Figure 2-32 • RAM Read for Pipelined Output. Applicable to Both RAM4K9 and RAM512x18.

2-93 Revision 18

Timing Waveforms

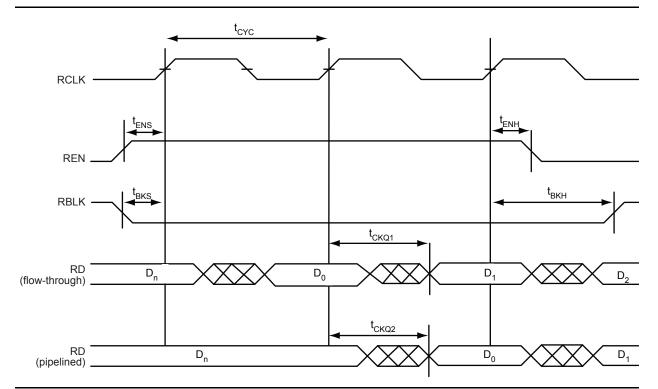


Figure 2-37 • FIFO Read

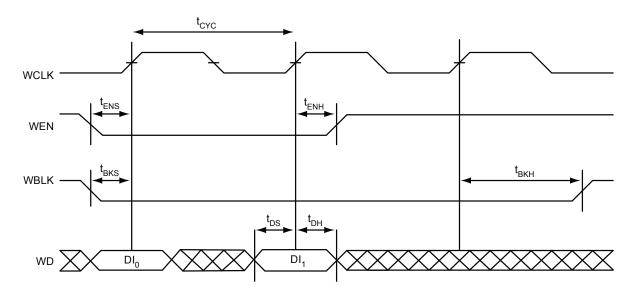


Figure 2-38 • FIFO Write

2-99 Revision 18

mode is not used in the design, the FF pin is available as a regular I/O. For IGLOOe, ProASIC3EL, and RT ProASIC3 only, the FF pin can be configured as a Schmitt trigger input.

When Flash*Freeze mode is used, the FF pin must not be left floating to avoid accidentally entering Flash*Freeze mode. While in Flash*Freeze mode, the Flash*Freeze pin should be constantly asserted.

The Flash*Freeze pin can be used with any single-ended I/O standard supported by the I/O bank in which the pin is located, and input signal levels compatible with the I/O standard selected. The FF pin should be treated as a sensitive asynchronous signal. When defining pin placement and board layout, simultaneously switching outputs (SSOs) and their effects on sensitive asynchronous pins must be considered.

Unused FF or I/O pins are tristated with weak pull-up. This default configuration applies to both Flash*Freeze mode and normal operation mode. No user intervention is required.

JTAG Pins

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND.

TCK Test Clock

Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pull-up/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements. Refer to Table 1 for more information.

Table 1 • Recommended Tie-Off Values for the TCK and TRST Pins

VJTAG	Tie-Off Resistance
3.3 V	200 Ω –1 kΩ
2.5 V	200 Ω –1 kΩ
1.8 V	500 Ω –1 kΩ
1.5 V	500 Ω −1 kΩ

Notes:

- 1. Equivalent parallel resistance if more than one device is on the JTAG chain
- 2. The TCK pin can be pulled up/down.
- 3. The TRST pin is pulled down.

TDI Test Data Input

Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin.

TDO Test Data Output

Serial output for JTAG boundary scan, ISP, and UJTAG usage.

TMS Test Mode Select

The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin.

TRST Boundary Scan Reset Pin

The TRST pin functions as an active low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-down resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor values must be chosen from Table 1 and must satisfy the parallel resistance value requirement. The values in Table 1 correspond to the resistor recommended when a single device is used, and the equivalent parallel resistor when multiple devices are connected via a JTAG chain.

3-3 Revision 18

Package Pin Assignments

01112		
QN48		
Pin Number	A3P030 Function	
1	IO82RSB1	
2	GEC0/IO73RSB1	
3	GEA0/IO72RSB1	
4	GEB0/IO71RSB1	
5	GND	
6	VCCIB1	
7	IO68RSB1	
8	IO67RSB1	
9	IO66RSB1	
10	IO65RSB1	
11	IO64RSB1	
12	IO62RSB1	
13	IO61RSB1	
14	IO60RSB1	
15	IO57RSB1	
16	IO55RSB1	
17	IO53RSB1	
18	VCC	
19	VCCIB1	
20	IO46RSB1	
21	IO42RSB1	
22	TCK	
23	TDI	
24	TMS	
25	VPUMP	
26	TDO	
27	TRST	
28	VJTAG	
29	IO38RSB0	
30	GDB0/IO34RSB0	
31	GDA0/IO33RSB0	
32	GDC0/IO32RSB0	
33	VCCIB0	
34	GND	
35	VCC	
36	IO25RSB0	

QN48		
Pin Number	A3P030 Function	
37	IO24RSB0	
38	IO22RSB0	
39	IO20RSB0	
40	IO18RSB0	
41	IO16RSB0	
42	IO14RSB0	
43	IO10RSB0	
44	IO08RSB0	
45	IO06RSB0	
46	IO04RSB0	
47	IO02RSB0	
48	IO00RSB0	

4-2 Revision 18

Package Pin Assignments

	QN132	
Pin Number	A3P030 Function	
C17	IO51RSB1	
C18	NC	
C19	TCK	
C20	NC	
C21	VPUMP	
C22	VJTAG	
C23	NC	
C24	NC	
C25	NC	
C26	GDB0/IO38RSB0	
C27	NC	
C28	VCCIB0	
C29	IO32RSB0	
C30	IO29RSB0	
C31	IO28RSB0	
C32	IO25RSB0	
C33	NC	
C34	NC	
C35	VCCIB0	
C36	IO17RSB0	
C37	IO14RSB0	
C38	IO11RSB0	
C39	IO07RSB0	
C40	IO04RSB0	
D1	GND	
D2	GND	
D3	GND	
D4	GND	

4-8 Revision 18

CS121		
Pin Number	A3P060 Function	
K10	VPUMP	
K11	GDB1/IO47RSB0	
L1	VMV1	
L2	GNDQ	
L3	IO65RSB1	
L4	IO63RSB1	
L5	IO61RSB1	
L6	IO58RSB1	
L7	IO57RSB1	
L8	IO55RSB1	
L9	GNDQ	
L10	GDA0/IO50RSB0	
L11	VMV1	

Package Pin Assignments

Р	Q208	
Pin Number A3P400 Function		
109	TRST	
110	VJTAG	
111	GDA0/IO79VDB1	
112	GDA1/IO79UDB1	
113	GDB0/IO78VDB1	
114	GDB1/IO78UDB1	
115	GDC0/IO77VDB1	
116	GDC1/IO77UDB1	
117	IO76VDB1	
118	IO76UDB1	
119	IO75NDB1	
120	IO75PDB1	
121	IO74RSB1	
122	GND	
123	VCCIB1	
124	NC	
125	NC	
126	VCC	
127	IO72NDB1	
128	GCC2/IO72PDB1	
129	GCB2/IO71PSB1	
130	GND	
131	GCA2/IO70PSB1	
132	GCA1/IO69PDB1	
133	GCA0/IO69NDB1	
134	GCB0/IO68NDB1	
135	GCB1/IO68PDB1	
136	GCC0/IO67NDB1	
137	GCC1/IO67PDB1	
138	IO66NDB1	
139	IO66PDB1	
140	VCCIB1	
141	GND	
142	VCC	
143	IO65RSB1	
144	IO64NDB1	

PQ208		
Pin Number A3P400 Function		
145	IO64PDB1	
146	IO63NDB1	
147	IO63PDB1	
148	IO62NDB1	
149	GBC2/IO62PDB1	
150	IO61NDB1	
151	GBB2/IO61PDB1	
152	IO60NDB1	
153	GBA2/IO60PDB1	
154	VMV1	
155	GNDQ	
156	GND	
157	VMV0	
158	GBA1/IO59RSB0	
159	GBA0/IO58RSB0	
160	GBB1/IO57RSB0	
161	GBB0/IO56RSB0	
162	GND	
163	GBC1/IO55RSB0	
164	GBC0/IO54RSB0	
165	IO52RSB0	
166	IO49RSB0	
167	IO46RSB0	
168	IO43RSB0	
169	IO40RSB0	
170	VCCIB0	
171	VCC	
172	IO36RSB0	
173	IO35RSB0	
174	IO34RSB0	
175	IO33RSB0	
176	IO32RSB0	
177	IO31RSB0	
178	GND	
179	IO29RSB0	
180	IO28RSB0	

PQ208			
Pin Number A3P400 Function			
181	IO27RSB0		
182	IO26RSB0		
183	IO25RSB0		
184	IO24RSB0		
185	IO23RSB0		
186	VCCIB0		
187	VCC		
188	IO21RSB0		
189	IO20RSB0		
190	IO19RSB0		
191	IO18RSB0		
192	IO17RSB0		
193	IO16RSB0		
194	IO15RSB0		
195	GND		
196	IO13RSB0		
197	IO11RSB0		
198	IO09RSB0		
199	IO07RSB0		
200	VCCIB0		
201	GAC1/IO05RSB0		
202	GAC0/IO04RSB0		
203	GAB1/IO03RSB0		
204	GAB0/IO02RSB0		
205	GAA1/IO01RSB0		
206	GAA0/IO00RSB0		
207	GNDQ		
208	VMV0		

4-34 Revision 18

	FG484		
Pin Number	A3P1000 Function		
E21	NC		
E22	IO84PDB1		
F1	NC		
F2	IO215PDB3		
F3	IO215NDB3		
F4	IO224NDB3		
F5	IO225NDB3		
F6	VMV3		
F7	IO11RSB0		
F8	GAC0/IO04RSB0		
F9	GAC1/IO05RSB0		
F10	IO25RSB0		
F11	IO36RSB0		
F12	IO42RSB0		
F13	IO49RSB0		
F14	IO56RSB0		
F15	GBC0/IO72RSB0		
F16	IO62RSB0		
F17	VMV0		
F18	IO78NDB1		
F19	IO81NDB1		
F20	IO82PPB1		
F21	NC		
F22	IO84NDB1		
G1	IO214NDB3		
G2	IO214PDB3		
G3	NC		
G4	IO222NDB3		
G5	IO222PDB3		
G6	GAC2/IO223PDB3		
G7	IO223NDB3		
G8	GNDQ		
G9	IO23RSB0		
G10	IO29RSB0		
G11	IO33RSB0		
G12	IO46RSB0		

	FG484		
Pin Number	A3P1000 Function		
G13	IO52RSB0		
G14	IO60RSB0		
G15	GNDQ		
G16	IO80NDB1		
G17	GBB2/IO79PDB1		
G18	IO79NDB1		
G19	IO82NPB1		
G20	IO85PDB1		
G21	IO85NDB1		
G22	NC		
H1	NC		
H2	NC		
H3	VCC		
H4	IO217PDB3		
H5	IO218PDB3		
H6	IO221NDB3		
H7	IO221PDB3		
H8	VMV0		
H9	VCCIB0		
H10	VCCIB0		
H11	IO38RSB0		
H12	IO47RSB0		
H13	VCCIB0		
H14	VCCIB0		
H15	VMV1		
H16	GBC2/IO80PDB1		
H17	IO83PPB1		
H18	IO86PPB1		
H19	IO87PDB1		
H20	VCC		
H21	NC		
H22	NC		
J1	IO212NDB3		
J2	IO212PDB3		
J3	NC		
J4	IO217NDB3		

FG484		
Pin Number	A3P1000 Function	
J5	IO218NDB3	
J6	IO216PDB3	
J7	IO216NDB3	
J8	VCCIB3	
J9	GND	
J10	VCC	
J11	VCC	
J12	VCC	
J13	VCC	
J14	GND	
J15	VCCIB1	
J16	IO83NPB1	
J17	IO86NPB1	
J18	IO90PPB1	
J19	IO87NDB1	
J20	NC	
J21	IO89PDB1	
J22	IO89NDB1	
K1	IO211PDB3	
K2	IO211NDB3	
K3	NC	
K4	IO210PPB3	
K5	IO213NDB3	
K6	IO213PDB3	
K7	GFC1/IO209PPB3	
K8	VCCIB3	
K9	VCC	
K10	GND	
K11	GND	
K12	GND	
K13	GND	
K14	VCC	
K15	VCCIB1	
K16	GCC1/IO91PPB1	
K17	IO90NPB1	
K18	IO88PDB1	

5 - Datasheet Information

List of Changes

The following table lists critical changes that were made in each version of the ProASIC3 datasheet.

Revision	Changes	Page
Revision 18 (March 2016)	Updated 3.3 V DC supply voltage's maximum Commercial and Industrial values from 3.3 V to 3.6 V in Table 2-2 (SAR 72693).	
	Added reference of Package Mechanical Drawings document in all package pin assignment notes (76833).	NA
Revision 17	Removed PQFP embedded heat spreader info. from Table 2-5 (SAR 52320).	2-6
(June 2015)	Updated "VCCIBx I/O Supply Voltage" (SAR 43323).	3-1
Revision 16 (December 2014)	Updated "ProASIC3 Ordering Information". Interchanged the positions of Y- Security Feature and I- Application (Temperature Range) (SAR 61079). Added Note "Only devices with package size greater than or equal to 5x5 are supported".	
	Updated Table Note (2) in Table 2-3 • Flash Programming Limits – Retention, Storage and Operating Temperature so that the Table Note is not applicable for Maximum Storage Temperature T _{STG} (SAR 54297).	2-3
	Added values for Drive strength 2 mA in Table 2-41 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew, Table 2-42 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew, Table 2-43 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew, and Table 2-44 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew (SAR 57184).	2-34, 2-35, 2-36, 2-37
	Added Figure 2-1 • High-Temperature Data Retention (HTR) (SAR 45466).	2-3
	Updates made to maintain the style and consistency of the document.	NA
Revision 15 (July 2014)	Added corner pad table note (3) to "QN132 – Bottom View" (SAR 47442).	4-6
	Ambient temperature removed in Table 2-2, table notes and "ProASIC3 Ordering Information" figure were modified (SAR 48343).	2-2 1-IV
	Other updates were made to maintain the style and consistency of the datasheet.	NA
Revision 14 (April 2014)	Note added for the discontinuance of QN132 package to the following tables and section: "ProASIC3 Devices", "I/Os Per Package 1", "ProASIC3 FPGAs Package Sizes Dimensions" and "QN132 – Bottom View" section (SAR 55118).	I, III, 4-6