

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	110592
Number of I/O	235
Number of Gates	600000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p600-2fg484

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 – ProASIC3 Device Family Overview

General Description

ProASIC3, the third-generation family of Microsemi flash FPGAs, offers performance, density, and features beyond those of the ProASIC^{PLUS®} family. Nonvolatile flash technology gives ProASIC3 devices the advantage of being a secure, low power, single-chip solution that is Instant On. ProASIC3 is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

ProASIC3 devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on an integrated phase-locked loop (PLL). The A3P015 and A3P030 devices have no PLL or RAM support. ProASIC3 devices have up to 1 million system gates, supported with up to 144 kbits of true dual-port SRAM and up to 300 user I/Os.

ProASIC3 devices support the ARM Cortex-M1 processor. The ARM-enabled devices have Microsemi ordering numbers that begin with M1A3P (Cortex-M1) and do not support AES decryption.

Flash Advantages

Reduced Cost of Ownership

Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAMbased FPGAs, flash-based ProASIC3 devices allow all functionality to be Instant On; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property (IP) cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The ProASIC3 family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the ProASIC3 family a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/ communications, computing, and avionics markets.

Security

The nonvolatile, flash-based ProASIC3 devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. ProASIC3 devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.

ProASIC3 devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of protection in the FPGA industry for intellectual property and configuration data. In addition, all FlashROM data in ProASIC3 devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. The AES standard was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. ProASIC3 devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. ProASIC3 devices with AES-based security provide a high level of protection for remote field updates over public networks such as the Internet, and are designed to ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves.

ARM-enabled ProASIC3 devices do not support user-controlled AES security mechanisms. Since the ARM core must be protected at all times, AES encryption is always on for the core logic, so bitstreams are always encrypted. There is no user access to encryption for the FlashROM programming data.

Security, built into the FPGA fabric, is an inherent component of the ProASIC3 family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. The ProASIC3 family, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks.

Figure 1-2 • ProASIC3 Device Architecture Overview with Four I/O Banks (A3P250, A3P600, and A3P1000)

The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch interconnections. The versatility of the ProASIC3 core tile as either a three-input lookup table (LUT) equivalent or as a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile capability is unique to the Microsemi ProASIC family of third-generation architecture flash FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design.

VersaTiles

The ProASIC3 core consists of VersaTiles, which have been enhanced beyond the ProASIC^{PLUS®} core tiles. The ProASIC3 VersaTile supports the following:

- All 3-input logic functions—LUT-3 equivalent
- Latch with clear or set
- D-flip-flop with clear or set
- Enable D-flip-flop with clear or set

Refer to Figure 1-3 for VersaTile configurations.

Microsemi

Power Matters."

Note: HTR time is the period during which you would not expect a verify failure due to flash cell leakage. Figure 2-1 • **High-Temperature Data Retention (HTR)**

Table 2-3 •	Flash Programm	ing Limits – Retention	, Storage and Operating	Temperature ¹

Product Grade	Programming Cycles	Program Retention (biased/unbiased)	Maximum Storage Temperature T _{STG} (°C)	Maximum Operating Junction Temperature T _J (°C) ²			
Commercial	500	20 years	110	100			
Industrial	500	20 years	110	100			

This is a stress rating only; functional operation at any condition other than those indicated is not implied.
 These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating conditions and absolute limits.

VCCI and VMV	Average VCCI–GND Overshoot or Undershoot Duration as a Percentage of Clock Cycle ²	Maximum Overshoot/ Undershoot ²
2.7 V or less	10%	1.4 V
	5%	1.49 V
3 V	10%	1.1 V
	5%	1.19 V
3.3 V	10%	0.79 V
	5%	0.88 V
3.6 V	10%	0.45 V
	5%	0.54 V

 Table 2-4 • Overshoot and Undershoot Limits ¹

Notes:

1. Based on reliability requirements at 85°C.

2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.

3. This table does not provide PCI overshoot/undershoot limits.

Figure 2-5 • Output Buffer Model and Delays (Example)

	Drive Strength	IOSL (mA) ¹	IOSH (mA) ¹
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	27	25
	4 mA	27	25
	6 mA	54	51
	8 mA	54	51
	12 mA	109	103
	16 mA	127	132
	24 mA	181	268
3.3 V LVCMOS Wide Range ²	100 µA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	2 mA	18	16
	4 mA	18	16
	6 mA	37	32
	8 mA	37	32
	12 mA	74	65
	16 mA	87	83
	24 mA	124	169
1.8 V LVCMOS	2 mA	11	9
	4 mA	22	17
	6 mA	44	35
	8 mA	51	45
	12 mA	74	91
	16 mA	74	91
1.5 V LVCMOS	2 mA	16	13
	4 mA	33	25
	6 mA	39	32
	8 mA	55	66
	12 mA	55	66
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	109	103

) Microsemi.

Power Matters."

Notes:

1. $T_J = 100^{\circ}C$

Applicable to 3.3 V LVCMOS Wide Range. I_{OSL}/I_{OSH} dependent on the I/O buffer drive strength selected for wide range applications. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Timing Characteristics

Table 2-41 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
2 mA	Std.	0.66	7.66	0.04	1.02	0.43	7.80	6.59	2.65	2.61	10.03	8.82	ns
	-1	0.56	6.51	0.04	0.86	0.36	6.63	5.60	2.25	2.22	8.54	7.51	ns
	-2	0.49	5.72	0.03	0.76	0.32	5.82	4.92	1.98	1.95	7.49	6.59	ns
4 mA	Std.	0.66	7.66	0.04	1.02	0.43	7.80	6.59	2.65	2.61	10.03	8.82	ns
	-1	0.56	6.51	0.04	0.86	0.36	6.63	5.60	2.25	2.22	8.54	7.51	ns
	-2	0.49	5.72	0.03	0.76	0.32	5.82	4.92	1.98	1.95	7.49	6.59	ns
6 mA	Std.	0.66	4.91	0.04	1.02	0.43	5.00	4.07	2.99	3.20	7.23	6.31	ns
	-1	0.56	4.17	0.04	0.86	0.36	4.25	3.46	2.54	2.73	6.15	5.36	ns
	-2	0.49	3.66	0.03	0.76	0.32	3.73	3.04	2.23	2.39	5.40	4.71	ns
8 mA	Std.	0.66	4.91	0.04	1.02	0.43	5.00	4.07	2.99	3.20	7.23	6.31	ns
	-1	0.56	4.17	0.04	0.86	0.36	4.25	3.46	2.54	2.73	6.15	5.36	ns
	-2	0.49	3.66	0.03	0.76	0.32	3.73	3.04	2.23	2.39	5.40	4.71	ns
12 mA	Std.	0.66	3.53	0.04	1.02	0.43	3.60	2.82	3.21	3.58	5.83	5.06	ns
	-1	0.56	3.00	0.04	0.86	0.36	3.06	2.40	2.73	3.05	4.96	4.30	ns
	-2	0.49	2.64	0.03	0.76	0.32	2.69	2.11	2.40	2.68	4.36	3.78	ns
16 mA	Std.	0.66	3.33	0.04	1.02	0.43	3.39	2.56	3.26	3.68	5.63	4.80	ns
	-1	0.56	2.83	0.04	0.86	0.36	2.89	2.18	2.77	3.13	4.79	4.08	ns
	-2	0.49	2.49	0.03	0.76	0.32	2.53	1.91	2.44	2.75	4.20	3.58	ns
24 mA	Std.	0.66	3.08	0.04	1.02	0.43	3.13	2.12	3.32	4.06	5.37	4.35	ns
	-1	0.56	2.62	0.04	0.86	0.36	2.66	1.80	2.83	3.45	4.57	3.70	ns
	-2	0.49	2.30	0.03	0.76	0.32	2.34	1.58	2.48	3.03	4.01	3.25	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

	Applica	Die to St	anuaru			.9							
Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.66	9.68	0.04	1.00	0.43	9.86	8.42	2.28	2.21	12.09	10.66	ns
	-1	0.56	8.23	0.04	0.85	0.36	8.39	7.17	1.94	1.88	10.29	9.07	ns
	-2	0.49	7.23	0.03	0.75	0.32	7.36	6.29	1.70	1.65	9.03	7.96	ns
4 mA	Std.	0.66	9.68	0.04	1.00	0.43	9.86	8.42	2.28	2.21	12.09	10.66	ns
	-1	0.56	8.23	0.04	0.85	0.36	8.39	7.17	1.94	1.88	10.29	9.07	ns
	-2	0.49	7.23	0.03	0.75	0.32	7.36	6.29	1.70	1.65	9.03	7.96	ns
6 mA	Std.	0.66	6.70	0.04	1.00	0.43	6.82	5.89	2.58	2.74	9.06	8.12	ns
	-1	0.56	5.70	0.04	0.85	0.36	5.80	5.01	2.20	2.33	7.71	6.91	ns
	-2	0.49	5.00	0.03	0.75	0.32	5.10	4.40	1.93	2.05	6.76	6.06	ns
8 mA	Std.	0.66	6.70	0.04	1.00	0.43	6.82	5.89	2.58	2.74	9.06	8.12	ns
	-1	0.56	5.70	0.04	0.85	0.36	5.80	5.01	2.20	2.33	7.71	6.91	ns
	-2	0.49	5.00	0.03	0.75	0.32	5.10	4.40	1.93	2.05	6.76	6.06	ns
12 mA	Std.	0.66	5.05	0.04	1.00	0.43	5.14	4.51	2.79	3.08	7.38	6.75	ns
	-1	0.56	4.29	0.04	0.85	0.36	4.37	3.84	2.38	2.62	6.28	5.74	ns
	-2	0.49	3.77	0.03	0.75	0.32	3.84	3.37	2.09	2.30	5.51	5.04	ns
16 mA	Std.	0.66	5.05	0.04	1.00	0.43	5.14	4.51	2.79	3.08	7.38	6.75	ns
	-1	0.56	4.29	0.04	0.85	0.36	4.37	3.84	2.38	2.62	6.28	5.74	ns
	-2	0.49	3.77	0.03	0.75	0.32	3.84	3.37	2.09	2.30	5.51	5.04	ns

Table 2-44 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus I/O Banks

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-45 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	7.07	0.04	1.00	0.43	7.20	6.23	2.07	2.15	ns
	–1	0.56	6.01	0.04	0.85	0.36	6.12	5.30	1.76	1.83	ns
	-2	0.49	5.28	0.03	0.75	0.32	5.37	4.65	1.55	1.60	ns
4 mA	Std.	0.66	7.07	0.04	1.00	0.43	7.20	6.23	2.07	2.15	ns
	–1	0.56	6.01	0.04	0.85	0.36	6.12	5.30	1.76	1.83	ns
	-2	0.49	5.28	0.03	0.75	0.32	5.37	4.65	1.55	1.60	ns
6 mA	Std.	0.66	4.41	0.04	1.00	0.43	4.49	3.75	2.39	2.69	ns
	–1	0.56	3.75	0.04	0.85	0.36	3.82	3.19	2.04	2.29	ns
	-2	0.49	3.29	0.03	0.75	0.32	3.36	2.80	1.79	2.01	ns
8 mA	Std.	0.66	4.41	0.04	1.00	0.43	4.49	3.75	2.39	2.69	ns
	-1	0.56	3.75	0.04	0.85	0.36	3.82	3.19	2.04	2.29	ns

3.3 V LVCMOS Wide Range

Table 2-47 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

3.3 V LVCMOS Wide Range	Equiv. Software Default	VIL		VIH		VOI	УОН	101	юн	IOSI	IOSH	JII 2	IIH3
Drive Strength	Drive Strength Option ¹	Min V	Max V	Min V	Max V	Max V	Min V	μA	μA	Max mA ⁴	Max mA ⁴	μ Α 5	μA ⁵
100 µA	2 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	25	27	10	10
100 µA	4 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	25	27	10	10
100 µA	6 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	51	54	10	10
100 µA	8 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	51	54	10	10
100 µA	12 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	103	109	10	10
100 µA	16 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	132	127	10	10
100 µA	24 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	268	181	10	10

Notes:

 The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

4. Currents are measured at 85°C junction temperature.

5. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

6. Software default selection highlighted in gray.

Table 2-48 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks

3.3 V LVCMOS Wide Range	Equiv. Software	V	L	v	ΊH	VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL²	IIH ³
Drive Strength	Default Drive Strength Option ¹	Min V	Max V	Min V	Max V	Max V	Min V	μA	μA	Max mA ⁴	Max mA ⁴	µA⁵	μA⁵
100 µA	2 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	25	27	10	10
100 µA	4 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	25	27	10	10
100 µA	6 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	51	54	10	10
100 µA	8 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	51	54	10	10
100 µA	12 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	103	109	10	10
100 μA	16 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	103	109	10	10

Notes:

 The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

4. Currents are measured at 85°C junction temperature.

5. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

6. Software default selection highlighted in gray.

2.5 V LVCMOS

Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 2.5 V applications.

2.5 V LVCMOS	VIL		v	ΊH	VOL	VOH	IOL	IOH	IOSL	IOSH	IIL1	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.7	1.7	2.7	0.7	1.7	2	2	18	16	10	10
4 mA	-0.3	0.7	1.7	2.7	0.7	1.7	4	4	18	16	10	10
6 mA	-0.3	0.7	1.7	2.7	0.7	1.7	6	6	37	32	10	10
8 mA	-0.3	0.7	1.7	2.7	0.7	1.7	8	8	37	32	10	10
12 mA	-0.3	0.7	1.7	2.7	0.7	1.7	12	12	74	65	10	10
16 mA	-0.3	0.7	1.7	2.7	0.7	1.7	16	16	87	83	10	10
24 mA	-0.3	0.7	1.7	2.7	0.7	1.7	24	24	124	169	10	10

Table 2-56 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Table 2-57 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks

2.5 V LVCMOS	5 V LVCMOS VIL		VIH		VOL	VOH	IOL	IOH	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.7	1.7	2.7	0.7	1.7	2	2	18	16	10	10
4 mA	-0.3	0.7	1.7	2.7	0.7	1.7	4	4	18	16	10	10
6 mA	-0.3	0.7	1.7	2.7	0.7	1.7	6	6	37	32	10	10
8 mA	-0.3	0.7	1.7	2.7	0.7	1.7	8	8	37	32	10	10
12 mA	-0.3	0.7	1.7	2.7	0.7	1.7	12	12	74	65	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Timing Characteristics

Table 2-88 • 3.3 V PCI/PCI-X

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	2.68	0.04	0.86	0.43	2.73	1.95	3.21	3.58	4.97	4.19	ns
-1	0.56	2.28	0.04	0.73	0.36	2.32	1.66	2.73	3.05	4.22	3.56	ns
-2	0.49	2.00	0.03	0.65	0.32	2.04	1.46	2.40	2.68	3.71	3.13	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-89 • 3.3 V PCI/PCI-X

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus I/O Banks

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	2.31	0.04	0.85	0.43	2.35	1.70	2.79	3.22	4.59	3.94	ns
-1	0.56	1.96	0.04	0.72	0.36	2.00	1.45	2.37	2.74	3.90	3.35	ns
-2	0.49	1.72	0.03	0.64	0.32	1.76	1.27	2.08	2.41	3.42	2.94	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Differential I/O Characteristics

Physical Implementation

Configuration of the I/O modules as a differential pair is handled by Microsemi Designer software when the user instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no support for bidirectional I/Os or tristates with the LVPECL standards.

LVDS

Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It requires that one data bit be carried through two signal lines, so two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-12. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVPECL implementation because the output standard specifications are different.

Along with LVDS I/O, ProASIC3 also supports Bus LVDS structure and Multipoint LVDS (M-LVDS) configuration (up to 40 nodes).

Figure 2-12 • LVDS Circuit Diagram and Board-Level Implementation

Figure 2-21 • Input DDR Timing Diagram

Timing Characteristics

Table 2-102 • Input DDR Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{DDRICLKQ1}	Clock-to-Out Out_QR for Input DDR	0.27	0.31	0.37	ns
t _{DDRICLKQ2}	Clock-to-Out Out_QF for Input DDR	0.39	0.44	0.52	ns
t _{DDRISUD}	Data Setup for Input DDR (Fall)	0.25	0.28	0.33	ns
	Data Setup for Input DDR (Rise)	0.25	0.28	0.33	ns
t _{DDRIHD}	Data Hold for Input DDR (Fall)	0.00	0.00	0.00	ns
	Data Hold for Input DDR (Rise)	0.00	0.00	0.00	ns
t _{DDRICLR2Q1}	Asynchronous Clear-to-Out Out_QR for Input DDR		0.53	0.62	ns
t _{DDRICLR2Q2}	Asynchronous Clear-to-Out Out_QF for Input DDR	0.57	0.65	0.76	ns
t _{DDRIREMCLR}	Asynchronous Clear Removal time for Input DDR	0.00	0.00	0.00	ns
t _{DDRIRECCLR}	Asynchronous Clear Recovery time for Input DDR	0.22	0.25	0.30	ns
t _{DDRIWCLR}	Asynchronous Clear Minimum Pulse Width for Input DDR	0.22	0.25	0.30	ns
t _{DDRICKMPWH}	Clock Minimum Pulse Width High for Input DDR		0.41	0.48	ns
t _{DDRICKMPWL}	Clock Minimum Pulse Width Low for Input DDR	0.32	0.37	0.43	ns
F _{DDRIMAX}	Maximum Frequency for Input DDR	350	309	263	MHz

Note: For specific junction temperature and voltage-supply levels, refer to Table 2-6 on page 2-6 for derating values.

Output DDR Module

Figure 2-22 • Output DDR Timing Model

Table 2-103 • Parameter Definitions

Parameter Name	Parameter Definition	Measuring Nodes (from, to)
t _{DDROCLKQ}	Clock-to-Out	B, E
t _{DDROCLR2Q}	Asynchronous Clear-to-Out	C, E
t _{DDROREMCLR}	Clear Removal	С, В
t _{DDRORECCLR}	Clear Recovery	С, В
t _{DDROSUD1}	Data Setup Data_F	А, В
t _{DDROSUD2}	Data Setup Data_R	D, B
t _{DDROHD1}	Data Hold Data_F	А, В
t _{DDROHD2}	Data Hold Data_R	D, B

3 – Pin Descriptions

Supply Pins

Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always be connected to GND on the board.

VCC

GND

Core Supply Voltage

Supply voltage to the FPGA core, nominally 1.5 V. VCC is required for powering the JTAG state machine in addition to VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the device.

VCCIBx I/O Supply Voltage

Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to eight I/O banks on low power flash devices plus a dedicated VJTAG bank. Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. In general, unused I/O banks should have their corresponding VCCIX pins tied to GND. If an output pad is terminated to ground through any resistor and if the corresponding VCCIX is left floating, then the leakage current to ground is ~ 0uA. However, if an output pad is terminated to ground is ~ 3 uA. For unused banks the aforementioned behavior is to be taken into account while deciding if it's better to float VCCIX of unused bank or tie it to GND.

VMVx I/O Supply Voltage (quiet)

Quiet supply voltage to the input buffers of each I/O bank. *x* is the bank number. Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks. This minimizes the noise transfer within the package and improves input signal integrity. Each bank must have at least one VMV connection, and no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be connected to the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1, etc.).

VCCPLA/B/C/D/E/F PLL Supply Voltage

Supply voltage to analog PLL, nominally 1.5 V.

When the PLLs are not used, the Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple VCC noise from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning Circuits in IGLOO and ProASIC3 Devices" chapter of the *ProASIC3 FPGA Fabric User's Guide* for a complete board solution for the PLL analog power supply and ground.

There is one VCCPLF pin on ProASIC3 devices.

VCOMPLA/B/C/D/E/F PLL Ground

Ground to analog PLL power supplies. When the PLLs are not used, the Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground.

There is one VCOMPLF pin on ProASIC3 devices.

A3P060 Function GND NC GCB2/IO45RSB0 GND GCB0/IO41RSB0 GCC1/IO38RSB0 GND GBB2/IO30RSB0 VMV0 GBA0/IO26RSB0 GBC1/IO23RSB0 GND IO20RSB0 IO17RSB0 GND IO12RSB0 GAC0/IO09RSB0 GND GAA1/IO06RSB0 GNDQ GAA2/IO02RSB1 IO95RSB1 VCC GFB1/IO87RSB1 GFA0/IO85RSB1 GFA2/IO83RSB1 IO80RSB1 VCCIB1 GEA1/IO73RSB1 GNDQ GEA2/IO71RSB1 IO68RSB1 VCCIB1 NC NC IO60RSB1

	QN132		QN132	QN132		
Pin Number	A3P060 Function	Pin Number	A3P060 Function	Pin Number	A3P0	
A1	GAB2/IO00RSB1	A37	GBB1/IO25RSB0	B25		
A2	IO93RSB1	A38	GBC0/IO22RSB0	B26		
A3	VCCIB1	A39	VCCIB0	B27	GCB	
A4	GFC1/IO89RSB1	A40	IO21RSB0	B28		
A5	GFB0/IO86RSB1	A41	IO18RSB0	B29	GCB	
A6	VCCPLF	A42	IO15RSB0	B30	GCC	
A7	GFA1/IO84RSB1	A43	IO14RSB0	B31		
A8	GFC2/IO81RSB1	A44	IO11RSB0	B32	GBB	
A9	IO78RSB1	A45	GAB1/IO08RSB0	B33		
A10	VCC	A46	NC	B34	GBA	
A11	GEB1/IO75RSB1	A47	GAB0/IO07RSB0	B35	GBC	
A12	GEA0/IO72RSB1	A48	IO04RSB0	B36		
A13	GEC2/IO69RSB1	B1	IO01RSB1	B37	IC	
A14	IO65RSB1	B2	GAC2/IO94RSB1	B38	IC	
A15	VCC	B3	GND	B39		
A16	IO64RSB1	B4	GFC0/IO88RSB1	B40	IC	
A17	IO63RSB1	B5	VCOMPLF	B41	GAC	
A18	IO62RSB1	B6	GND	B42		
A19	IO61RSB1	B7	GFB2/IO82RSB1	B43	GAA	
A20	IO58RSB1	B8	IO79RSB1	B44		
A21	GDB2/IO55RSB1	B9	GND	C1	GAA	
A22	NC	B10	GEB0/IO74RSB1	C2	IC	
A23	GDA2/IO54RSB1	B11	VMV1	C3		
A24	TDI	B12	GEB2/IO70RSB1	C4	GFB	
A25	TRST	B13	IO67RSB1	C5	GFA	
A26	GDC1/IO48RSB0	B14	GND	C6	GFA	
A27	VCC	B15	NC	C7	IC	
A28	IO47RSB0	B16	NC	C8		
A29	GCC2/IO46RSB0	B17	GND	C9	GEA	
A30	GCA2/IO44RSB0	B18	IO59RSB1	C10		
A31	GCA0/IO43RSB0	B19	GDC2/IO56RSB1	C11	GEA	
A32	GCB1/IO40RSB0	B20	GND	C12	IC	
A33	IO36RSB0	B21	GNDQ	C13		
A34	VCC	B22	TMS	C14		
A35	IO31RSB0	B23	TDO	C15		
A36	GBA2/IO28RSB0	B24	GDC0/IO49RSB0	C16	10	

TQ144 – Top View

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

🌜 Microsemi.

Package Pin Assignments

TQ144			TQ144	TQ144		
Pin Number	A3P125 Function	Pin Number	A3P125 Function	Pin Number	A3P125 Function	
1	GAA2/IO67RSB1	37	NC	73	VPUMP	
2	IO68RSB1	38	GEA2/IO106RSB1	74	NC	
3	GAB2/IO69RSB1	39	GEB2/IO105RSB1	75	TDO	
4	IO132RSB1	40	GEC2/IO104RSB1	76	TRST	
5	GAC2/IO131RSB1	41	IO103RSB1	77	VJTAG	
6	IO130RSB1	42	IO102RSB1	78	GDA0/IO66RSB0	
7	IO129RSB1	43	IO101RSB1	79	GDB0/IO64RSB0	
8	IO128RSB1	44	IO100RSB1	80	GDB1/IO63RSB0	
9	VCC	45	VCC	81	VCCIB0	
10	GND	46	GND	82	GND	
11	VCCIB1	47	VCCIB1	83	IO60RSB0	
12	IO127RSB1	48	IO99RSB1	84	GCC2/IO59RSB0	
13	GFC1/IO126RSB1	49	IO97RSB1	85	GCB2/IO58RSB0	
14	GFC0/IO125RSB1	50	IO95RSB1	86	GCA2/IO57RSB0	
15	GFB1/IO124RSB1	51	IO93RSB1	87	GCA0/IO56RSB0	
16	GFB0/IO123RSB1	52	IO92RSB1	88	GCA1/IO55RSB0	
17	VCOMPLF	53	IO90RSB1	89	GCB0/IO54RSB0	
18	GFA0/IO122RSB1	54	IO88RSB1	90	GCB1/IO53RSB0	
19	VCCPLF	55	IO86RSB1	91	GCC0/IO52RSB0	
20	GFA1/IO121RSB1	56	IO84RSB1	92	GCC1/IO51RSB0	
21	GFA2/IO120RSB1	57	IO83RSB1	93	IO50RSB0	
22	GFB2/IO119RSB1	58	IO82RSB1	94	IO49RSB0	
23	GFC2/IO118RSB1	59	IO81RSB1	95	NC	
24	IO117RSB1	60	IO80RSB1	96	NC	
25	IO116RSB1	61	IO79RSB1	97	NC	
26	IO115RSB1	62	VCC	98	VCCIB0	
27	GND	63	GND	99	GND	
28	VCCIB1	64	VCCIB1	100	VCC	
29	GEC1/IO112RSB1	65	GDC2/IO72RSB1	101	IO47RSB0	
30	GEC0/IO111RSB1	66	GDB2/IO71RSB1	102	GBC2/IO45RSB0	
31	GEB1/IO110RSB1	67	GDA2/IO70RSB1	103	IO44RSB0	
32	GEB0/IO109RSB1	68	GNDQ	104	GBB2/IO43RSB0	
33	GEA1/IO108RSB1	69	ТСК	105	IO42RSB0	
34	GEA0/IO107RSB1	70	TDI	106	GBA2/IO41RSB0	
35	VMV1	71	TMS	107	VMV0	
36	GNDQ	72	VMV1	108	GNDQ	

🌜 Microsemi.

Package Pin Assignments

PQ208			PQ208	PQ208		
Pin Number	A3P250 Function	Pin Number	A3P250 Function	Pin Number	A3P250 Function	
109	TRST	145	IO45PDB1	181	IO21RSB0	
110	VJTAG	146	IO44NDB1	182	IO20RSB0	
111	GDA0/IO60VDB1	147	IO44PDB1	183	IO19RSB0	
112	GDA1/IO60UDB1	148	IO43NDB1	184	IO18RSB0	
113	GDB0/IO59VDB1	149	GBC2/IO43PDB1	185	IO17RSB0	
114	GDB1/IO59UDB1	150	IO42NDB1	186	VCCIB0	
115	GDC0/IO58VDB1	151	GBB2/IO42PDB1	187	VCC	
116	GDC1/IO58UDB1	152	IO41NDB1	188	IO16RSB0	
117	IO57VDB1	153	GBA2/IO41PDB1	189	IO15RSB0	
118	IO57UDB1	154	VMV1	190	IO14RSB0	
119	IO56NDB1	155	GNDQ	191	IO13RSB0	
120	IO56PDB1	156	GND	192	IO12RSB0	
121	IO55RSB1	157	NC	193	IO11RSB0	
122	GND	158	GBA1/IO40RSB0	194	IO10RSB0	
123	VCCIB1	159	GBA0/IO39RSB0	195	GND	
124	NC	160	GBB1/IO38RSB0	196	IO09RSB0	
125	NC	161	GBB0/IO37RSB0	197	IO08RSB0	
126	VCC	162	GND	198	IO07RSB0	
127	IO53NDB1	163	GBC1/IO36RSB0	199	IO06RSB0	
128	GCC2/IO53PDB1	164	GBC0/IO35RSB0	200	VCCIB0	
129	GCB2/IO52PSB1	165	IO34RSB0	201	GAC1/IO05RSB0	
130	GND	166	IO33RSB0	202	GAC0/IO04RSB0	
131	GCA2/IO51PSB1	167	IO32RSB0	203	GAB1/IO03RSB0	
132	GCA1/IO50PDB1	168	IO31RSB0	204	GAB0/IO02RSB0	
133	GCA0/IO50NDB1	169	IO30RSB0	205	GAA1/IO01RSB0	
134	GCB0/IO49NDB1	170	VCCIB0	206	GAA0/IO00RSB0	
135	GCB1/IO49PDB1	171	VCC	207	GNDQ	
136	GCC0/IO48NDB1	172	IO29RSB0	208	VMV0	
137	GCC1/IO48PDB1	173	IO28RSB0			
138	IO47NDB1	174	IO27RSB0			
139	IO47PDB1	175	IO26RSB0			
140	VCCIB1	176	IO25RSB0			
141	GND	177	IO24RSB0			
142	VCC	178	GND			
143	IO46RSB1	179	IO23RSB0			
144	IO45NDB1	180	IO22RSB0			

	FG144
Pin Number	A3P400 Function
K1	GEB0/IO136NDB3
K2	GEA1/IO135PDB3
K3	GEA0/IO135NDB3
K4	GEA2/IO134RSB2
K5	IO127RSB2
K6	IO121RSB2
K7	GND
K8	IO104RSB2
K9	GDC2/IO82RSB2
K10	GND
K11	GDA0/IO79VDB1
K12	GDB0/IO78VDB1
L1	GND
L2	VMV3
L3	GEB2/IO133RSB2
L4	IO128RSB2
L5	VCCIB2
L6	IO119RSB2
L7	IO114RSB2
L8	IO110RSB2
L9	TMS
L10	VJTAG
L11	VMV2
L12	TRST
M1	GNDQ
M2	GEC2/IO132RSB2
M3	IO129RSB2
M4	IO126RSB2
M5	IO124RSB2
M6	IO122RSB2
M7	IO117RSB2
M8	IO115RSB2
M9	TDI
M10	VCCIB2
M11	VPUMP
M12	GNDQ

🌜 Microsemi.

Package Pin Assignments

FG484			FG484	FG484		
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	
A1	GND	B15	IO63RSB0	D7	GAB0/IO02RSB0	
A2	GND	B16	IO66RSB0	D8	IO16RSB0	
A3	VCCIB0	B17	IO68RSB0	D9	IO22RSB0	
A4	IO07RSB0	B18	IO70RSB0	D10	IO28RSB0	
A5	IO09RSB0	B19	NC	D11	IO35RSB0	
A6	IO13RSB0	B20	NC	D12	IO45RSB0	
A7	IO18RSB0	B21	VCCIB1	D13	IO50RSB0	
A8	IO20RSB0	B22	GND	D14	IO55RSB0	
A9	IO26RSB0	C1	VCCIB3	D15	IO61RSB0	
A10	IO32RSB0	C2	IO220PDB3	D16	GBB1/IO75RSB0	
A11	IO40RSB0	C3	NC	D17	GBA0/IO76RSB0	
A12	IO41RSB0	C4	NC	D18	GBA1/IO77RSB0	
A13	IO53RSB0	C5	GND	D19	GND	
A14	IO59RSB0	C6	IO10RSB0	D20	NC	
A15	IO64RSB0	C7	IO14RSB0	D21	NC	
A16	IO65RSB0	C8	VCC	D22	NC	
A17	IO67RSB0	C9	VCC	E1	IO219NDB3	
A18	IO69RSB0	C10	IO30RSB0	E2	NC	
A19	NC	C11	IO37RSB0	E3	GND	
A20	VCCIB0	C12	IO43RSB0	E4	GAB2/IO224PDB3	
A21	GND	C13	NC	E5	GAA2/IO225PDB3	
A22	GND	C14	VCC	E6	GNDQ	
B1	GND	C15	VCC	E7	GAB1/IO03RSB0	
B2	VCCIB3	C16	NC	E8	IO17RSB0	
B3	NC	C17	NC	E9	IO21RSB0	
B4	IO06RSB0	C18	GND	E10	IO27RSB0	
B5	IO08RSB0	C19	NC	E11	IO34RSB0	
B6	IO12RSB0	C20	NC	E12	IO44RSB0	
B7	IO15RSB0	C21	NC	E13	IO51RSB0	
B8	IO19RSB0	C22	VCCIB1	E14	IO57RSB0	
B9	IO24RSB0	D1	IO219PDB3	E15	GBC1/IO73RSB0	
B10	IO31RSB0	D2	IO220NDB3	E16	GBB0/IO74RSB0	
B11	IO39RSB0	D3	NC	E17	IO71RSB0	
B12	IO48RSB0	D4	GND	E18	GBA2/IO78PDB1	
B13	IO54RSB0	D5	GAA0/IO00RSB0	E19	IO81PDB1	
B14	IO58RSB0	D6	GAA1/IO01RSB0	E20	GND	

5 – Datasheet Information

List of Changes

The following table lists critical changes that were made in each version of the ProASIC3 datasheet.

Revision	Changes	Page
Revision 18 (March 2016)	Updated 3.3 V DC supply voltage's maximum Commercial and Industrial values from 3.3 V to 3.6 V in Table 2-2 (SAR 72693).	2-2
	Added reference of Package Mechanical Drawings document in all package pin assignment notes (76833).	NA
Revision 17	Removed PQFP embedded heat spreader info. from Table 2-5 (SAR 52320).	2-6
(June 2015)	Updated "VCCIBx I/O Supply Voltage" (SAR 43323).	3-1
Revision 16 (December 2014)	Updated "ProASIC3 Ordering Information". Interchanged the positions of Y- Security Feature and I- Application (Temperature Range) (SAR 61079). Added Note "Only devices with package size greater than or equal to 5x5 are supported".	1-IV
	Updated Table Note (2) in Table 2-3 • Flash Programming Limits – Retention, Storage and Operating Temperature so that the Table Note is not applicable for Maximum Storage Temperature T_{STG} (SAR 54297).	2-3
	Added values for Drive strength 2 mA in Table 2-41 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew, Table 2-42 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew, Table 2-43 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew, and Table 2-44 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew (SAR 57184).	2-34, 2-35, 2-36, 2-37
	Added Figure 2-1 • High-Temperature Data Retention (HTR) (SAR 45466).	2-3
	Updates made to maintain the style and consistency of the document.	NA
Revision 15 (July 2014)	Added corner pad table note (3) to "QN132 – Bottom View" (SAR 47442).	4-6
	Ambient temperature removed in Table 2-2, table notes and "ProASIC3 Ordering Information" figure were modified (SAR 48343).	2-2 1-IV
	Other updates were made to maintain the style and consistency of the datasheet.	NA
Revision 14 (April 2014)	Note added for the discontinuance of QN132 package to the following tables and section: "ProASIC3 Devices", "I/Os Per Package 1", "ProASIC3 FPGAs Package Sizes Dimensions" and "QN132 – Bottom View" section (SAR 55118).	I, III, 4-6