

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	36864
Number of I/O	97
Number of Gates	250000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LBGA
Supplier Device Package	144-FPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1a3p250-2fg144

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

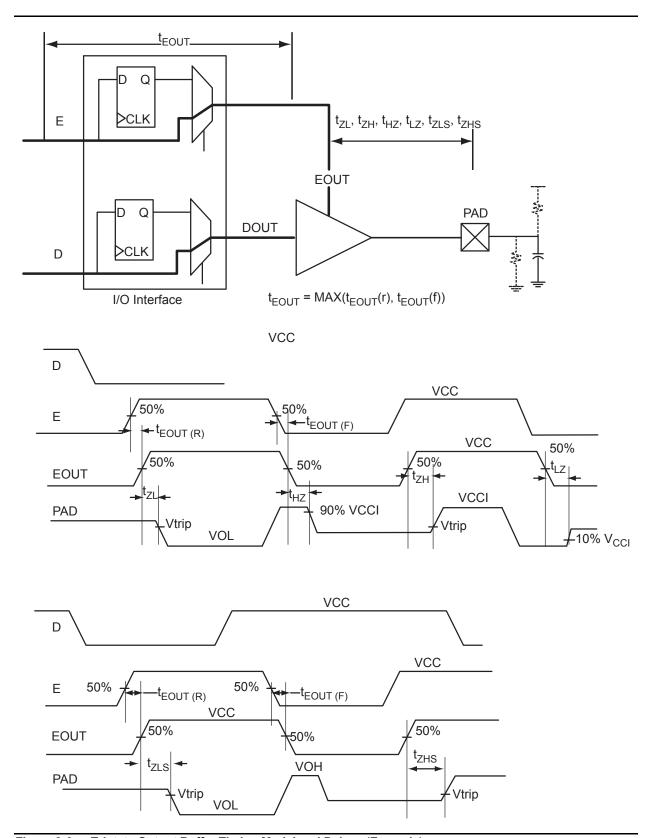


Figure 2-6 • Tristate Output Buffer Timing Model and Delays (Example)

Revision 18 2-18

Table 2-24 • Summary of I/O Timing Characteristics—Software Default Settings

-2 Speed Grade, Commercial-Case Conditions: T_J = 70°C, Worst Case VCC = 1.425 V,

Worst-Case VCCI (per standard)

Advanced I/O Banks

I/O Standard	Drive Strength	Equiv. Software Default Drive Strength Option ¹	Slew Rate	Capacitive Load (pF)	External Resistor (:)	t _{DOUT} (ns)	t _{DP} (ns)	t _{DIN} (ns)	t _{pY} (ns)	teour (ns)	t _{ZL} (ns)	t _{ZH} (ns)	t _{LZ} (ns)	t _{HZ} (ns)	t _{ZLS} (ns)	t _{ZHS} (ns)	Units
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	35	-	0.45	2.64	0.03	0.76	0.32	2.69	2.11	2.40	2.68	4.36	3.78	ns
3.3 V LVCMOS Wide Range ²	100 μΑ	12 mA	High	35	_	0.45	4.08	0.03	0.76	0.32	4.08	3.20	3.71	4.14	6.61	5.74	ns
2.5 V LVCMOS	12 mA	12 mA	High	35	_	0.45	2.66	0.03	0.98	0.32	2.71	2.56	2.47	2.57	4.38	4.23	ns
1.8 V LVCMOS	12 mA	12 mA	High	35	_	0.45	2.64	0.03	0.91	0.32	2.69	2.27	2.76	3.05	4.36	3.94	ns
1.5 V LVCMOS	12 mA	12 mA	High	35	_	0.45	3.05	0.03	1.07	0.32	3.10	2.67	2.95	3.14	4.77	4.34	ns
3.3 V PCI	Per PCI spec	ı	High	10	25 ⁴	0.45	2.00	0.03	0.65	0.32	2.04	1.46	2.40	2.68	3.71	3.13	ns
3.3 V PCI-X	Per PCI-X spec	-	High	10	25 ⁴	0.45	2.00	0.03	0.62	0.32	2.04	1.46	2.40	2.68	3.71	3.13	ns
LVDS	24 mA	_	High	_	_	0.45	1.37	0.03	1.20	_	_	_	_	_	_	_	ns
LVPECL	24 mA	_	High	_	_	0.45	1.34	0.03	1.05	_	_	_	_	_	_	_	ns

Notes:

- 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
- 2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
- 4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-11 on page 2-64 for connectivity. This resistor is not required during normal operation.

2-23 Revision 18

Table 2-39 • Minimum and Maximum DC In put and Output Levels Applicable to Standard I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS	V	IL	VI	Н	VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL ¹	IIH ²	
Drive Strength	Min V	Max V	Min V	Max V	Max V	Min V	mA	mA	Max mA ³	Max mA ³	μA ⁴	μA ⁴	
2 mA	0.3	0.8	2	3.6	0.	4 2	.4	2	2 2	25	27	10	10
4 mA	0.3	0.8	2	3.6	О.	4 2	.4	4	4	2 5	27	1	0 10
6 mA	0.3	0.8	2	3.6	О.	4 2	.4	6	6 5	1	54	10	10
8 mA	0.3	0.8	2	3.6	0.4	2.4	8	8	51	54	10	10	

Notes:

- 1. IIL is the input leakage current per I/O pin over recommended operation conditions where 0.3 V < VIN < VIL.
- 2. I_{IH} is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

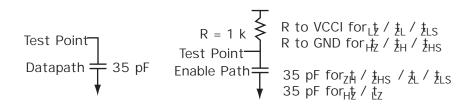


Figure 2-7 • AC Loading

Table 2-40 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	3.3	1.4	35

Note: *Measuring point = Vtrip. Seeble 2-22 on page 2-2f2 a complete table of trip points.

2-33 Revision 18

Output DDR Module

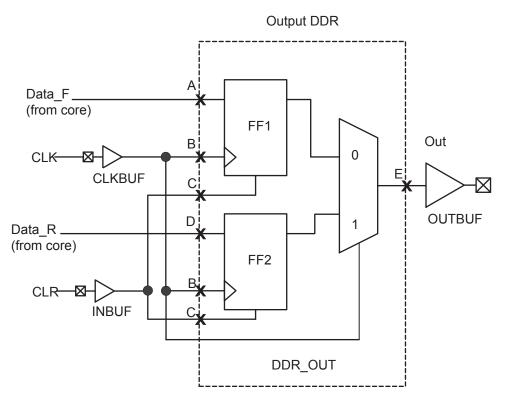


Figure 2-22 • Output DDR Timing Model

Table 2-103 • Parameter Definitions

Parameter Name	Parameter Definition	Measuring Nodes (from, to)
t _{DDROCLKQ}	Clock-to-Out	B, E
t _{DDROCLR2Q}	Asynchronous Clear-to-Out	C, E
t _{DDROREMCLR}	Clear Removal	C, B
t _{DDRORECCLR}	Clear Recovery	C, B
t _{DDROSUD1}	Data Setup Data_F	A, B
t _{DDROSUD2}	Data Setup Data_R	D, B
t _{DDROHD1}	Data Hold Data_F	A, B
t _{DDROHD2}	Data Hold Data_R	D, B

2-79 Revision 18

Timing Characteristics

Table 2-107 • A3P015 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		-2 -		-1 St		td.		
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.66	0.81	0.75	0.92	0.88	1.08	ns
t _{RCKH}	Input High Delay for Global Clock	0.67	0.84	0.76	0.96	0.89	1.13	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.18		0.21		0.25	ns

Notes:

- 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For specific junction temperature and voltage-supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-108 • A3P030 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		-2		–1		S		
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.67	0.81	0.76	0.92	0.89	1.09	ns
t _{RCKH}	Input High Delay for Global Clock	0.68	0.85	0.77	0.97	0.91	1.14	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.18		0.21		0.24	ns

Notes:

- 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Revision 18 2-86

Timing Waveforms

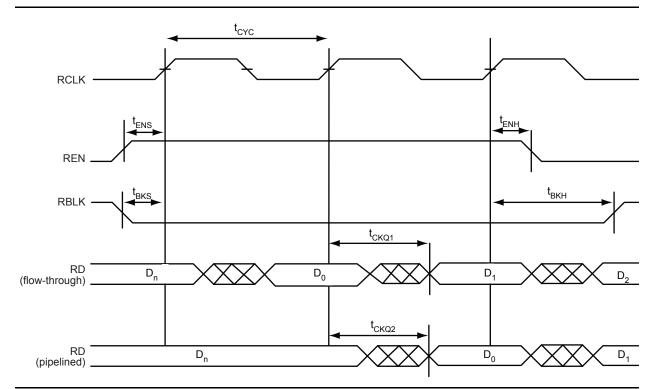


Figure 2-37 • FIFO Read

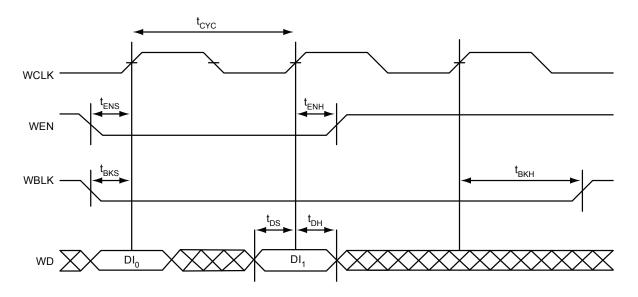


Figure 2-38 • FIFO Write

2-99 Revision 18

Package Pin Assignments

	FG256		
Pin Number	A3P1000 Function		
R5	IO168RSB2		
R6	IO163RSB2		
R7	IO157RSB2		
R8	IO149RSB2		
R9	IO143RSB2		
R10	IO138RSB2		
R11	IO131RSB2		
R12	IO125RSB2		
R13	GDB2/IO115RSB2		
R14	TDI		
R15	GNDQ		
R16	TDO		
T1	GND		
T2	IO183RSB2		
Т3	GEB2/IO186RSB2		
T4	IO172RSB2		
T5	IO170RSB2		
T6	IO164RSB2		
T7	IO158RSB2		
Т8	IO153RSB2		
Т9	IO142RSB2		
T10	IO135RSB2		
T11	IO130RSB2		
T12	GDC2/IO116RSB2		
T13	IO120RSB2		
T14	GDA2/IO114RSB2		
T15	TMS		
T16	GND		

4-64 Revision 18

Package Pin Assignme	ents
----------------------	------

FG484		
Pin Number	A3P1000 Function	
K19	IO88NDB1	
K20	IO94NPB1	
K21	IO98NDB1	
K22	IO98PDB1	
L1	NC	
L2	IO200PDB3	
L3	IO210NPB3	
L4	GFB0/I0208NPB3	
L5	GFAO/IO207NDB3	
L6	GFB1/IO208PPB3	
L7	VCOMPLF	
L8	GFCO/IO2O9NPB3	
L9	VCC	
L10	GND	
L11	GND	
L12	GND	
L13	GND	
L14	VCC	
L15	GCCO/IO91NPB1	
L16	GCB1/IO92PPB1	
L17	GCAO/IO93NPB1	
L18	IO96NPB1	
L19	GCBO/IO92NPB1	
L20	IO97PDB1	
L21	IO97NDB1	
L22	IO99NPB1	
M1	NC	
M2	IO2OONDB3	
M3	IO2O6NDB3	
M4	GFA2/IO206PDB3	
M5	GFA1/IO207PDB3	
M6	VCCPLF	
M7	IO2O5NDB3	
M8	GFB2/IO205PDB3	
M9	VCC	
M10	GND	

FG484		
Die Number		
Pin Number	A3P1000 Function	
M11	GND	
M12	GND	
M13	GND	
M14	VCC	
M15	GCB2/IO95PPB1	
M16	GCA1/IO93PPB1	
M17	GCC2/IO96PPB1	
M18	IO100PPB1	
M19	GCA2/IO94PPB1	
M20	IO101PPB1	
M21	IO99PPB1	
M22	NC	
N1	IO2O1NDB3	
N2	IO201PDB3	
N3	NC	
N4	GFC2/IO204PDB3	
N5	IO2O4NDB3	
N6	IO203NDB3	
N7	IO203PDB3	
N8	VCCIB3	
N9	VCC	
N10	GND	
N11	GND	
N12	GND	
N13	GND	
N14	VCC	
N15	VCCIB1	
N16	IO95NPB1	
N17	IO100NPB1	
N18	IO102NDB1	
N19	IO102PDB1	
N20	NC	
N21	IO101NPB1	
N22	IO103PDB1	
P1	NC	
P2	IO199PDB3	

FG484		
Pin Number	A3P1000 Function	
P3	IO199NDB3	
P4	IO2O2NDB3	
P5	IO2O2PDB3	
P6	IO196PPB3	
P7	IO193PPB3	
P8	VCCIB3	
Р9	GND	
P10	VCC	
P11	VCC	
P12	VCC	
P13	VCC	
P14	GND	
P15	VCCIB1	
P16	GDBO/IO112NPB1	
P17	IO106NDB1	
P18	IO106PDB1	
P19	IO107PDB1	
P20	NC	
P21	IO104PDB1	
P22	IO103NDB1	
R1	NC	
R2	IO197PPB3	
R3	VCC	
R4	IO197NPB3	
R5	IO196NPB3	
R6	IO193NPB3	
R7	GECO/IO190NPB3	
R8	VMV3	
R9	VCCIB2	
R10	VCCIB2	
R11	IO147RSB2	
R12	IO136RSB2	
R13	VCCIB2	
R14	VCCIB2	
R15	VMV2	
R16	IO110NDB1	

4-78 Revision 18

Revision	Changes	Page
Revision 2 (cont'd)	The "ProASIC3 FPGAs Package Sizes Dimensions" table is new.	Ш
	In the "ProASIC3 Ordering Information" the QN package measurements we updated to include both 0.4 mm and 0.5 mm.	re IV
	In the General Description section thembour of I/Os was updated from 28 300.	8 tdl-1
Packaging v1.2	The "QN68 Bottom View" sections new.	4-3
Revision 1 (Feb 2008) DC and Switching Characteristics v1.1	In Table 2-2 Recommended Operating ConditionsTJ was listed in the symbol column and was incorrect. It was corrected and changed to T	ol 2-2
	In Table 2-3 Flash Programming Limits Retention, Storage and Opera Temperature Maximum Operating Junctionemperature was changed fro 110°C to 100°C for both commercial and industrial grades.	
	The "PLL Behavior at Brownout Condition" sectisomew.	2-4
	In the "PLL Contribution PPLL" section the following was deleted: FCLKIN is the input clock frequency.	2-14
	In Table 2-21 Summary of Maximum and Minimum DC Input Leviths note was incorrect. It previously saidand it was corrected and changed to T	2-21
	In Table 2-115 ProASIC3 CCC/PLL Specification be SCLK parameter and not 1 are new.	e 2-90
	Table 2-125 JTAG 1532was populated with the parameter data, which win the previous version of the document.	as 201 08
Packaging v1.1	In the "VQ100" A3PO30 pin table, the function of pin 63 was incorre changed from IO39RSBO to GDBO/IO38RSBO.	ct and9
Revision 0 (Jan 2008)	This document was previously in datasheet v2.2. As a result of moving handbook format, Actel has restarted the version numbers.	to NUMA
v2.2 (July 2007)	Product Family, "I/Os Per Package", "Automote ProASIC3 Ordering	SIQ,3ii, iii, iii, iv and
	The words "ambient temperature" were added to the temperature range "Automotive ProASIC3 Ordering Informati, "Temperature Grade Offerings and "Speed Grade and Temperature Grade Matrix" sections.	
	The T_J parameter in Table 3-2 Recommended Operating Conditions changed to \overline{A} , ambient temperature, and table notes 4 6 were added.	was3-2
v2.1 (May 2007)	In the "Clock Conditioning Circuit (CCC) and PLL" section, the Wide Frequency Range (1.5 MHz to 200 MHz) was changed to (1.5 MHz to 350	Inputi MHz).
	The "Clock Conditioning Circuit (CCC) and PLL" section was updated.	i
	In the "I/Os Per Package" sectiohetA3P030, A3P060, A3P125, ACP250, a A3P600 device I/Os were updated.	nd ii
	Table 3-5 Package Thermal Resistivities was updated with A3P information. The note below the table is also new.	100 3 -5

Revision 18 5-8