

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	36864
Number of I/O	97
Number of Gates	250000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LBGA
Supplier Device Package	144-FPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1a3p250-2fgg144

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

User Nonvolatile FlashROM

ProASIC3 devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications:

- Internet protocol addressing (wireless or fixed)
- System calibration settings
- Device serialization and/or inventory control
- Subscription-based business models (for example, set-top boxes)
- · Secure key storage for secure communications algorithms
- Asset management/tracking
- Date stamping
- Version management

The FlashROM is written using the standard ProASIC3 IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks (except in the A3P015 and A3P030 devices), as in security keys stored in the FlashROM for a user design.

The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array.

The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte.

The ProASIC3 development software solutions, Libero[®] System-on-Chip (SoC) and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents.

SRAM and FIFO

ProASIC3 devices (except the A3P015 and A3P030 devices) have embedded SRAM blocks along their north and south sides. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro (except in A3P015 and A3P030 devices).

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations.

PLL and CCC

ProASIC3 devices provide designers with very flexible clock conditioning capabilities. Each member of the ProASIC3 family contains six CCCs. One CCC (center west side) has a PLL. The A3P015 and A3P030 devices do not have a PLL.

The six CCC blocks are located at the four corners and the centers of the east and west sides.

All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay operations as well as clock spine access.

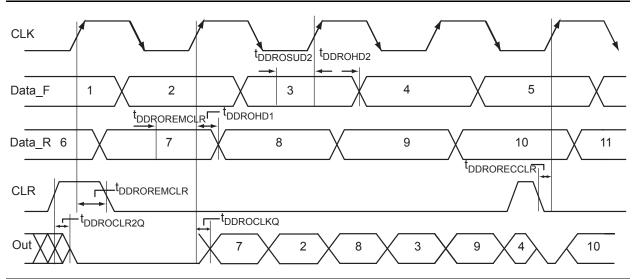
The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs located near the CCC that have dedicated connections to the CCC block.

Power Consumption of Various Internal Resources

Table 2-14 • Different Components Contributing to Dynamic Power Consumption in ProASIC3 Devices

		Device Specific Dynamic Contributions (µW/MHz)							
Parameter	Definition	A3P1000	A3P600	A3P400	A3P250	A3P125	A3P060	A3P030	A3P015
PAC1	Clock contribution of a Global Rib	14.50	12.80	12.80	11.00	11.00	9.30	9.30	9.30
PAC2	Clock contribution of a Global Spine	2.48	1.85	1.35	1.58	0.81	0.81	0.41	0.41
PAC3	Clock contribution of a VersaTile row		•		0.8	1			
PAC4	Clock contribution of a VersaTile used as a sequential module	0.12							
PAC5	First contribution of a VersaTile used as a sequential module	0.07							
PAC6	Second contribution of a VersaTile used as a sequential module	0.29							
PAC7	Contribution of a VersaTile used as a combinatorial Module	0.29							
PAC8	Average contribution of a routing net	0.70							
PAC9	Contribution of an I/O input pin (standard dependent)	See Table 2-8 on page 2-7 through Table 2-10 on page 2-8.							
PAC10	Contribution of an I/O output pin (standard dependent)	See Table 2-11 on page 2-9 through Table 2-13 on page 2-10.							
PAC11	Average contribution of a RAM block during a read operation	25.00							
PAC12	Average contribution of a RAM block during a 30.00 write operation								
PAC13	Dynamic contribution for PLL				2.6	0			

Note: *For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi Power spreadsheet calculator or SmartPower tool in Libero SoC software.


Table 2-71 • 1.8 V LVCMOS Low Slew

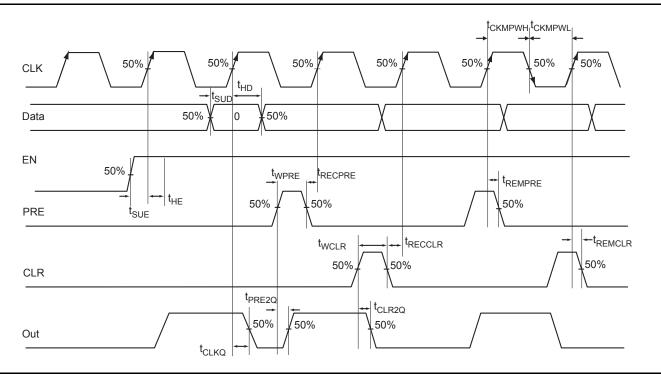
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Advanced I/O Banks

			uvanced		anne								
Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.66	15.53	0.04	1.22	0.43	14.11	15.53	2.78	1.60	16.35	17.77	ns
	–1	0.56	13.21	0.04	1.04	0.36	12.01	13.21	2.36	1.36	13.91	15.11	ns
	-2	0.49	11.60	0.03	0.91	0.32	10.54	11.60	2.07	1.19	12.21	13.27	ns
4 mA	Std.	0.66	10.48	0.04	1.22	0.43	10.41	10.48	3.23	2.73	12.65	12.71	ns
	-1	0.56	8.91	0.04	1.04	0.36	8.86	8.91	2.75	2.33	10.76	10.81	ns
	-2	0.49	7.82	0.03	0.91	0.32	7.77	7.82	2.41	2.04	9.44	9.49	ns
6 mA	Std.	0.66	8.05	0.04	1.22	0.43	8.20	7.84	3.54	3.27	10.43	10.08	ns
	-1	0.56	6.85	0.04	1.04	0.36	6.97	6.67	3.01	2.78	8.88	8.57	ns
	-2	0.49	6.01	0.03	0.91	0.32	6.12	5.86	2.64	2.44	7.79	7.53	ns
8 mA	Std.	0.66	7.50	0.04	1.22	0.43	7.64	7.30	3.61	3.41	9.88	9.53	ns
	-1	0.56	6.38	0.04	1.04	0.36	6.50	6.21	3.07	2.90	8.40	8.11	ns
	-2	0.49	5.60	0.03	0.91	0.32	5.71	5.45	2.69	2.55	7.38	7.12	ns
12 mA	Std.	0.66	7.29	0.04	1.22	0.43	7.23	7.29	3.71	3.95	9.47	9.53	ns
	-1	0.56	6.20	0.04	1.04	0.36	6.15	6.20	3.15	3.36	8.06	8.11	ns
	-2	0.49	5.45	0.03	0.91	0.32	5.40	5.45	2.77	2.95	7.07	7.12	ns
16 mA	Std.	0.66	7.29	0.04	1.22	0.43	7.23	7.29	3.71	3.95	9.47	9.53	ns
	–1	0.56	6.20	0.04	1.04	0.36	6.15	6.20	3.15	3.36	8.06	8.11	ns
	-2	0.49	5.45	0.03	0.91	0.32	5.40	5.45	2.77	2.95	7.07	7.12	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Figure 2-23 •	Output D	DR Timing Diagram
---------------	----------	-------------------

Timing Characteristics


Table 2-104 • Output DDR Propagation Delays

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{DDROCLKQ}	Clock-to-Out of DDR for Output DDR	0.70	0.80	0.94	ns
t _{DDROSUD1}	Data_F Data Setup for Output DDR	0.38	0.43	0.51	ns
t _{DDROSUD2}	Data_R Data Setup for Output DDR	0.38	0.43	0.51	ns
t _{DDROHD1}	Data_F Data Hold for Output DDR	0.00	0.00	0.00	ns
t _{DDROHD2}	Data_R Data Hold for Output DDR	0.00	0.00	0.00	ns
t _{DDROCLR2Q}	Asynchronous Clear-to-Out for Output DDR	0.80	0.91	1.07	ns
t _{DDROREMCLR}	Asynchronous Clear Removal Time for Output DDR	0.00	0.00	0.00	ns
t _{DDRORECCLR}	Asynchronous Clear Recovery Time for Output DDR	0.22	0.25	0.30	ns
t _{DDROWCLR1}	Asynchronous Clear Minimum Pulse Width for Output DDR	0.22	0.25	0.30	ns
t _{DDROCKMPWH}	Clock Minimum Pulse Width High for the Output DDR	0.36	0.41	0.48	ns
t _{DDROCKMPWL}	Clock Minimum Pulse Width Low for the Output DDR	0.32	0.37	0.43	ns
F _{DDOMAX}	Maximum Frequency for the Output DDR	350	309	263	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Figure 2-27 • Timing Model and Waveforms

Timing Characteristics

Table 2-106 • Register Delays

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{CLKQ}	Clock-to-Q of the Core Register	0.55	0.63	0.74	ns
t _{SUD}	Data Setup Time for the Core Register	0.43	0.49	0.57	ns
t _{HD}	Data Hold Time for the Core Register	0.00	0.00	0.00	ns
t _{SUE}	Enable Setup Time for the Core Register	0.45	0.52	0.61	ns
t _{HE}	Enable Hold Time for the Core Register	0.00	0.00	0.00	ns
t _{CLR2Q}	Asynchronous Clear-to-Q of the Core Register	0.40	0.45	0.53	ns
t _{PRE2Q}	Asynchronous Preset-to-Q of the Core Register	0.40	0.45	0.53	ns
t _{REMCLR}	Asynchronous Clear Removal Time for the Core Register	0.00	0.00	0.00	ns
t _{RECCLR}	Asynchronous Clear Recovery Time for the Core Register	0.22	0.25	0.30	ns
t _{REMPRE}	Asynchronous Preset Removal Time for the Core Register	0.00	0.00	0.00	ns
t _{RECPRE}	Asynchronous Preset Recovery Time for the Core Register	0.22	0.25	0.30	ns
t _{WCLR}	Asynchronous Clear Minimum Pulse Width for the Core Register	0.22	0.25	0.30	ns
t _{WPRE}	Asynchronous Preset Minimum Pulse Width for the Core Register	0.22	0.25	0.30	ns
t _{CKMPWH}	Clock Minimum Pulse Width High for the Core Register	0.32	0.37	0.43	ns
t _{CKMPWL}	Clock Minimum Pulse Width Low for the Core Register	0.36	0.41	0.48	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Parameter	Description	-2	-1	Std.	Units
t _{AS}	Address setup time	0.25	0.28	0.33	ns
t _{AH}	Address hold time	0.00	0.00	0.00	ns
t _{ENS}	REN, WEN setup time	0.13	0.15	0.17	ns
t _{ENH}	REN, WEN hold time	0.10	0.11	0.13	ns
t _{DS}	Input data (WD) setup time	0.18	0.21	0.25	ns
t _{DH}	Input data (WD) hold time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to new data valid on RD (output retained)	2.16	2.46	2.89	ns
t _{CKQ2}	Clock High to new data valid on RD (pipelined)		1.02	1.20	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address—Applicable to Opening Edge		0.43	0.38	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address—Applicable to Opening Edge		0.50	0.44	ns
t _{RSTBQ}	RESET Low to data out Low on RD (flow-through)	0.92	1.05	1.23	ns
	RESET Low to data out Low on RD (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET minimum pulse width	0.21	0.24	0.29	ns
t _{CYC}	Clock cycle time	3.23	3.68	4.32	ns
F _{MAX}	Maximum frequency	310	272	231	MHz

Table 2-117 • RAM512X18

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

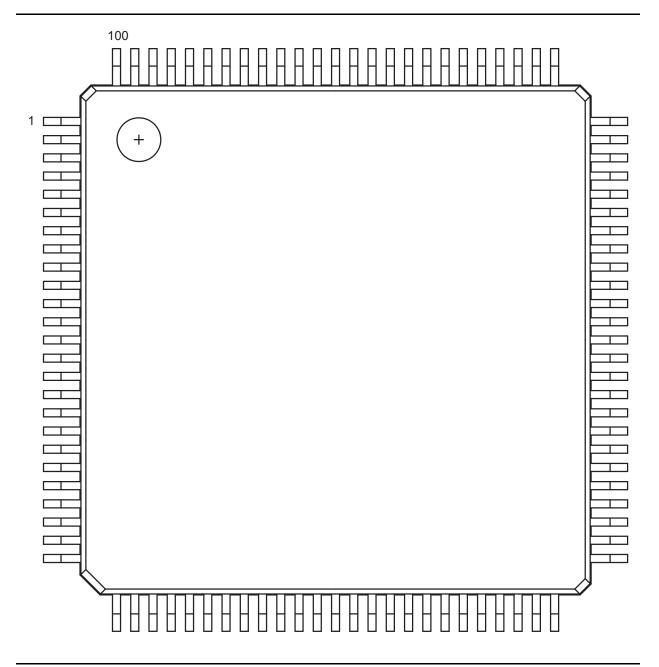
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

QN68				
Pin Number	A3P030 Function			
1	IO82RSB1			
2	IO80RSB1			
3	IO78RSB1			
4	IO76RSB1			
5	GEC0/IO73RSB1			
6	GEA0/IO72RSB1			
7	GEB0/IO71RSB1			
8	VCC			
9	GND			
10	VCCIB1			
11	IO68RSB1			
12	IO67RSB1			
13	IO66RSB1			
14 IO65RSB1				
15	IO64RSB1			
16	IO63RSB1			
17	IO62RSB1			
18	IO60RSB1			
19	IO58RSB1			
20	IO56RSB1			
21	IO54RSB1			
22	IO52RSB1			
23	IO51RSB1			
24	VCC			
25	GND			
26	VCCIB1			
27	IO50RSB1			
28	IO48RSB1			
29	IO46RSB1			
30	IO44RSB1			
31	IO42RSB1			
32	ТСК			
33	TDI			
34	TMS			
35	VPUMP			
36	TDO			

QN68					
Pin Number	A3P030 Function				
37	TRST				
38	VJTAG				
39	IO40RSB0				
40	IO37RSB0				
41	GDB0/IO34RSB0				
42	GDA0/IO33RSB0				
43	GDC0/IO32RSB0				
44	VCCIB0				
45	GND				
46	VCC				
47	IO31RSB0				
48	IO29RSB0				
49	IO28RSB0				
50	IO27RSB0				
51	IO25RSB0				
52	IO24RSB0				
53	IO22RSB0				
54	IO21RSB0				
55	IO19RSB0				
56	IO17RSB0				
57	IO15RSB0				
58	IO14RSB0				
59	VCCIB0				
60	GND				
61	VCC				
62	IO12RSB0				
63	IO10RSB0				
64	IO08RSB0				
65	IO06RSB0				
66	IO04RSB0				
67	IO02RSB0				
68	IO00RSB0				

Package Pin Assignments

QN132				
Pin Number	A3P060 Function			
C17	IO57RSB1			
C18	NC			
C19	ТСК			
C20	VMV1			
C21	VPUMP			
C22	VJTAG			
C23	VCCIB0			
C24	NC			
C25	NC			
C26	GCA1/IO42RSB0			
C27	GCC0/IO39RSB0			
C28	VCCIB0			
C29	IO29RSB0			
C30	GNDQ			
C31	GBA1/IO27RSB0			
C32	GBB0/IO24RSB0			
C33	VCC			
C34	IO19RSB0			
C35	IO16RSB0			
C36	IO13RSB0			
C37	GAC1/IO10RSB0			
C38	NC			
C39	GAA0/IO05RSB0			
C40	VMV0			
D1	GND			
D2	GND			
D3	GND			
D4	GND			



C	CS121
Pin Number	A3P060 Function
K10	VPUMP
K11	GDB1/IO47RSB0
L1	VMV1
L2	GNDQ
L3	IO65RSB1
L4	IO63RSB1
L5	IO61RSB1
L6	IO58RSB1
L7	IO57RSB1
L8	IO55RSB1
L9	GNDQ
L10	GDA0/IO50RSB0
L11	VMV1

🌜 Microsemi.

Package Pin Assignments

VQ100 – Top View

Note

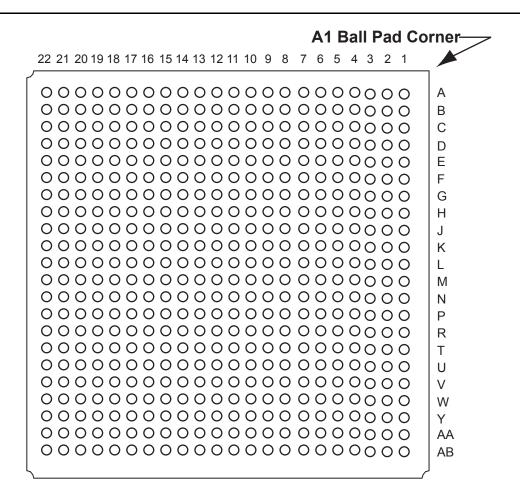
For more information on package drawings, see PD3068: Package Mechanical Drawings.

	PQ208		PQ208	PQ208			
Pin Number	A3P125 Function	Pin Number	A3P125 Function	Pin Number	A3P125 Function		
1	GND	37	IO116RSB1	73	IO92RSB1		
2	GAA2/IO67RSB1	38	IO115RSB1	74	IO91RSB1		
3	IO68RSB1	39	NC	75	IO90RSB1		
4	GAB2/IO69RSB1	40	VCCIB1	76	IO89RSB1		
5	IO132RSB1	41	GND	77	IO88RSB1		
6	GAC2/IO131RSB1	42	IO114RSB1	78	IO87RSB1		
7	NC	43	IO113RSB1	79	IO86RSB1		
8	NC	44	GEC1/IO112RSB1	80	IO85RSB1		
9	IO130RSB1	45	GEC0/IO111RSB1	81	GND		
10	IO129RSB1	46	GEB1/IO110RSB1	82	IO84RSB1		
11	NC	47	GEB0/IO109RSB1	83	IO83RSB1		
12	IO128RSB1	48	GEA1/IO108RSB1	84	IO82RSB1		
13	NC	49	GEA0/IO107RSB1	85	IO81RSB1		
14	NC	50	VMV1	86	IO80RSB1		
15	NC	51	GNDQ	87	IO79RSB1		
16	VCC	52	GND	88	VCC		
17	GND	53	NC	89	VCCIB1		
18	VCCIB1	54	NC	90	IO78RSB1		
19	IO127RSB1	55	GEA2/IO106RSB1	91	IO77RSB1		
20	NC	56	GEB2/IO105RSB1	92	IO76RSB1		
21	GFC1/IO126RSB1	57	GEC2/IO104RSB1	93	IO75RSB1		
22	GFC0/IO125RSB1	58	IO103RSB1	94	IO74RSB1		
23	GFB1/IO124RSB1	59	IO102RSB1	95	IO73RSB1		
24	GFB0/IO123RSB1	60	IO101RSB1	96	GDC2/IO72RSB1		
25	VCOMPLF	61	IO100RSB1	97	GND		
26	GFA0/IO122RSB1	62	VCCIB1	98	GDB2/IO71RSB1		
27	VCCPLF	63	IO99RSB1	99	GDA2/IO70RSB1		
28	GFA1/IO121RSB1	64	IO98RSB1	100	GNDQ		
29	GND	65	GND	101	ТСК		
30	GFA2/IO120RSB1	66	IO97RSB1	102	TDI		
31	NC	67	IO96RSB1	103	TMS		
32	GFB2/IO119RSB1	68	IO95RSB1	104	VMV1		
33	NC	69	IO94RSB1	105	GND		
34	GFC2/IO118RSB1	70	IO93RSB1	106	VPUMP		
35	IO117RSB1	71	VCC	107	NC		
36	NC	72	VCCIB1	108	TDO		

FG144			
Pin Number	A3P250 Function		
K1	GEB0/IO99NDB3		
K2	GEA1/IO98PDB3		
K3	GEA0/IO98NDB3		
K4	GEA2/IO97RSB2		
K5	IO90RSB2		
K6	IO84RSB2		
K7	GND		
K8	IO66RSB2		
K9	GDC2/IO63RSB2		
K10	GND		
K11	GDA0/IO60VDB1		
K12	GDB0/IO59VDB1		
L1	GND		
L2	VMV3		
L3	GEB2/IO96RSB2		
L4	IO91RSB2		
L5	VCCIB2		
L6	IO82RSB2		
L7	IO80RSB2		
L8	IO72RSB2		
L9	TMS		
L10	VJTAG		
L11	VMV2		
L12	TRST		
M1	GNDQ		
M2	GEC2/IO95RSB2		
M3	IO92RSB2		
M4	IO89RSB2		
M5	IO87RSB2		
M6	IO85RSB2		
M7	IO78RSB2		
M8	IO76RSB2		
M9	TDI		
M10	VCCIB2		
M11	VPUMP		
M12	GNDQ		

FG144				
Pin Number	A3P600 Function			
K1	GEB0/IO145NDB3			
K2	GEA1/IO144PDB3			
K3	GEA0/IO144NDB3			
K4	GEA2/IO143RSB2			
K5	IO119RSB2			
K6	IO111RSB2			
K7	GND			
K8	IO94RSB2			
K9	GDC2/IO91RSB2			
K10	GND			
K11	GDA0/IO88NDB1			
K12	GDB0/IO87NDB1			
L1	GND			
L2	VMV3			
L3	GEB2/IO142RSB2			
L4	IO136RSB2			
L5	VCCIB2			
L6	IO115RSB2			
L7	IO103RSB2			
L8	IO97RSB2			
L9	TMS			
L10	VJTAG			
L11	VMV2			
L12	TRST			
M1	GNDQ			
M2	GEC2/IO141RSB2			
M3	IO138RSB2			
M4	IO123RSB2			
M5	IO126RSB2			
M6	IO134RSB2			
M7	IO108RSB2			
M8	IO99RSB2			
M9	TDI			
M10	VCCIB2			
M11	VPUMP			
M12	GNDQ			

🌜 Microsemi.


Package Pin Assignments

	FG256		FG256		FG256
Pin Number	A3P250 Function	Pin Number	A3P250 Function	Pin Number	A3P250 Function
G13	GCC1/IO48PPB1	K1	GFC2/IO105PDB3	M5	VMV3
G14	IO47NPB1	K2	IO107NPB3	M6	VCCIB2
G15	IO54PDB1	K3	IO104PPB3	M7	VCCIB2
G16	IO54NDB1	K4	NC	M8	NC
H1	GFB0/IO109NPB3	K5	VCCIB3	M9	IO74RSB2
H2	GFA0/IO108NDB3	K6	VCC	M10	VCCIB2
H3	GFB1/IO109PPB3	K7	GND	M11	VCCIB2
H4	VCOMPLF	K8	GND	M12	VMV2
H5	GFC0/IO110NPB3	K9	GND	M13	NC
H6	VCC	K10	GND	M14	GDB1/IO59UPB1
H7	GND	K11	VCC	M15	GDC1/IO58UDB1
H8	GND	K12	VCCIB1	M16	IO56NDB1
H9	GND	K13	IO52NPB1	N1	IO103NDB3
H10	GND	K14	IO55RSB1	N2	IO101PPB3
H11	VCC	K15	IO53NPB1	N3	GEC1/IO100PPB3
H12	GCC0/IO48NPB1	K16	IO51NDB1	N4	NC
H13	GCB1/IO49PPB1	L1	IO105NDB3	N5	GNDQ
H14	GCA0/IO50NPB1	L2	IO104NPB3	N6	GEA2/IO97RSB2
H15	NC	L3	NC	N7	IO86RSB2
H16	GCB0/IO49NPB1	L4	IO102RSB3	N8	IO82RSB2
J1	GFA2/IO107PPB3	L5	VCCIB3	N9	IO75RSB2
J2	GFA1/IO108PDB3	L6	GND	N10	IO69RSB2
J3	VCCPLF	L7	VCC	N11	IO64RSB2
J4	IO106NDB3	L8	VCC	N12	GNDQ
J5	GFB2/IO106PDB3	L9	VCC	N13	NC
J6	VCC	L10	VCC	N14	VJTAG
J7	GND	L11	GND	N15	GDC0/IO58VDB1
J8	GND	L12	VCCIB1	N16	GDA1/IO60UDB1
J9	GND	L13	GDB0/IO59VPB1	P1	GEB1/IO99PDB3
J10	GND	L14	IO57VDB1	P2	GEB0/IO99NDB3
J11	VCC	L15	IO57UDB1	P3	NC
J12	GCB2/IO52PPB1	L16	IO56PDB1	P4	NC
J13	GCA1/IO50PPB1	M1	IO103PDB3	P5	IO92RSB2
J14	GCC2/IO53PPB1	M2	NC	P6	IO89RSB2
J15	NC	M3	IO101NPB3	P7	IO85RSB2
J16	GCA2/IO51PDB1	M4	GEC0/IO100NPB3	P8	IO81RSB2

	FG256		FG256		FG256
Pin Number	A3P600 Function	Pin Number	A3P600 Function	Pin Number	A3P600 Function
A1	GND	C5	GAC0/IO04RSB0	E9	IO31RSB0
A2	GAA0/IO00RSB0	C6	GAC1/IO05RSB0	E10	VCCIB0
A3	GAA1/IO01RSB0	C7	IO20RSB0	E11	VCCIB0
A4	GAB0/IO02RSB0	C8	IO24RSB0	E12	VMV1
A5	IO11RSB0	C9	IO33RSB0	E13	GBC2/IO62PDB1
A6	IO16RSB0	C10	IO39RSB0	E14	IO67PPB1
A7	IO18RSB0	C11	IO44RSB0	E15	IO64PPB1
A8	IO28RSB0	C12	GBC0/IO54RSB0	E16	IO66PDB1
A9	IO34RSB0	C13	IO51RSB0	F1	IO166NDB3
A10	IO37RSB0	C14	VMV0	F2	IO168NPB3
A11	IO41RSB0	C15	IO61NPB1	F3	IO167PPB3
A12	IO43RSB0	C16	IO63PDB1	F4	IO169PDB3
A13	GBB1/IO57RSB0	D1	IO171NDB3	F5	VCCIB3
A14	GBA0/IO58RSB0	D2	IO171PDB3	F6	GND
A15	GBA1/IO59RSB0	D3	GAC2/IO172PDB3	F7	VCC
A16	GND	D4	IO06RSB0	F8	VCC
B1	GAB2/IO173PDB3	D5	GNDQ	F9	VCC
B2	GAA2/IO174PDB3	D6	IO10RSB0	F10	VCC
B3	GNDQ	D7	IO19RSB0	F11	GND
B4	GAB1/IO03RSB0	D8	IO26RSB0	F12	VCCIB1
B5	IO13RSB0	D9	IO30RSB0	F13	IO62NDB1
B6	IO14RSB0	D10	IO40RSB0	F14	IO64NPB1
B7	IO21RSB0	D11	IO45RSB0	F15	IO65PPB1
B8	IO27RSB0	D12	GNDQ	F16	IO66NDB1
B9	IO32RSB0	D13	IO50RSB0	G1	IO165NDB3
B10	IO38RSB0	D14	GBB2/IO61PPB1	G2	IO165PDB3
B11	IO42RSB0	D15	IO53RSB0	G3	IO168PPB3
B12	GBC1/IO55RSB0	D16	IO63NDB1	G4	GFC1/IO164PPB3
B13	GBB0/IO56RSB0	E1	IO166PDB3	G5	VCCIB3
B14	IO52RSB0	E2	IO167NPB3	G6	VCC
B15	GBA2/IO60PDB1	E3	IO172NDB3	G7	GND
B16	IO60NDB1	E4	IO169NDB3	G8	GND
C1	IO173NDB3	E5	VMV0	G9	GND
C2	IO174NDB3	E6	VCCIB0	G10	GND
C3	VMV3	E7	VCCIB0	G11	VCC
C4	IO07RSB0	E8	IO25RSB0	G12	VCCIB1

FG484 – Bottom View

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

🌜 Microsemi.

Package Pin Assignments

	FG484	FG484		FG484	
Pin Number	A3P400 Function	Pin Number	A3P400 Function	Pin Number	A3P400 Function
K19	IO73NDB1	M11	GND	P3	NC
K20	NC	M12	GND	P4	IO142NDB3
K21	NC	M13	GND	P5	IO141NPB3
K22	NC	M14	VCC	P6	IO125RSB2
L1	NC	M15	GCB2/IO71PPB1	P7	IO139RSB3
L2	NC	M16	GCA1/IO69PPB1	P8	VCCIB3
L3	NC	M17	GCC2/IO72PPB1	P9	GND
L4	GFB0/IO146NPB3	M18	NC	P10	VCC
L5	GFA0/IO145NDB3	M19	GCA2/IO70PDB1	P11	VCC
L6	GFB1/IO146PPB3	M20	NC	P12	VCC
L7	VCOMPLF	M21	NC	P13	VCC
L8	GFC0/IO147NPB3	M22	NC	P14	GND
L9	VCC	N1	NC	P15	VCCIB1
L10	GND	N2	NC	P16	GDB0/IO78VPB1
L11	GND	N3	NC	P17	IO76VDB1
L12	GND	N4	GFC2/IO142PDB3	P18	IO76UDB1
L13	GND	N5	IO144NPB3	P19	IO75PDB1
L14	VCC	N6	IO141PPB3	P20	NC
L15	GCC0/IO67NPB1	N7	IO120RSB2	P21	NC
L16	GCB1/IO68PPB1	N8	VCCIB3	P22	NC
L17	GCA0/IO69NPB1	N9	VCC	R1	NC
L18	NC	N10	GND	R2	NC
L19	GCB0/IO68NPB1	N11	GND	R3	VCC
L20	NC	N12	GND	R4	IO140PDB3
L21	NC	N13	GND	R5	IO130RSB2
L22	NC	N14	VCC	R6	IO138NPB3
M1	NC	N15	VCCIB1	R7	GEC0/IO137NPB3
M2	NC	N16	IO71NPB1	R8	VMV3
M3	NC	N17	IO74RSB1	R9	VCCIB2
M4	GFA2/IO144PPB3	N18	IO72NPB1	R10	VCCIB2
M5	GFA1/IO145PDB3	N19	IO70NDB1	R11	IO108RSB2
M6	VCCPLF	N20	NC	R12	IO101RSB2
M7	IO143NDB3	N21	NC	R13	VCCIB2
M8	GFB2/IO143PDB3	N22	NC	R14	VCCIB2
M9	VCC	P1	NC	R15	VMV2
M10	GND	P2	NC	R16	IO83RSB2

5 – Datasheet Information

List of Changes

The following table lists critical changes that were made in each version of the ProASIC3 datasheet.

Revision	Changes	Page
Revision 18 (March 2016)	Updated 3.3 V DC supply voltage's maximum Commercial and Industrial values from 3.3 V to 3.6 V in Table 2-2 (SAR 72693).	2-2
	Added reference of Package Mechanical Drawings document in all package pin assignment notes (76833).	NA
Revision 17	Removed PQFP embedded heat spreader info. from Table 2-5 (SAR 52320).	2-6
(June 2015)	Updated "VCCIBx I/O Supply Voltage" (SAR 43323).	3-1
Revision 16 (December 2014)	Updated "ProASIC3 Ordering Information". Interchanged the positions of Y- Security Feature and I- Application (Temperature Range) (SAR 61079). Added Note "Only devices with package size greater than or equal to 5x5 are supported".	1-IV
	Updated Table Note (2) in Table 2-3 • Flash Programming Limits – Retention, Storage and Operating Temperature so that the Table Note is not applicable for Maximum Storage Temperature T_{STG} (SAR 54297).	2-3
	Added values for Drive strength 2 mA in Table 2-41 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew, Table 2-42 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew, Table 2-43 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew, and Table 2-44 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew (SAR 57184).	2-34, 2-35, 2-36, 2-37
	Added Figure 2-1 • High-Temperature Data Retention (HTR) (SAR 45466).	2-3
	Updates made to maintain the style and consistency of the document.	NA
Revision 15 (July 2014)	Added corner pad table note (3) to "QN132 – Bottom View" (SAR 47442).	4-6
	Ambient temperature removed in Table 2-2, table notes and "ProASIC3 Ordering Information" figure were modified (SAR 48343).	2-2 1-IV
	Other updates were made to maintain the style and consistency of the datasheet.	NA
Revision 14 (April 2014)	Note added for the discontinuance of QN132 package to the following tables and section: "ProASIC3 Devices", "I/Os Per Package 1", "ProASIC3 FPGAs Package Sizes Dimensions" and "QN132 – Bottom View" section (SAR 55118).	I, III, 4-6

Revision	Changes	Page
Revision 13 (January 2013)	The "ProASIC3 Ordering Information" section has been updated to mention "Y" as "Blank" mentioning "Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43104).	1-IV
	Added a note to Table 2-2 • Recommended Operating Conditions 1 (SAR 43644): The programming temperature range supported is $T_{ambient} = 0^{\circ}C$ to 85°C.	2-2
	The note in Table 2-115 • ProASIC3 CCC/PLL Specification referring the reader to SmartGen was revised to refer instead to the online help associated with the core (SAR 42569).	2-90
	Libero Integrated Design Environment (IDE) was changed to Libero System-on- Chip (SoC) throughout the document (SAR 40284). Live at Power-Up (LAPU) has been replaced with 'Instant On'.	NA
Revision 12 (September 2012)	The Security section was modified to clarify that Microsemi does not support read-back of programmed data.	1-1
	Added a Note stating "VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information" to Table 2-1 • Absolute Maximum Ratings and Table 2-2 • Recommended Operating Conditions 1 (SAR 38321).	2-1 2-2
	Table 2-35 • Duration of Short Circuit Event Before Failure was revised to change the maximum temperature from 110°C to 100°C, with an example of six months instead of three months (SAR 37933).	2-31
	In Table 2-93 • Minimum and Maximum DC Input and Output Levels, VIL and VIH were revised so that the maximum is 3.6 V for all listed values of VCCI (SAR 28549).	2-68
	Figure 2-37 • FIFO Read and Figure 2-38 • FIFO Write are new (SAR 28371).	2-99
	The following sentence was removed from the "VMVx I/O Supply Voltage (quiet)" section in the "Pin Descriptions" chapter: "Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI domain" and replaced with "Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks" (SAR 38321). The datasheet mentions that "VMV pins must be connected to the corresponding VCCI pins" for an ESD enhancement.	3-1

Datasheet Information

Revision	Changes	Page
Advance v0.6	The "RESET" section was updated.	2-25
(continued)	The "WCLK and RCLK" section was updated.	2-25
	The "RESET" section was updated.	2-25
	The "RESET" section was updated.	2-27
	The "Introduction" of the "Advanced I/Os" section was updated.	2-28
	The "I/O Banks" section is new. This section explains the following types of I/Os: Advanced Standard+ Standard Table 2-12 • Automotive ProASIC3 Bank Types Definition and Differences is	2-29
	new. This table describes the standards listed above.	0.00
	PCI-X 3.3 V was added to the Compatible Standards for 3.3 V in Table 2- 11 • VCCI Voltages and Compatible Standards	2-29
	Table 2-13 • ProASIC3 I/O Features was updated.	2-30
	The "Double Data Rate (DDR) Support" section was updated to include information concerning implementation of the feature.	2-32
	The "Electrostatic Discharge (ESD) Protection" section was updated to include testing information.	2-35
	Level 3 and 4 descriptions were updated in Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices.	2-64
	The notes in Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices were updated.	2-64
	The "Simultaneous Switching Outputs (SSOs) and Printed Circuit Board Layout" section is new.	2-41
	A footnote was added to Table 2-14 • Maximum I/O Frequency for Single-Ended and Differential I/Os in All Banks in Automotive ProASIC3 Devices (maximum drive strength and high slew selected).	2-30
	Table 2-18 • Automotive ProASIC3 I/O Attributes vs. I/O Standard Applications	2-45
	Table 2-50 • ProASIC3 Output Drive (OUT_DRIVE) for Standard I/O Bank Type (A3P030 device)	2-83
	Table 2-51 • ProASIC3 Output Drive for Standard+ I/O Bank Type was updated.	2-84
	Table 2-54 • ProASIC3 Output Drive for Advanced I/O Bank Type was updated.	2-84
	The "x" was updated in the "User I/O Naming Convention" section.	2-48
	The "VCC Core Supply Voltage" pin description was updated.	2-50
	The "VMVx I/O Supply Voltage (quiet)" pin description was updated to include information concerning leaving the pin unconnected.	2-50
	The "VJTAG JTAG Supply Voltage" pin description was updated.	2-50
	The "VPUMP Programming Supply Voltage" pin description was updated to include information on what happens when the pin is tied to ground.	2-50
	The "I/O User Input/Output" pin description was updated to include information on what happens when the pin is unused.	2-50
	The "JTAG Pins" section was updated to include information on what happens when the pin is unused.	2-51