

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	36864
Number of I/O	97
Number of Gates	250000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	144-LBGA
Supplier Device Package	144-FPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1a3p250-fg144i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 – ProASIC3 Device Family Overview

General Description

ProASIC3, the third-generation family of Microsemi flash FPGAs, offers performance, density, and features beyond those of the ProASIC^{PLUS®} family. Nonvolatile flash technology gives ProASIC3 devices the advantage of being a secure, low power, single-chip solution that is Instant On. ProASIC3 is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

ProASIC3 devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on an integrated phase-locked loop (PLL). The A3P015 and A3P030 devices have no PLL or RAM support. ProASIC3 devices have up to 1 million system gates, supported with up to 144 kbits of true dual-port SRAM and up to 300 user I/Os.

ProASIC3 devices support the ARM Cortex-M1 processor. The ARM-enabled devices have Microsemi ordering numbers that begin with M1A3P (Cortex-M1) and do not support AES decryption.

Flash Advantages

Reduced Cost of Ownership

Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAMbased FPGAs, flash-based ProASIC3 devices allow all functionality to be Instant On; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property (IP) cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The ProASIC3 family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the ProASIC3 family a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/ communications, computing, and avionics markets.

Security

The nonvolatile, flash-based ProASIC3 devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. ProASIC3 devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.

ProASIC3 devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of protection in the FPGA industry for intellectual property and configuration data. In addition, all FlashROM data in ProASIC3 devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. The AES standard was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. ProASIC3 devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. ProASIC3 devices with AES-based security provide a high level of protection for remote field updates over public networks such as the Internet, and are designed to ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves.

ARM-enabled ProASIC3 devices do not support user-controlled AES security mechanisms. Since the ARM core must be protected at all times, AES encryption is always on for the core logic, so bitstreams are always encrypted. There is no user access to encryption for the FlashROM programming data.

Security, built into the FPGA fabric, is an inherent component of the ProASIC3 family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. The ProASIC3 family, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks.

The absolute maximum junction temperature is 100°C. EQ 1 shows a sample calculation of the absolute maximum power dissipation allowed for a 484-pin FBGA package at commercial temperature and in still air.

Maximum Power Allowed =
$$\frac{\text{Max. junction temp. (°C)} - \text{Max. ambient temp. (°C)}}{\theta_{ja}(°C/W)} = \frac{100°C - 70°C}{20.5°C/W} = 1.463 \text{ W}$$

EQ 1

Table 2-5 • Package Thermal Resistivities

				θ _{ja}			
Package Type	Device	Pin Count	$\theta_{\textbf{jc}}$	Still Air	200 ft/min	500 ft/min	Units
Quad Flat No Lead	A3P030	132	0.4	21.4	16.8	15.3	°C/W
	A3P060	132	0.3	21.2	16.6	15.0	°C/W
	A3P125	132	0.2	21.1	16.5	14.9	°C/W
	A3P250	132	0.1	21.0	16.4	14.8	°C/W
Very Thin Quad Flat Pack (VQFP)	All devices	100	10.0	35.3	29.4	27.1	°C/W
Thin Quad Flat Pack (TQFP)	All devices	144	11.0	33.5	28.0	25.7	°C/W
Plastic Quad Flat Pack (PQFP)	All devices	208	8.0	26.1	22.5	20.8	°C/W
Fine Pitch Ball Grid Array (FBGA)	See note [*]	144	3.8	26.9	22.9	21.5	°C/W
	See note [*]	256	3.8	26.6	22.8	21.5	°C/W
	See note [*]	484	3.2	20.5	17.0	15.9	°C/W
	A3P1000	144	6.3	31.6	26.2	24.2	°C/W
	A3P1000	256	6.6	28.1	24.4	22.7	°C/W
	A3P1000	484	8.0	23.3	19.0	16.7	°C/W

Note: *This information applies to all ProASIC3 devices except the A3P1000. Detailed device/package thermal information will be available in future revisions of the datasheet.

Temperature and Voltage Derating Factors

Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays
(normalized to $T_J = 70^{\circ}$ C, VCC = 1.425 V)

Array Voltage VCC	Junction Temperature (°C)									
(V)	–40°C	0°C	25°C	70°C	85°C	100°C				
1.425	0.88	0.93	0.95	1.00	1.02	1.04				
1.500	0.83	0.88	0.90	0.95	0.96	0.98				
1.575	0.80	0.84	0.87	0.91	0.93	0.94				

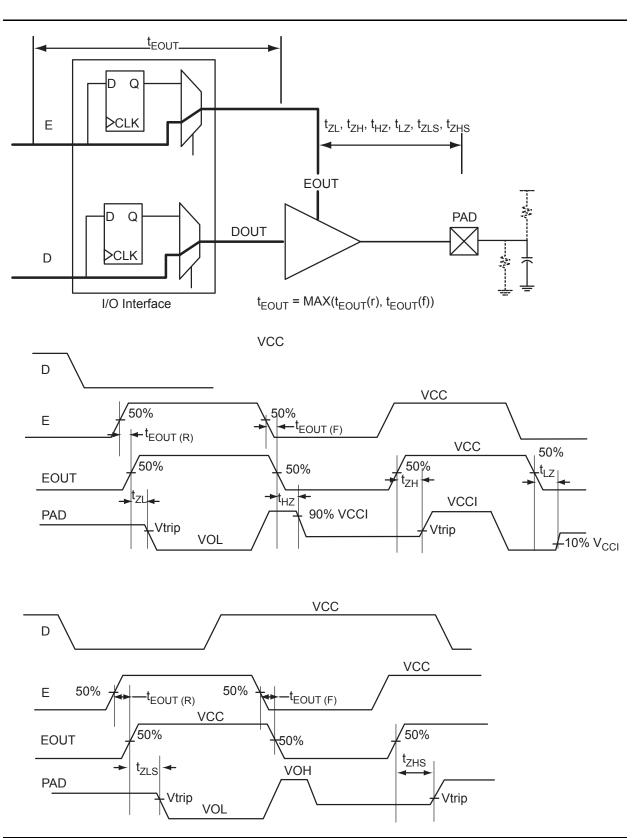


Figure 2-6 • Tristate Output Buffer Timing Model and Delays (Example)

Overview of I/O Performance

Summary of I/O DC Input and Output Levels – Default I/O Software Settings

Table 2-18 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings Applicable to Advanced I/O Banks

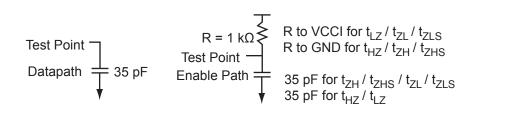
		Equiv.			VIL	VIH		VOL	VOH		
I/O Standard	Drive Strength	Software Default Drive Strength Option ²		Min V	Max V	Min V	Max V	Max V	Min V	IOL ¹ mA	IOH ¹ mA
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	-0.3	0.8	2	3.6	0.4	2.4	12	12
3.3 V LVCMOS Wide Range ³	100 µA	12 mA	High	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	0.1	0.1
2.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.7	1.7	2.7	0.7	1.7	12	12
1.8 V LVCMOS	12 mA	12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI – 0.45	12	12
1.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	1.6	0.25 * VCCI	0.75 * VCCI	12	12
3.3 V PCI	Per PCI specifications										
3.3 V PCI-X					Per P	CI-X specifica	ations				

Notes:

1. Currents are measured at 85°C junction temperature.

2. 3.3 V LVCMOS wide range is applicable to 100 μA drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for Normal Ranges ONLY.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.


Table 2-68 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks

1.8 V LVCMOS		VIL	VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	2	2	9	11	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	4	4	17	22	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.
- 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Figure 2-9 • AC Loading

Table 2-69 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	1.8	0.9	35

Note: *Measuring point = Vtrip_See Table 2-22 on page 2-22 for a complete table of trip points.

	Ah		anuaru Fius I		.5							
1.5 V LVCMOS		VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	2	2	16	13	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	4	4	33	25	10	10
Mataai												

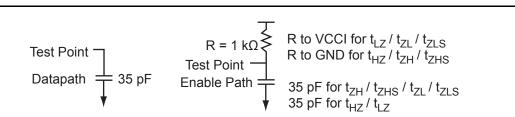
Table 2-77 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks

Notes:

- 1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.
- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Table 2-78 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks

1.5 V LVCMOS		VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	13	16	10	10


Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Figure 2-10 • AC Loading

Table 2-79 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	1.5	0.75	35

Note: *Measuring point = V_{trip} . See Table 2-22 on page 2-22 for a complete table of trip points.

Embedded SRAM and FIFO Characteristics

SRAM

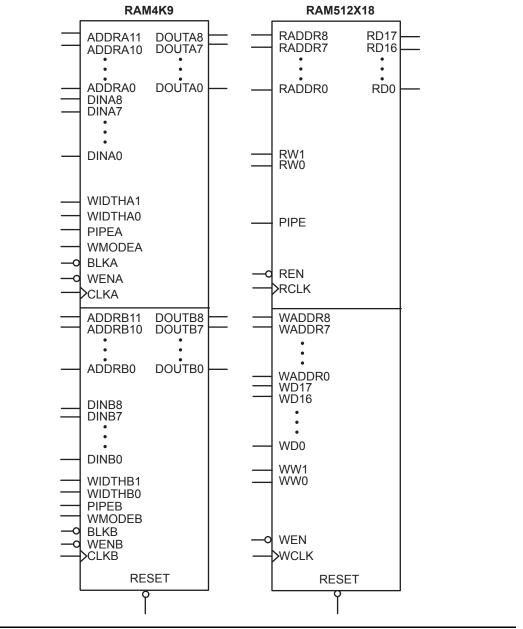
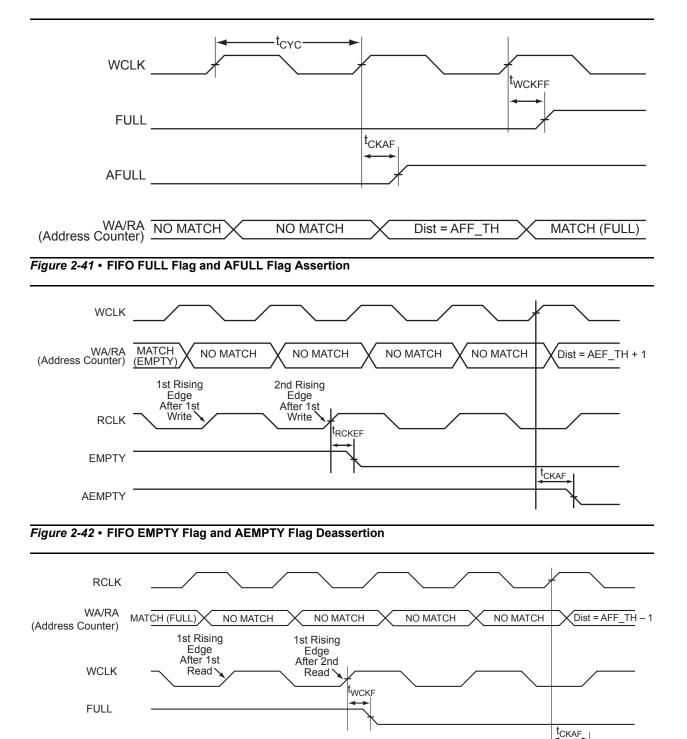
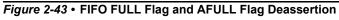




Figure 2-30 • RAM Models

AFULL

Table 2-120 • A3P250 FIFO 512×8

Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ENS}	REN, WEN Setup Time	3.75	4.27	5.02	ns
t _{ENH}	REN, WEN Hold Time	0.00	0.00	0.00	ns
t _{BKS}	BLK Setup Time	0.19	0.22	0.26	ns
t _{BKH}	BLK Hold Time	0.00	0.00	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.18	0.21	0.25	ns
t _{DH}	Input Data (WD) Hold Time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	2.17	2.47	2.90	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	0.94	1.07	1.26	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	1.72	1.96	2.30	ns
t _{WCKFF}	WCLK High to Full Flag Valid	1.63	1.86	2.18	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	6.19	7.05	8.29	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	1.69	1.93	2.27	ns
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	6.13	6.98	8.20	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	0.92	1.05	1.23	ns
	RESET Low to Data Out Low on RD (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET Removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET Recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.21	0.24	0.29	ns
t _{CYC}	Clock Cycle Time	3.23	3.68	4.32	ns
F _{MAX}	Maximum Frequency for FIFO	310	272	231	MHz

mode is not used in the design, the FF pin is available as a regular I/O. For IGLOOe, ProASIC3EL, and RT ProASIC3 only, the FF pin can be configured as a Schmitt trigger input.

When Flash*Freeze mode is used, the FF pin must not be left floating to avoid accidentally entering Flash*Freeze mode. While in Flash*Freeze mode, the Flash*Freeze pin should be constantly asserted.

The Flash*Freeze pin can be used with any single-ended I/O standard supported by the I/O bank in which the pin is located, and input signal levels compatible with the I/O standard selected. The FF pin should be treated as a sensitive asynchronous signal. When defining pin placement and board layout, simultaneously switching outputs (SSOs) and their effects on sensitive asynchronous pins must be considered.

Unused FF or I/O pins are tristated with weak pull-up. This default configuration applies to both Flash*Freeze mode and normal operation mode. No user intervention is required.

JTAG Pins

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND.

TCK Test Clock

Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pull-up/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements. Refer to Table 1 for more information.

VJTAG	Tie-Off Resistance
3.3 V	200 Ω –1 kΩ
2.5 V	200 Ω –1 kΩ
1.8 V	500 Ω –1 kΩ
1.5 V	500 Ω –1 kΩ

Table 1 • Recommended Tie-Off Values for the TCK and TRST Pins

Notes:

- 1. Equivalent parallel resistance if more than one device is on the JTAG chain
- 2. The TCK pin can be pulled up/down.
- 3. The TRST pin is pulled down.

TDI Test Data Input

Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin.

TDO Test Data Output

Serial output for JTAG boundary scan, ISP, and UJTAG usage.

TMS Test Mode Select

The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin.

TRST Boundary Scan Reset Pin

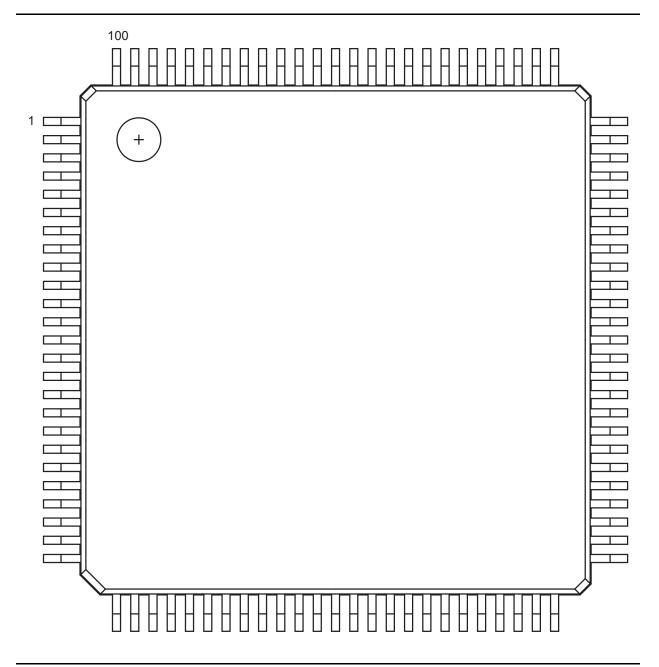
The TRST pin functions as an active low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-down resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor values must be chosen from Table 1 and must satisfy the parallel resistance value requirement. The values in Table 1 correspond to the resistor recommended when a single device is used, and the equivalent parallel resistor when multiple devices are connected via a JTAG chain.

Package Pin Assignments

QN48							
Pin Number	A3P030 Function						
1	IO82RSB1						
2	GEC0/IO73RSB1						
3	GEA0/IO72RSB1						
4	GEB0/IO71RSB1						
5	GND						
6	VCCIB1						
7	IO68RSB1						
8	IO67RSB1						
9	IO66RSB1						
10	IO65RSB1						
11	IO64RSB1						
12	IO62RSB1						
13	IO61RSB1						
14	IO60RSB1						
15	IO57RSB1						
16	IO55RSB1						
17	IO53RSB1						
18	VCC						
19	VCCIB1						
20	IO46RSB1						
21	IO42RSB1						
22	ТСК						
23	TDI						
24	TMS						
25	VPUMP						
26	TDO						
27	TRST						
28	VJTAG						
29	IO38RSB0						
30	GDB0/IO34RSB0						
31	GDA0/IO33RSB0						
32	GDC0/IO32RSB0						
33	VCCIB0						
34	GND						
35	VCC						
36	IO25RSB0						

QN48			
Pin Number	A3P030 Function		
37	IO24RSB0		
38	IO22RSB0		
39	IO20RSB0		
40	IO18RSB0		
41	IO16RSB0		
42	IO14RSB0		
43	IO10RSB0		
44	IO08RSB0		
45	IO06RSB0		
46	IO04RSB0		
47	IO02RSB0		
48	IO00RSB0		

	QN68
Pin Number	A3P030 Function
1	IO82RSB1
2	IO80RSB1
3	IO78RSB1
4	IO76RSB1
5	GEC0/IO73RSB1
6	GEA0/IO72RSB1
7	GEB0/IO71RSB1
8	VCC
9	GND
10	VCCIB1
11	IO68RSB1
12	IO67RSB1
13	IO66RSB1
14	IO65RSB1
15	IO64RSB1
16	IO63RSB1
17	IO62RSB1
18	IO60RSB1
19	IO58RSB1
20	IO56RSB1
21	IO54RSB1
22	IO52RSB1
23	IO51RSB1
24	VCC
25	GND
26	VCCIB1
27	IO50RSB1
28	IO48RSB1
29	IO46RSB1
30	IO44RSB1
31	IO42RSB1
32	ТСК
33	TDI
34	TMS
35	VPUMP
36	TDO


QN68			
Pin Number	A3P030 Function		
37	TRST		
38	VJTAG		
39	IO40RSB0		
40	IO37RSB0		
41	GDB0/IO34RSE		
42	GDA0/IO33RSE		
43	GDC0/IO32RSE		
44	VCCIB0		
45	GND		
46	VCC		
47	IO31RSB0		
48	IO29RSB0		
49	IO28RSB0		
50	IO27RSB0		
51	IO25RSB0		
52	IO24RSB0		
53	IO22RSB0		
54	IO21RSB0		
55	IO19RSB0		
56	IO17RSB0		
57	IO15RSB0		
58	IO14RSB0		
59	VCCIB0		
60	GND		
61	VCC		
62	IO12RSB0		
63	IO10RSB0		
64	IO08RSB0		
65	IO06RSB0		
66	IO04RSB0		
67	IO02RSB0		
68	IO00RSB0		

	QN132		QN132		QN132
Pin Number	A3P125 Function	Pin Number	A3P125 Function	Pin Number	A3P125 Function
A1	GAB2/IO69RSB1	A37	GBB1/IO38RSB0	B25	GND
A2	IO130RSB1	A38	GBC0/IO35RSB0	B26	NC
A3	VCCIB1	A39	VCCIB0	B27	GCB2/IO58RSB0
A4	GFC1/IO126RSB1	A40	IO28RSB0	B28	GND
A5	GFB0/IO123RSB1	A41	IO22RSB0	B29	GCB0/IO54RSB0
A6	VCCPLF	A42	IO18RSB0	B30	GCC1/IO51RSB0
A7	GFA1/IO121RSB1	A43	IO14RSB0	B31	GND
A8	GFC2/IO118RSB1	A44	IO11RSB0	B32	GBB2/IO43RSB0
A9	IO115RSB1	A45	IO07RSB0	B33	VMV0
A10	VCC	A46	VCC	B34	GBA0/IO39RSB0
A11	GEB1/IO110RSB1	A47	GAC1/IO05RSB0	B35	GBC1/IO36RSB0
A12	GEA0/IO107RSB1	A48	GAB0/IO02RSB0	B36	GND
A13	GEC2/IO104RSB1	B1	IO68RSB1	B37	IO26RSB0
A14	IO100RSB1	B2	GAC2/IO131RSB1	B38	IO21RSB0
A15	VCC	B3	GND	B39	GND
A16	IO99RSB1	B4	GFC0/IO125RSB1	B40	IO13RSB0
A17	IO96RSB1	B5	VCOMPLF	B41	IO08RSB0
A18	IO94RSB1	B6	GND	B42	GND
A19	IO91RSB1	B7	GFB2/IO119RSB1	B43	GAC0/IO04RSB0
A20	IO85RSB1	B8	IO116RSB1	B44	GNDQ
A21	IO79RSB1	B9	GND	C1	GAA2/IO67RSB1
A22	VCC	B10	GEB0/IO109RSB1	C2	IO132RSB1
A23	GDB2/IO71RSB1	B11	VMV1	C3	VCC
A24	TDI	B12	GEB2/IO105RSB1	C4	GFB1/IO124RSB1
A25	TRST	B13	IO101RSB1	C5	GFA0/IO122RSB1
A26	GDC1/IO61RSB0	B14	GND	C6	GFA2/IO120RSB1
A27	VCC	B15	IO98RSB1	C7	IO117RSB1
A28	IO60RSB0	B16	IO95RSB1	C8	VCCIB1
A29	GCC2/IO59RSB0	B17	GND	C9	GEA1/IO108RSB1
A30	GCA2/IO57RSB0	B18	IO87RSB1	C10	GNDQ
A31	GCA0/IO56RSB0	B19	IO81RSB1	C11	GEA2/IO106RSB1
A32	GCB1/IO53RSB0	B20	GND	C12	IO103RSB1
A33	IO49RSB0	B21	GNDQ	C13	VCCIB1
A34	VCC	B22	TMS	C14	IO97RSB1
A35	IO44RSB0	B23	TDO	C15	IO93RSB1
A36	GBA2/IO41RSB0	B24	GDC0/IO62RSB0	C16	IO89RSB1

🌜 Microsemi.

Package Pin Assignments

VQ100 – Top View

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

🌜 Microsemi.

Package Pin Assignments

F	G144	F	G144	FG144	
Pin Number	A3P125 Function	Pin Number	A3P125 Function	Pin Number	A3P125 Function
A1	GNDQ	D1	IO128RSB1	G1	GFA1/IO121RSB1
A2	VMV0	D2	IO129RSB1	G2	GND
A3	GAB0/IO02RSB0	D3	IO130RSB1	G3	VCCPLF
A4	GAB1/IO03RSB0	D4	GAA2/IO67RSB1	G4	GFA0/IO122RSB1
A5	IO11RSB0	D5	GAC0/IO04RSB0	G5	GND
A6	GND	D6	GAC1/IO05RSB0	G6	GND
A7	IO18RSB0	D7	GBC0/IO35RSB0	G7	GND
A8	VCC	D8	GBC1/IO36RSB0	G8	GDC1/IO61RSB0
A9	IO25RSB0	D9	GBB2/IO43RSB0	G9	IO48RSB0
A10	GBA0/IO39RSB0	D10	IO28RSB0	G10	GCC2/IO59RSB0
A11	GBA1/IO40RSB0	D11	IO44RSB0	G11	IO47RSB0
A12	GNDQ	D12	GCB1/IO53RSB0	G12	GCB2/IO58RSB0
B1	GAB2/IO69RSB1	E1	VCC	H1	VCC
B2	GND	E2	GFC0/IO125RSB1	H2	GFB2/IO119RSB1
B3	GAA0/IO00RSB0	E3	GFC1/IO126RSB1	H3	GFC2/IO118RSB1
B4	GAA1/IO01RSB0	E4	VCCIB1	H4	GEC1/IO112RSB1
B5	IO08RSB0	E5	IO68RSB1	H5	VCC
B6	IO14RSB0	E6	VCCIB0	H6	IO50RSB0
B7	IO19RSB0	E7	VCCIB0	H7	IO60RSB0
B8	IO22RSB0	E8	GCC1/IO51RSB0	H8	GDB2/IO71RSB1
B9	GBB0/IO37RSB0	E9	VCCIB0	Н9	GDC0/IO62RSB0
B10	GBB1/IO38RSB0	E10	VCC	H10	VCCIB0
B11	GND	E11	GCA0/IO56RSB0	H11	IO49RSB0
B12	VMV0	E12	IO46RSB0	H12	VCC
C1	IO132RSB1	F1	GFB0/IO123RSB1	J1	GEB1/IO110RSB1
C2	GFA2/IO120RSB1	F2	VCOMPLF	J2	IO115RSB1
C3	GAC2/IO131RSB1	F3	GFB1/IO124RSB1	J3	VCCIB1
C4	VCC	F4	IO127RSB1	J4	GEC0/IO111RSB1
C5	IO10RSB0	F5	GND	J5	IO116RSB1
C6	IO12RSB0	F6	GND	J6	IO117RSB1
C7	IO21RSB0	F7	GND	J7	VCC
C8	IO24RSB0	F8	GCC0/IO52RSB0	J8	ТСК
C9	IO27RSB0	F9	GCB0/IO54RSB0	J9	GDA2/IO70RSB1
C10	GBA2/IO41RSB0	F10	GND	J10	TDO
C11	IO42RSB0	F11	GCA1/IO55RSB0	J11	GDA1/IO65RSB0
C12	GBC2/IO45RSB0	F12	GCA2/IO57RSB0	J12	GDB1/IO63RSB0

	FG256		FG256	FG256	
Pin Number	A3P600 Function Pin Number		A3P600 Function	Pin Number	A3P600 Function
A1	GND	C5	GAC0/IO04RSB0	E9	IO31RSB0
A2	GAA0/IO00RSB0	C6	GAC1/IO05RSB0	E10	VCCIB0
A3	GAA1/IO01RSB0	C7	IO20RSB0	E11	VCCIB0
A4	GAB0/IO02RSB0	C8	IO24RSB0	E12	VMV1
A5	IO11RSB0	C9	IO33RSB0	E13	GBC2/IO62PDB1
A6	IO16RSB0	C10	IO39RSB0	E14	IO67PPB1
A7	IO18RSB0	C11	IO44RSB0	E15	IO64PPB1
A8	IO28RSB0	C12	GBC0/IO54RSB0	E16	IO66PDB1
A9	IO34RSB0	C13	IO51RSB0	F1	IO166NDB3
A10	IO37RSB0	C14	VMV0	F2	IO168NPB3
A11	IO41RSB0	C15	IO61NPB1	F3	IO167PPB3
A12	IO43RSB0	C16	IO63PDB1	F4	IO169PDB3
A13	GBB1/IO57RSB0	D1	IO171NDB3	F5	VCCIB3
A14	GBA0/IO58RSB0	D2	IO171PDB3	F6	GND
A15	GBA1/IO59RSB0	D3	GAC2/IO172PDB3	F7	VCC
A16	GND	D4	IO06RSB0	F8	VCC
B1	GAB2/IO173PDB3	D5	GNDQ	F9	VCC
B2	GAA2/IO174PDB3	D6	IO10RSB0	F10	VCC
B3	GNDQ	D7	IO19RSB0	F11	GND
B4	GAB1/IO03RSB0	D8	IO26RSB0	F12	VCCIB1
B5	IO13RSB0	D9	IO30RSB0	F13	IO62NDB1
B6	IO14RSB0	D10	IO40RSB0	F14	IO64NPB1
B7	IO21RSB0	D11	IO45RSB0	F15	IO65PPB1
B8	IO27RSB0	D12	GNDQ	F16	IO66NDB1
B9	IO32RSB0	D13	IO50RSB0	G1	IO165NDB3
B10	IO38RSB0	D14	GBB2/IO61PPB1	G2	IO165PDB3
B11	IO42RSB0	D15	IO53RSB0	G3	IO168PPB3
B12	GBC1/IO55RSB0	D16	IO63NDB1	G4	GFC1/IO164PPB3
B13	GBB0/IO56RSB0	E1	IO166PDB3	G5	VCCIB3
B14	IO52RSB0	E2	IO167NPB3	G6	VCC
B15	GBA2/IO60PDB1	E3	IO172NDB3	G7	GND
B16	IO60NDB1	E4	IO169NDB3	G8	GND
C1	IO173NDB3	E5	VMV0	G9	GND
C2	IO174NDB3	E6	VCCIB0	G10	GND
C3	VMV3	E7	VCCIB0	G11	VCC
C4	IO07RSB0	E8	IO25RSB0	G12	VCCIB1

	FG484		
Pin Number A3P600 Function			
Y15	VCC		
Y16	NC		
Y17	NC		
Y18	GND		
Y19	NC		
Y20	NC		
Y21	NC		
Y22	VCCIB1		
AA1	GND		
AA2	VCCIB3		
AA3	NC		
AA4	NC		
AA5	NC		
AA6	IO135RSB2		
AA7	IO133RSB2		
AA8	NC		
AA9	NC		
AA10	NC		
AA11	NC		
AA12	NC		
AA13	NC		
AA14	NC		
AA15	NC		
AA16	IO101RSB2		
AA17	NC		
AA18	NC		
AA19	NC		
AA20	NC		
AA21	VCCIB1		
AA22	GND		
AB1	GND		
AB2	GND		
AB3	VCCIB2		
AB4	NC		
AB5	NC		
AB6	IO130RSB2		

FG484			
Pin Number	A3P600 Function		
AB7	IO128RSB2		
AB8	IO122RSB2		
AB9	IO116RSB2		
AB10	NC		
AB11	NC		
AB12	IO113RSB2		
AB13	IO112RSB2		
AB14	NC		
AB15	NC		
AB16	IO100RSB2		
AB17	IO95RSB2		
AB18	NC		
AB19	NC		
AB20	VCCIB2		
AB21	GND		
AB22	GND		

🌜 Microsemi.

Package Pin Assignments

	FG484		FG484		FG484
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function
A1	GND	B15	IO63RSB0	D7	GAB0/IO02RSB0
A2	GND	B16	IO66RSB0	D8	IO16RSB0
A3	VCCIB0	B17	IO68RSB0	D9	IO22RSB0
A4	IO07RSB0	B18	IO70RSB0	D10	IO28RSB0
A5	IO09RSB0	B19	NC	D11	IO35RSB0
A6	IO13RSB0	B20	NC	D12	IO45RSB0
A7	IO18RSB0	B21	VCCIB1	D13	IO50RSB0
A8	IO20RSB0	B22	GND	D14	IO55RSB0
A9	IO26RSB0	C1	VCCIB3	D15	IO61RSB0
A10	IO32RSB0	C2	IO220PDB3	D16	GBB1/IO75RSB0
A11	IO40RSB0	C3	NC	D17	GBA0/IO76RSB0
A12	IO41RSB0	C4	NC	D18	GBA1/IO77RSB0
A13	IO53RSB0	C5	GND	D19	GND
A14	IO59RSB0	C6	IO10RSB0	D20	NC
A15	IO64RSB0	C7	IO14RSB0	D21	NC
A16	IO65RSB0	C8	VCC	D22	NC
A17	IO67RSB0	C9	VCC	E1	IO219NDB3
A18	IO69RSB0	C10	IO30RSB0	E2	NC
A19	NC	C11	IO37RSB0	E3	GND
A20	VCCIB0	C12	IO43RSB0	E4	GAB2/IO224PDB3
A21	GND	C13	NC	E5	GAA2/IO225PDB3
A22	GND	C14	VCC	E6	GNDQ
B1	GND	C15	VCC	E7	GAB1/IO03RSB0
B2	VCCIB3	C16	NC	E8	IO17RSB0
B3	NC	C17	NC	E9	IO21RSB0
B4	IO06RSB0	C18	GND	E10	IO27RSB0
B5	IO08RSB0	C19	NC	E11	IO34RSB0
B6	IO12RSB0	C20	NC	E12	IO44RSB0
B7	IO15RSB0	C21	NC	E13	IO51RSB0
B8	IO19RSB0	C22	VCCIB1	E14	IO57RSB0
B9	IO24RSB0	D1	IO219PDB3	E15	GBC1/IO73RSB0
B10	IO31RSB0	D2	IO220NDB3	E16	GBB0/IO74RSB0
B11	IO39RSB0	D3	NC	E17	IO71RSB0
B12	IO48RSB0	D4	GND	E18	GBA2/IO78PDB1
B13	IO54RSB0	D5	GAA0/IO00RSB0	E19	IO81PDB1
B14	IO58RSB0	D6	GAA1/IO01RSB0	E20	GND

Revision	Changes	Page		
Advance v0.6 (continued)	The "Programming" section was updated to include information concerning serialization.	2-53		
	The "JTAG 1532" section was updated to include SAMPLE/PRELOAD information.	2-54		
	"DC and Switching Characteristics" chapter was updated with new information.	3-1		
	The A3P060 "100-Pin VQFP" pin table was updated.	4-13		
	The A3P125 "100-Pin VQFP" pin table was updated.	4-13		
	The A3P060 "144-Pin TQFP" pin table was updated.	4-16		
	The A3P125 "144-Pin TQFP" pin table was updated.	4-18		
	The A3P125 "208-Pin PQFP" pin table was updated.	4-21		
	The A3P400 "208-Pin PQFP" pin table was updated.	4-25		
	The A3P060 "144-Pin FBGA" pin table was updated.	4-32		
	The A3P125 "144-Pin FBGA" pin table is new.	4-34		
	The A3P400 "144-Pin FBGA" is new.	4-38		
	The A3P400 "256-Pin FBGA" was updated.	4-48		
	The A3P1000 "256-Pin FBGA" was updated.			
	The A3P400 "484-Pin FBGA" was updated.			
	The A3P1000 "484-Pin FBGA" was updated.			
	The A3P250 "100-Pin VQFP*" pin table was updated.			
	The A3P250 "208-Pin PQFP*" pin table was updated.	4-23		
	The A3P1000 "208-Pin PQFP*" pin table was updated.	4-29		
	The A3P250 "144-Pin FBGA*" pin table was updated.	4-36		
	The A3P1000 "144-Pin FBGA*" pin table was updated.	4-32		
	The A3P250 "256-Pin FBGA*" pin table was updated.	4-45		
	The A3P1000 "256-Pin FBGA*" pin table was updated.	4-54		
	The A3P1000 "484-Pin FBGA*" pin table was updated.	4-68		
Advance v0.5 (November 2005)	The "I/Os Per Package" table was updated for the following devices and packages:	ii		
	DevicePackageA3P250/M7ACP250VQ100			
	A3P250/M7ACP250 FG144 A3P1000 FG256			
Advance v0.4	M7 device information is new.	N/A		
	The I/O counts in the "I/Os Per Package" table were updated.			
Advance v0.3	The "I/Os Per Package" table was updated.	" ii		
	M7 device information is new.	N/A		
	Table 2-4 • ProASIC3 Globals/Spines/Rows by Device was updated to include	2-16		
	the number or rows in each top or bottom spine.			
	EXTFB was removed from Figure 2-24 • ProASIC3E CCC Options.	2-24		

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2016 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi Corporation (MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense and security, aerospace, and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet Solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has approximately 4,800 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.