E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Detano	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	- ·
Total RAM Bits	36864
Number of I/O	151
Number of Gates	250000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1a3p250-pqg208i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 – ProASIC3 Device Family Overview

General Description

ProASIC3, the third-generation family of Microsemi flash FPGAs, offers performance, density, and features beyond those of the ProASIC^{PLUS®} family. Nonvolatile flash technology gives ProASIC3 devices the advantage of being a secure, low power, single-chip solution that is Instant On. ProASIC3 is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

ProASIC3 devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on an integrated phase-locked loop (PLL). The A3P015 and A3P030 devices have no PLL or RAM support. ProASIC3 devices have up to 1 million system gates, supported with up to 144 kbits of true dual-port SRAM and up to 300 user I/Os.

ProASIC3 devices support the ARM Cortex-M1 processor. The ARM-enabled devices have Microsemi ordering numbers that begin with M1A3P (Cortex-M1) and do not support AES decryption.

Flash Advantages

Reduced Cost of Ownership

Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAMbased FPGAs, flash-based ProASIC3 devices allow all functionality to be Instant On; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property (IP) cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The ProASIC3 family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the ProASIC3 family a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/ communications, computing, and avionics markets.

Security

The nonvolatile, flash-based ProASIC3 devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. ProASIC3 devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.

ProASIC3 devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of protection in the FPGA industry for intellectual property and configuration data. In addition, all FlashROM data in ProASIC3 devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. The AES standard was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. ProASIC3 devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. ProASIC3 devices with AES-based security provide a high level of protection for remote field updates over public networks such as the Internet, and are designed to ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves.

ARM-enabled ProASIC3 devices do not support user-controlled AES security mechanisms. Since the ARM core must be protected at all times, AES encryption is always on for the core logic, so bitstreams are always encrypted. There is no user access to encryption for the FlashROM programming data.

Security, built into the FPGA fabric, is an inherent component of the ProASIC3 family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. The ProASIC3 family, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks.

Table 2-30 • I/O Output Buffer Maximum Resistances¹ Applicable to Standard I/O Banks

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	R _{PULL-UP} (Ω) ³
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
3.3 V LVCMOS Wide Range ⁴	100 µA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
1.5 V LVCMOS	2 mA	200	224

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx.

2. R_(PULL-DOWN-MAX) = (VOLspec) / IOLspec

3. R_(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

Table 2-31 • I/O Weak Pull-Up/Pull-Down Resistances Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values

	R _{(WEAK I}	PULL-UP) ¹ 2)	R _(WEAK PULL-DOWN) ² (Ω)			
VCCI	Min	Max	Min	Мах		
3.3 V	10 k	45 k	10 k	45 k		
3.3 V (wide range I/Os)	10 k	45 k	10 k	45 k		
2.5 V	11 k	55 k	12 k	74 k		
1.8 V	18 k	70 k	17 k	110 k		
1.5 V	19 k	90 k	19 k	140 k		

Notes:

R_(WEAK PULL-UP-MAX) = (VCCI_{MAX} - VOH_{spec}) / I_(WEAK PULL-UP-MIN)
R_(WEAK PULL-DOWN-MAX) = (VOL_{spec}) / I_(WEAK PULL-DOWN-MIN)

Timing Characteristics

Table 2-50 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew

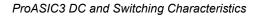
Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks

Drive Strength	Equiv. Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
100 µA	4 mA	Std.	0.60	11.84	0.04	1.02	0.43	11.84	10.00	4.10	4.04	15.23	13.40	ns
		-1	0.51	10.07	0.04	0.86	0.36	10.07	8.51	3.48	3.44	12.96	11.40	ns
		-2	0.45	8.84	0.03	0.76	0.32	8.84	7.47	3.06	3.02	11.38	10.00	ns
100 µA	6 mA	Std.	0.60	7.59	0.04	1.02	0.43	7.59	6.18	4.62	4.95	10.98	9.57	ns
		-1	0.51	6.45	0.04	0.86	0.36	6.45	5.25	3.93	4.21	9.34	8.14	ns
		-2	0.45	5.67	0.03	0.76	0.32	5.67	4.61	3.45	3.70	8.20	7.15	ns
100 µA	8 mA	Std.	0.60	7.59	0.04	1.02	0.43	7.59	6.18	4.62	4.95	10.98	9.57	ns
		-1	0.51	6.45	0.04	0.86	0.36	6.45	5.25	3.93	4.21	9.34	8.14	ns
		-2	0.45	5.67	0.03	0.76	0.32	5.67	4.61	3.45	3.70	8.20	7.15	ns
100 µA	12 mA	Std.	0.60	5.46	0.04	1.02	0.43	5.46	4.29	4.97	5.54	8.86	7.68	ns
		-1	0.51	4.65	0.04	0.86	0.36	4.65	3.65	4.22	4.71	7.53	6.54	ns
		-2	0.45	4.08	0.03	0.76	0.32	4.08	3.20	3.71	4.14	6.61	5.74	ns
100 µA	16 mA	Std.	0.60	5.15	0.04	1.02	0.43	5.15	3.89	5.04	5.69	8.55	7.29	ns
		-1	0.51	4.38	0.04	0.86	0.36	4.38	3.31	4.29	4.84	7.27	6.20	ns
		-2	0.45	3.85	0.03	0.76	0.32	3.85	2.91	3.77	4.25	6.38	5.44	ns
100 µA	24 mA	Std.	0.60	4.75	0.04	1.02	0.43	4.75	3.22	5.14	6.28	8.15	6.61	ns
		-1	0.51	4.04	0.04	0.86	0.36	4.04	2.74	4.37	5.34	6.93	5.62	ns
		-2	0.45	3.55	0.03	0.76	0.32	3.55	2.40	3.84	4.69	6.09	4.94	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. Software default selection highlighted in gray.


Table 2-51 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks

F	Applicable							-		-				
Drive Strength	Equiv. Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{zL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
100 µA	2 mA	Std.	0.60	15.86	0.04	1.54	0.43	15.86	13.51	4.09	3.80	19.25	16.90	ns
		-1	0.51	13.49	0.04	1.31	0.36	13.49	11.49	3.48	3.23	16.38	14.38	ns
		-2	0.45	11.84	0.03	1.15	0.32	11.84	10.09	3.05	2.84	14.38	12.62	ns
100 µA	4 mA	Std.	0.60	11.25	0.04	1.54	0.43	11.25	9.54	4.61	4.70	14.64	12.93	ns
		-1	0.51	9.57	0.04	1.31	0.36	9.57	8.11	3.92	4.00	12.46	11.00	ns
		-2	0.45	8.40	0.03	1.15	0.32	8.40	7.12	3.44	3.51	10.93	9.66	ns
100 µA	6 mA	Std.	0.60	11.25	0.04	1.54	0.43	11.25	9.54	4.61	4.70	14.64	12.93	ns
		-1	0.51	9.57	0.04	1.31	0.36	9.57	8.11	3.92	4.00	12.46	11.00	ns
		-2	0.45	8.40	0.03	1.15	0.32	8.40	7.12	3.44	3.51	10.93	9.66	ns
100 µA	8 mA	Std.	0.60	8.63	0.04	1.54	0.43	8.63	7.39	4.96	5.28	12.02	10.79	ns
		-1	0.51	7.34	0.04	1.31	0.36	7.34	6.29	4.22	4.49	10.23	9.18	ns
		-2	0.45	6.44	0.03	1.15	0.32	6.44	5.52	3.70	3.94	8.98	8.06	ns
100 µA	16 mA	Std.	0.60	8.05	0.04	1.54	0.43	8.05	6.93	5.03	5.43	11.44	10.32	ns
		-1	0.51	6.85	0.04	1.31	0.36	6.85	5.90	4.28	4.62	9.74	8.78	ns
		-2	0.45	6.01	0.03	1.15	0.32	6.01	5.18	3.76	4.06	8.55	7.71	ns
100 µA	24 mA	Std.	0.60	7.50	0.04	1.54	0.43	7.50	6.90	5.13	6.00	10.89	10.29	ns
		-1	0.51	6.38	0.04	1.31	0.36	6.38	5.87	4.36	5.11	9.27	8.76	ns
		-2	0.45	5.60	0.03	1.15	0.32	5.60	5.15	3.83	4.48	8.13	7.69	ns

Notes:

 The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

Table 2-54 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

	Applicable to	Stanuaru i		S								
Drive Strength	Equiv. Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
100 µA	2 mA	Std.	0.60	10.93	0.04	1.52	0.43	10.93	9.46	3.20	3.32	ns
		-1	0.51	9.29	0.04	1.29	0.36	9.29	8.04	2.72	2.82	ns
		-2	0.45	8.16	0.03	1.13	0.32	8.16	7.06	2.39	2.48	ns
100 µA	4 mA	Std.	0.60	10.93	0.04	1.52	0.43	10.93	9.46	3.20	3.32	ns
		-1	0.51	9.29	0.04	1.29	0.36	9.29	8.04	2.72	2.82	ns
		-2	0.45	8.16	0.03	1.13	0.32	8.16	7.06	2.39	2.48	ns
100 µA	6 mA	Std.	0.60	6.82	0.04	1.52	0.43	6.82	5.70	3.70	4.16	ns
		-1	0.51	5.80	0.04	1.29	0.36	5.80	4.85	3.15	3.54	ns
		-2	0.45	5.09	0.03	1.13	0.32	5.09	4.25	2.77	3.11	ns
100 µA	8 mA	Std.	0.60	6.82	0.04	1.52	0.43	6.82	5.70	3.70	4.16	ns
		-1	0.51	5.80	0.04	1.29	0.36	5.80	4.85	3.15	3.54	ns
		-2	0.45	5.09	0.03	1.13	0.32	5.09	4.25	2.77	3.11	ns

Notes:

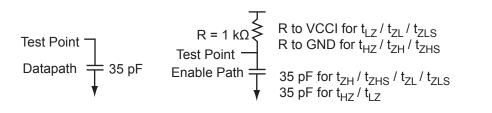
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is $\pm 100 \ \mu$ A. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. Software default selection highlighted in gray.

Table 2-58 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks

2.5 V LVCMOS	v	ΊL	v	IH	VOL	VOH	IOL	IOH	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max., V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.7	1.7	3.6	0.7	1.7	2	2	16	18	10	10
4 mA	-0.3	0.7	1.7	3.6	0.7	1.7	4	4	16	18	10	10
6 mA	-0.3	0.7	1.7	3.6	0.7	1.7	6	6	32	37	10	10
8 mA	-0.3	0.7	1.7	3.6	0.7	1.7	8	8	32	37	10	10

Notes:


1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

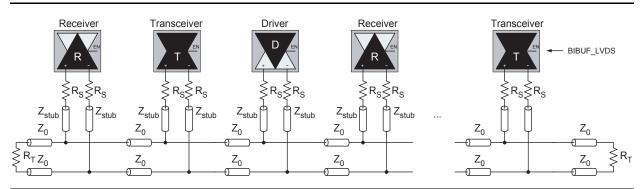
4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-8 • AC Loading

Table 2-59 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	2.5	1.2	35

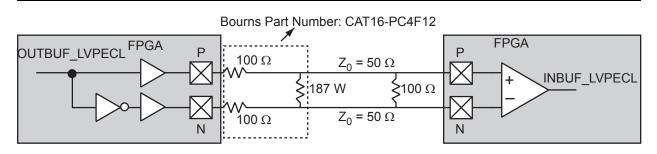

Note: *Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.

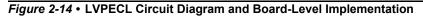


B-LVDS/M-LVDS

Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to highperformance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-13. The input and output buffer delays are available in the LVDS section in Table 2-92.

Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: $R_S = 60 \Omega$ and $R_T = 70 \Omega$, given $Z_0 = 50 \Omega$ (2") and $Z_{stub} = 50 \Omega$ (~1.5").





LVPECL

Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-14. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVDS implementation because the output standard specifications are different.

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	H, DOUT
tosud	Data Setup Time for the Output Data Register	F, H
t _{OHD}	Data Hold Time for the Output Data Register	F, H
tosue	Enable Setup Time for the Output Data Register	G, H
t _{OHE}	Enable Hold Time for the Output Data Register	G, H
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	L, DOUT
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	L, H
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	L, H
t _{oeclkq}	Clock-to-Q of the Output Enable Register	H, EOUT
toesud	Data Setup Time for the Output Enable Register	J, H
t _{OEHD}	Data Hold Time for the Output Enable Register	J, H
tOESUE	Enable Setup Time for the Output Enable Register	К, Н
t _{OEHE}	Enable Hold Time for the Output Enable Register	К, Н
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	I, EOUT
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	I, H
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	I, H
t _{ICLKQ}	Clock-to-Q of the Input Data Register	A, E
t _{ISUD}	Data Setup Time for the Input Data Register	C, A
t _{IHD}	Data Hold Time for the Input Data Register	C, A
t _{ISUE}	Enable Setup Time for the Input Data Register	B, A
t _{IHE}	Enable Hold Time for the Input Data Register	B, A
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	D, E
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	D, A
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	D, A

Table 2-96 • Parameter Definition and Measuring Nodes

Note: *See Figure 2-15 on page 2-69 for more information.

Timing Characteristics

Table 2-107 • A3P015 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		-	-2	-	-1	S	td.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.66	0.81	0.75	0.92	0.88	1.08	ns
t _{RCKH}	Input High Delay for Global Clock	0.67	0.84	0.76	0.96	0.89	1.13	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.18		0.21		0.25	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage-supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-108 • A3P030 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		-2		-	-1	S	td.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.67	0.81	0.76	0.92	0.89	1.09	ns
t _{RCKH}	Input High Delay for Global Clock	0.68	0.85	0.77	0.97	0.91	1.14	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.18		0.21		0.24	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

Table 2-122 • A3P250 FIFO 2k×2

Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ENS}	REN, WEN Setup Time	4.39	5.00	5.88	ns
t _{ENH}	REN, WEN Hold Time	0.00	0.00	0.00	ns
t _{BKS}	BLK Setup Time	0.19	0.22	0.26	ns
t _{BKH}	BLK Hold Time	0.00	0.00	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.18	0.21	0.25	ns
t _{DH}	Input Data (WD) Hold Time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	2.36	2.68	3.15	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	0.89	1.02	1.20	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	1.72	1.96	2.30	ns
t _{WCKFF}	WCLK High to Full Flag Valid	1.63	1.86	2.18	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	6.19	7.05	8.29	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	1.69	1.93	2.27	ns
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	6.13	6.98	8.20	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	0.92	1.05	1.23	ns
	RESET Low to Data Out Low on RD (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET Removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET Recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.21	0.24	0.29	ns
t _{CYC}	Clock Cycle Time	3.23	3.68	4.32	ns
F _{MAX}	Maximum Frequency for FIFO	310	272	231	MHz

Table 2-123 • A3P250 FIFO 4k×1

Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ENS}	REN, WEN Setup Time	4.86	5.53	6.50	ns
t _{ENH}	REN, WEN Hold Time	0.00	0.00	0.00	ns
t _{BKS}	BLK Setup Time	0.19	0.22	0.26	ns
t _{BKH}	BLK Hold Time	0.00	0.00	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.18	0.21	0.25	ns
t _{DH}	Input Data (WD) Hold Time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	2.36	2.68	3.15	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	0.89	1.02	1.20	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	1.72	1.96	2.30	ns
t _{WCKFF}	WCLK High to Full Flag Valid	1.63	1.86	2.18	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	6.19	7.05	8.29	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	1.69	1.93	2.27	ns

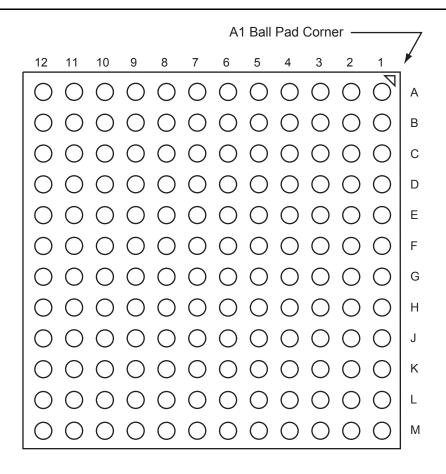
Package Pin Assignments

	2N68	QN68		
Pin Number	A3P015 Function	Pin Number	A3P015 Function	
1	IO82RSB1	37	TRST	
2	IO82R3B1	38	VJTAG	
3	IO78RSB1	39	IO40RSB0	
-				
4	IO76RSB1	40	IO37RSB0	
5	GEC0/IO73RSB1	41	GDB0/IO34RSB0	
6	GEA0/IO72RSB1	42	GDA0/IO33RSB0	
7	GEB0/IO71RSB1	43	GDC0/IO32RSB0	
8	VCC	44	VCCIB0	
9	GND	45	GND	
10	VCCIB1	46	VCC	
11	IO68RSB1	47	IO31RSB0	
12	IO67RSB1	48	IO29RSB0	
13	IO66RSB1	49	IO28RSB0	
14	IO65RSB1	50	IO27RSB0	
15	IO64RSB1	51	IO25RSB0	
16	IO63RSB1	52	IO24RSB0	
17	IO62RSB1	53	IO22RSB0	
18	IO60RSB1	54	IO21RSB0	
19	IO58RSB1	55	IO19RSB0	
20	IO56RSB1	56	IO17RSB0	
21	IO54RSB1	57	IO15RSB0	
22	IO52RSB1	58	IO14RSB0	
23	IO51RSB1	59	VCCIB0	
24	VCC	60	GND	
25	GND	61	VCC	
26	VCCIB1	62	IO12RSB0	
27	IO50RSB1	63	IO10RSB0	
28	IO48RSB1	64	IO08RSB0	
29	IO46RSB1	65	IO06RSB0	
30	IO44RSB1	66	IO04RSB0	
31	IO42RSB1	67	IO02RSB0	
32	ТСК	68	IO00RSB0	
33	TDI			
34	TMS			
35	VPUMP			

TDO

36

	QN132		QN132		QN132
Pin Number	A3P030 Function	Pin Number	A3P030 Function	Pin Number	A3P030 Function
A1	IO01RSB1	A37	IO26RSB0	B25	GND
A2	IO81RSB1	A38	IO23RSB0	B26	NC
A3	NC	A39	NC	B27	IO41RSB0
A4	IO80RSB1	A40	IO22RSB0	B28	GND
A5	GEC0/IO77RSB1	A41	IO20RSB0	B29	GDA0/IO37RSB0
A6	NC	A42	IO18RSB0	B30	NC
A7	GEB0/IO75RSB1	A43	VCC	B31	GND
A8	IO73RSB1	A44	IO15RSB0	B32	IO33RSB0
A9	NC	A45	IO12RSB0	B33	IO30RSB0
A10	VCC	A46	IO10RSB0	B34	IO27RSB0
A11	IO71RSB1	A47	IO09RSB0	B35	IO24RSB0
A12	IO68RSB1	A48	IO06RSB0	B36	GND
A13	IO63RSB1	B1	IO02RSB1	B37	IO21RSB0
A14	IO60RSB1	B2	IO82RSB1	B38	IO19RSB0
A15	NC	B3	GND	B39	GND
A16	IO59RSB1	B4	IO79RSB1	B40	IO16RSB0
A17	IO57RSB1	B5	NC	B41	IO13RSB0
A18	VCC	B6	GND	B42	GND
A19	IO54RSB1	B7	IO74RSB1	B43	IO08RSB0
A20	IO52RSB1	B8	NC	B44	IO05RSB0
A21	IO49RSB1	B9	GND	C1	IO03RSB1
A22	IO48RSB1	B10	IO70RSB1	C2	IO00RSB1
A23	IO47RSB1	B11	IO67RSB1	C3	NC
A24	TDI	B12	IO64RSB1	C4	IO78RSB1
A25	TRST	B13	IO61RSB1	C5	GEA0/IO76RSB1
A26	IO44RSB0	B14	GND	C6	NC
A27	NC	B15	IO58RSB1	C7	NC
A28	IO43RSB0	B16	IO56RSB1	C8	VCCIB1
A29	IO42RSB0	B17	GND	C9	IO69RSB1
A30	IO40RSB0	B18	IO53RSB1	C10	IO66RSB1
A31	IO39RSB0	B19	IO50RSB1	C11	IO65RSB1
A32	GDC0/IO36RSB0	B20	GND	C12	IO62RSB1
A33	NC	B21	IO46RSB1	C13	NC
A34	VCC	B22	TMS	C14	NC
A35	IO34RSB0	B23	TDO	C15	IO55RSB1
A36	IO31RSB0	B24	IO45RSB0	C16	VCCIB1



QN132				
Pin Number	A3P030 Function			
C17	IO51RSB1			
C18	NC			
C19	ТСК			
C20	NC			
C21	VPUMP			
C22	VJTAG			
C23	NC			
C24	NC			
C25	NC			
C26	GDB0/IO38RSB0			
C27	NC			
C28	VCCIB0			
C29	IO32RSB0			
C30	IO29RSB0			
C31	IO28RSB0			
C32	IO25RSB0			
C33	NC			
C34	NC			
C35	VCCIB0			
C36	IO17RSB0			
C37	IO14RSB0			
C38	IO11RSB0			
C39	IO07RSB0			
C40	IO04RSB0			
D1	GND			
D2	GND			
D3	GND			
D4	GND			

QN132				
Pin Number	A3P250 Function			
C17	IO74RSB2			
C18	VCCIB2			
C19	ТСК			
C20	VMV2			
C21	VPUMP			
C22	VJTAG			
C23	VCCIB1			
C24	IO53NSB1			
C25	IO51NPB1			
C26	GCA1/IO50PPB1			
C27	GCC0/IO48NDB1			
C28	VCCIB1			
C29	IO42NDB1			
C30	GNDQ			
C31	GBA1/IO40RSB0			
C32	GBB0/IO37RSB0			
C33	VCC			
C34	IO24RSB0			
C35	IO19RSB0			
C36	IO16RSB0			
C37	IO10RSB0			
C38	VCCIB0			
C39	GAB1/IO03RSB0			
C40	VMV0			
D1	GND			
D2	GND			
D3	GND			
D4	GND			

FG144 – Bottom View

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

🌜 Microsemi.

F	G144	F	G144	FG144	
Pin Number	A3P250 Function	Pin Number	A3P250 Function	Pin Number	A3P250 Function
A1	GNDQ	D1	IO112NDB3	G1	GFA1/IO108PPB3
A2	VMV0	D2	IO112PDB3	G2	GND
A3	GAB0/IO02RSB0	D3	IO116VDB3	G3	VCCPLF
A4	GAB1/IO03RSB0	D4	GAA2/IO118UPB3	G4	GFA0/IO108NPB3
A5	IO16RSB0	D5	GAC0/IO04RSB0	G5	GND
A6	GND	D6	GAC1/IO05RSB0	G6	GND
A7	IO29RSB0	D7	GBC0/IO35RSB0	G7	GND
A8	VCC	D8	GBC1/IO36RSB0	G8	GDC1/IO58UPB1
A9	IO33RSB0	D9	GBB2/IO42PDB1	G9	IO53NDB1
A10	GBA0/IO39RSB0	D10	IO42NDB1	G10	GCC2/IO53PDB1
A11	GBA1/IO40RSB0	D11	IO43NPB1	G11	IO52NDB1
A12	GNDQ	D12	GCB1/IO49PPB1	G12	GCB2/IO52PDB1
B1	GAB2/IO117UDB3	E1	VCC	H1	VCC
B2	GND	E2	GFC0/IO110NDB3	H2	GFB2/IO106PDB3
B3	GAA0/IO00RSB0	E3	GFC1/IO110PDB3	H3	GFC2/IO105PSB3
B4	GAA1/IO01RSB0	E4	VCCIB3	H4	GEC1/IO100PDB3
B5	IO14RSB0	E5	IO118VPB3	H5	VCC
B6	IO19RSB0	E6	VCCIB0	H6	IO79RSB2
B7	IO22RSB0	E7	VCCIB0	H7	IO65RSB2
B8	IO30RSB0	E8	GCC1/IO48PDB1	H8	GDB2/IO62RSB2
B9	GBB0/IO37RSB0	E9	VCCIB1	H9	GDC0/IO58VPB1
B10	GBB1/IO38RSB0	E10	VCC	H10	VCCIB1
B11	GND	E11	GCA0/IO50NDB1	H11	IO54PSB1
B12	VMV1	E12	IO51NDB1	H12	VCC
C1	IO117VDB3	F1	GFB0/IO109NPB3	J1	GEB1/IO99PDB3
C2	GFA2/IO107PPB3	F2	VCOMPLF	J2	IO106NDB3
C3	GAC2/IO116UDB3	F3	GFB1/IO109PPB3	J3	VCCIB3
C4	VCC	F4	IO107NPB3	J4	GEC0/IO100NDB3
C5	IO12RSB0	F5	GND	J5	IO88RSB2
C6	IO17RSB0	F6	GND	J6	IO81RSB2
C7	IO24RSB0	F7	GND	J7	VCC
C8	IO31RSB0	F8	GCC0/IO48NDB1	J8	ТСК
C9	IO34RSB0	F9	GCB0/IO49NPB1	J9	GDA2/IO61RSB2
C10	GBA2/IO41PDB1	F10	GND	J10	TDO
C11	IO41NDB1	F11	GCA1/IO50PDB1	J11	GDA1/IO60UDB1
C12	GBC2/IO43PPB1	F12	GCA2/IO51PDB1	J12	GDB1/IO59UDB1

🌜 Microsemi.

	FG256		FG256	FG256	
Pin Number	A3P250 Function	Pin Number	A3P250 Function	Pin Number	A3P250 Function
G13	GCC1/IO48PPB1	K1	GFC2/IO105PDB3	M5	VMV3
G14	IO47NPB1	K2	IO107NPB3	M6	VCCIB2
G15	IO54PDB1	K3	IO104PPB3	M7	VCCIB2
G16	IO54NDB1	K4	NC	M8	NC
H1	GFB0/IO109NPB3	K5	VCCIB3	M9	IO74RSB2
H2	GFA0/IO108NDB3	K6	VCC	M10	VCCIB2
H3	GFB1/IO109PPB3	K7	GND	M11	VCCIB2
H4	VCOMPLF	K8	GND	M12	VMV2
H5	GFC0/IO110NPB3	K9	GND	M13	NC
H6	VCC	K10	GND	M14	GDB1/IO59UPB1
H7	GND	K11	VCC	M15	GDC1/IO58UDB1
H8	GND	K12	VCCIB1	M16	IO56NDB1
H9	GND	K13	IO52NPB1	N1	IO103NDB3
H10	GND	K14	IO55RSB1	N2	IO101PPB3
H11	VCC	K15	IO53NPB1	N3	GEC1/IO100PPB3
H12	GCC0/IO48NPB1	K16	IO51NDB1	N4	NC
H13	GCB1/IO49PPB1	L1	IO105NDB3	N5	GNDQ
H14	GCA0/IO50NPB1	L2	IO104NPB3	N6	GEA2/IO97RSB2
H15	NC	L3	NC	N7	IO86RSB2
H16	GCB0/IO49NPB1	L4	IO102RSB3	N8	IO82RSB2
J1	GFA2/IO107PPB3	L5	VCCIB3	N9	IO75RSB2
J2	GFA1/IO108PDB3	L6	GND	N10	IO69RSB2
J3	VCCPLF	L7	VCC	N11	IO64RSB2
J4	IO106NDB3	L8	VCC	N12	GNDQ
J5	GFB2/IO106PDB3	L9	VCC	N13	NC
J6	VCC	L10	VCC	N14	VJTAG
J7	GND	L11	GND	N15	GDC0/IO58VDB1
J8	GND	L12	VCCIB1	N16	GDA1/IO60UDB1
J9	GND	L13	GDB0/IO59VPB1	P1	GEB1/IO99PDB3
J10	GND	L14	IO57VDB1	P2	GEB0/IO99NDB3
J11	VCC	L15	IO57UDB1	P3	NC
J12	GCB2/IO52PPB1	L16	IO56PDB1	P4	NC
J13	GCA1/IO50PPB1	M1	IO103PDB3	P5	IO92RSB2
J14	GCC2/IO53PPB1	M2	NC	P6	IO89RSB2
J15	NC	M3	IO101NPB3	P7	IO85RSB2
J16	GCA2/IO51PDB1	M4	GEC0/IO100NPB3	P8	IO81RSB2

	FG256	FG256		FG256	
Pin Number	A3P400 Function	Pin Number	A3P400 Function	Pin Number	A3P400 Function
G13	GCC1/IO67PPB1	K1	GFC2/IO142PDB3	M5	VMV3
G14	IO64NPB1	K2	IO144NPB3	M6	VCCIB2
G15	IO73PDB1	K3	IO141PPB3	M7	VCCIB2
G16	IO73NDB1	K4	IO120RSB2	M8	IO108RSB2
H1	GFB0/IO146NPB3	K5	VCCIB3	M9	IO101RSB2
H2	GFA0/IO145NDB3	K6	VCC	M10	VCCIB2
H3	GFB1/IO146PPB3	K7	GND	M11	VCCIB2
H4	VCOMPLF	K8	GND	M12	VMV2
H5	GFC0/IO147NPB3	K9	GND	M13	IO83RSB2
H6	VCC	K10	GND	M14	GDB1/IO78UPB1
H7	GND	K11	VCC	M15	GDC1/IO77UDB1
H8	GND	K12	VCCIB1	M16	IO75NDB1
H9	GND	K13	IO71NPB1	N1	IO140NDB3
H10	GND	K14	IO74RSB1	N2	IO138PPB3
H11	VCC	K15	IO72NPB1	N3	GEC1/IO137PPB3
H12	GCC0/IO67NPB1	K16	IO70NDB1	N4	IO131RSB2
H13	GCB1/IO68PPB1	L1	IO142NDB3	N5	GNDQ
H14	GCA0/IO69NPB1	L2	IO141NPB3	N6	GEA2/IO134RSB2
H15	NC	L3	IO125RSB2	N7	IO117RSB2
H16	GCB0/IO68NPB1	L4	IO139RSB3	N8	IO111RSB2
J1	GFA2/IO144PPB3	L5	VCCIB3	N9	IO99RSB2
J2	GFA1/IO145PDB3	L6	GND	N10	IO94RSB2
J3	VCCPLF	L7	VCC	N11	IO87RSB2
J4	IO143NDB3	L8	VCC	N12	GNDQ
J5	GFB2/IO143PDB3	L9	VCC	N13	IO93RSB2
J6	VCC	L10	VCC	N14	VJTAG
J7	GND	L11	GND	N15	GDC0/IO77VDB1
J8	GND	L12	VCCIB1	N16	GDA1/IO79UDB1
J9	GND	L13	GDB0/IO78VPB1	P1	GEB1/IO136PDB3
J10	GND	L14	IO76VDB1	P2	GEB0/IO136NDB3
J11	VCC	L15	IO76UDB1	P3	VMV2
J12	GCB2/IO71PPB1	L16	IO75PDB1	P4	IO129RSB2
J13	GCA1/IO69PPB1	M1	IO140PDB3	P5	IO128RSB2
J14	GCC2/IO72PPB1	M2	IO130RSB2	P6	IO122RSB2
J15	NC	M3	IO138NPB3	P7	IO115RSB2
J16	GCA2/IO70PDB1	M4	GEC0/IO137NPB3	P8	IO110RSB2

Datasheet Information

Revision	Changes	Page
Revision 10 (continued)	"TBD" for 3.3 V LVCMOS Wide Range in Table 2-28 • I/O Output Buffer Maximum Resistances1 through Table 2-30 • I/O Output Buffer Maximum Resistances1 was replaced by "Same as regular 3.3 V" (SAR 33852).	2-26 to 2-28
	The equations in the notes for Table 2-31 • I/O Weak Pull-Up/Pull-Down Resistances were corrected (SAR 32470).	2-28
	"TBD" for 3.3 V LVCMOS Wide Range in Table 2-32 • I/O Short Currents IOSH/IOSL through Table 2-34 • I/O Short Currents IOSH/IOSL was replaced by "Same as regular 3.3 V LVCMOS" (SAR 33852).	2-29 to 2-31
	In the "3.3 V LVCMOS Wide Range" section, values were added to Table 2-47 through Table 2-49 for IOSL and IOSH, replacing "TBD" (SAR 33852).	2-39 to 2-40
	The following sentence was deleted from the "2.5 V LVCMOS" section (SAR 24916): "It uses a 5 V-tolerant input buffer and push-pull output buffer."	2-47
	The table notes were revised for Table 2-90 • LVDS Minimum and Maximum DC Input and Output Levels (SAR 33859).	2-66
	Values were added for $F_{DDRIMAX}$ and F_{DDOMAX} in Table 2-102 • Input DDR Propagation Delays and Table 2-104 • Output DDR Propagation Delays (SAR 23919).	2-78, 2-80
	Table 2-115 • ProASIC3 CCC/PLL Specification was updated. A note was added to indicate that when the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available (SAR 25705).	2-90
	The following figures were deleted (SAR 29991). Reference was made to a new application note, <i>Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs</i> , which covers these cases in detail (SAR 21770).	2-92,
	Figure 2-34 • Write Access after Write onto Same Address Figure 2-35 • Read Access after Write onto Same Address Figure 2-35 • Read Access after Write onto Same Address	2-94, 2-99 2-102
	The port names in the SRAM "Timing Waveforms", SRAM "Timing Characteristics" tables, Figure 2-39 • FIFO Reset, and the FIFO "Timing Characteristics" tables were revised to ensure consistency with the software names (SARs 29991, 30510).	
	The "Pin Descriptions" chapter has been added (SAR 21642).	3-1
	Package names used in the "Package Pin Assignments" section were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 27395).	4-1
July 2010	The versioning system for datasheets has been changed. Datasheets are assigned a revision number that increments each time the datasheet is revised. The "ProASIC3 Device Status" table on page IV indicates the status for each device in the device family.	N/A

Revision	Changes	Page	
Advance v0.6 (continued)	The "Programming" section was updated to include information concerning serialization.	2-53	
	The "JTAG 1532" section was updated to include SAMPLE/PRELOAD information.	2-54	
	"DC and Switching Characteristics" chapter was updated with new information.	3-1	
	The A3P060 "100-Pin VQFP" pin table was updated.	4-13	
	The A3P125 "100-Pin VQFP" pin table was updated.	4-13	
	The A3P060 "144-Pin TQFP" pin table was updated.	4-16	
	The A3P125 "144-Pin TQFP" pin table was updated.	4-18	
	The A3P125 "208-Pin PQFP" pin table was updated.	4-21	
	The A3P400 "208-Pin PQFP" pin table was updated.	4-25	
	The A3P060 "144-Pin FBGA" pin table was updated.	4-32	
	The A3P125 "144-Pin FBGA" pin table is new.	4-34	
	The A3P400 "144-Pin FBGA" is new.	4-38	
	The A3P400 "256-Pin FBGA" was updated.	4-48	
	The A3P1000 "256-Pin FBGA" was updated.	4-54	
	The A3P400 "484-Pin FBGA" was updated.		
	The A3P1000 "484-Pin FBGA" was updated.	4-68	
	The A3P250 "100-Pin VQFP*" pin table was updated.	4-14	
	The A3P250 "208-Pin PQFP*" pin table was updated.	4-23	
	The A3P1000 "208-Pin PQFP*" pin table was updated.	4-29	
	The A3P250 "144-Pin FBGA*" pin table was updated.	4-36	
	The A3P1000 "144-Pin FBGA*" pin table was updated.	4-32	
	The A3P250 "256-Pin FBGA*" pin table was updated.	4-45	
	The A3P1000 "256-Pin FBGA*" pin table was updated.	4-54	
	The A3P1000 "484-Pin FBGA*" pin table was updated.	4-68	
Advance v0.5 (November 2005)	The "I/Os Per Package" table was updated for the following devices and packages:	ii	
	DevicePackageA3P250/M7ACP250VQ100		
	A3P250/M7ACP250 FG144 A3P1000 FG256		
Advance v0.4	M7 device information is new.	N/A	
	The I/O counts in the "I/Os Per Package" table were updated.		
Advance v0.3	The "I/Os Per Package" table was updated.	" ii	
	M7 device information is new.	N/A	
	Table 2-4 • ProASIC3 Globals/Spines/Rows by Device was updated to include	2-16	
	the number or rows in each top or bottom spine.		
	EXTFB was removed from Figure 2-24 • ProASIC3E CCC Options.	2-24	