

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

EXF

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	36864
Number of I/O	68
Number of Gates	250000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1a3p250-vq100

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 – ProASIC3 Device Family Overview

General Description

ProASIC3, the third-generation family of Microsemi flash FPGAs, offers performance, density, and features beyond those of the ProASIC^{PLUS®} family. Nonvolatile flash technology gives ProASIC3 devices the advantage of being a secure, low power, single-chip solution that is Instant On. ProASIC3 is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

ProASIC3 devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on an integrated phase-locked loop (PLL). The A3P015 and A3P030 devices have no PLL or RAM support. ProASIC3 devices have up to 1 million system gates, supported with up to 144 kbits of true dual-port SRAM and up to 300 user I/Os.

ProASIC3 devices support the ARM Cortex-M1 processor. The ARM-enabled devices have Microsemi ordering numbers that begin with M1A3P (Cortex-M1) and do not support AES decryption.

Flash Advantages

Reduced Cost of Ownership

Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAMbased FPGAs, flash-based ProASIC3 devices allow all functionality to be Instant On; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property (IP) cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The ProASIC3 family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the ProASIC3 family a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/ communications, computing, and avionics markets.

Security

The nonvolatile, flash-based ProASIC3 devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. ProASIC3 devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.

ProASIC3 devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of protection in the FPGA industry for intellectual property and configuration data. In addition, all FlashROM data in ProASIC3 devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. The AES standard was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. ProASIC3 devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. ProASIC3 devices with AES-based security provide a high level of protection for remote field updates over public networks such as the Internet, and are designed to ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves.

ARM-enabled ProASIC3 devices do not support user-controlled AES security mechanisms. Since the ARM core must be protected at all times, AES encryption is always on for the core logic, so bitstreams are always encrypted. There is no user access to encryption for the FlashROM programming data.

Security, built into the FPGA fabric, is an inherent component of the ProASIC3 family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. The ProASIC3 family, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks.

	Definition		Devid	e Spe	cific S	Static F	Power	(mW)	
Parameter		A3P1000	A3P600	A3P400	A3P250	A3P125	A3P060	A3P030	A3P015
PDC1	Array static power in Active mode	See Table 2-7 on page 2-7.							
PDC2	I/O input pin static power (standard-dependent)	See Table 2-8 on page 2-7 through Table 2-10 on page 2-8.							
PDC3	I/O output pin static power (standard-dependent)		See			n page on page		•	
PDC4	Static PLL contribution	2.55 mW							
PDC5	Bank quiescent power (VCCI-dependent)		ę	See Ta	ble 2-7	7 on pa	ige 2-7	7.	

Table 2-15 • Different Components Contributing to the Static Power Consumption in ProASIC3 Devices

Note: *For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi Power spreadsheet calculator or SmartPower tool in Libero SoC software.

Power Calculation Methodology

This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in Libero SoC software.

The power calculation methodology described below uses the following variables:

- The number of PLLs as well as the number and the frequency of each output clock generated
- · The number of combinatorial and sequential cells used in the design
- · The internal clock frequencies
- The number and the standard of I/O pins used in the design
- · The number of RAM blocks used in the design
- Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-16 on page 2-14.
- Enable rates of output buffers—guidelines are provided for typical applications in Table 2-17 on page 2-14.
- Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-17 on page 2-14. The calculation should be repeated for each clock domain defined in the design.

Methodology

Total Power Consumption—PTOTAL

 $P_{TOTAL} = P_{STAT} + P_{DYN}$

P_{STAT} is the total static power consumption.

P_{DYN} is the total dynamic power consumption.

Total Static Power Consumption—P_{STAT}

 $P_{STAT} = P_{DC1} + N_{INPUTS} + P_{DC2} + N_{OUTPUTS} + P_{DC3}$

N_{INPUTS} is the number of I/O input buffers used in the design.

N_{OUTPUTS} is the number of I/O output buffers used in the design.

Total Dynamic Power Consumption—P_{DYN}

P_{DYN} = P_{CLOCK} + P_{S-CELL} + P_{C-CELL} + P_{NET} + P_{INPUTS} + P_{OUTPUTS} + P_{MEMORY} + P_{PLL}

Global Clock Contribution—P_{CLOCK}

 $P_{CLOCK} = (P_{AC1} + N_{SPINE}*P_{AC2} + N_{ROW}*P_{AC3} + N_{S-CELL}*P_{AC4})*F_{CLK}$

N_{SPINE} is the number of global spines used in the user design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *ProASIC3 FPGA Fabric User's Guide*.

N_{ROW} is the number of VersaTile rows used in the design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *ProASIC3 FPGA Fabric User's Guide*.

Figure 2-4 • Input Buffer Timing Model and Delays (Example)

Table 2-29 • I/O Output Buffer Maximum Resistances ¹ Applicable to Standard Plus I/O Banks

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	R _{PULL-UP} (Ω) ³
3.3 V LVTTL / 3.3 V	2 mA	100	300
LVCMOS	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
	12 mA	25	75
	16 mA	25	75
3.3 V LVCMOS Wide Range ⁴	100 µA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
	12 mA	25	50
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
	6 mA	50	56
	8 mA	50	56
1.5 V LVCMOS	2 mA	200	224
Γ	4 mA	100	112
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	25	75

Notes:

 These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

^{2.} R_(PULL-DOWN-MAX) = (VOLspec) / IOLspec

^{3.} R_(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec

	Applica	ble to St	andard	Plus I/	J Bank	S							
Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.66	9.68	0.04	1.00	0.43	9.86	8.42	2.28	2.21	12.09	10.66	ns
	-1	0.56	8.23	0.04	0.85	0.36	8.39	7.17	1.94	1.88	10.29	9.07	ns
	-2	0.49	7.23	0.03	0.75	0.32	7.36	6.29	1.70	1.65	9.03	7.96	ns
4 mA	Std.	0.66	9.68	0.04	1.00	0.43	9.86	8.42	2.28	2.21	12.09	10.66	ns
	-1	0.56	8.23	0.04	0.85	0.36	8.39	7.17	1.94	1.88	10.29	9.07	ns
	-2	0.49	7.23	0.03	0.75	0.32	7.36	6.29	1.70	1.65	9.03	7.96	ns
6 mA	Std.	0.66	6.70	0.04	1.00	0.43	6.82	5.89	2.58	2.74	9.06	8.12	ns
	-1	0.56	5.70	0.04	0.85	0.36	5.80	5.01	2.20	2.33	7.71	6.91	ns
	-2	0.49	5.00	0.03	0.75	0.32	5.10	4.40	1.93	2.05	6.76	6.06	ns
8 mA	Std.	0.66	6.70	0.04	1.00	0.43	6.82	5.89	2.58	2.74	9.06	8.12	ns
	-1	0.56	5.70	0.04	0.85	0.36	5.80	5.01	2.20	2.33	7.71	6.91	ns
	-2	0.49	5.00	0.03	0.75	0.32	5.10	4.40	1.93	2.05	6.76	6.06	ns
12 mA	Std.	0.66	5.05	0.04	1.00	0.43	5.14	4.51	2.79	3.08	7.38	6.75	ns
	-1	0.56	4.29	0.04	0.85	0.36	4.37	3.84	2.38	2.62	6.28	5.74	ns
	-2	0.49	3.77	0.03	0.75	0.32	3.84	3.37	2.09	2.30	5.51	5.04	ns
16 mA	Std.	0.66	5.05	0.04	1.00	0.43	5.14	4.51	2.79	3.08	7.38	6.75	ns
	-1	0.56	4.29	0.04	0.85	0.36	4.37	3.84	2.38	2.62	6.28	5.74	ns
	-2	0.49	3.77	0.03	0.75	0.32	3.84	3.37	2.09	2.30	5.51	5.04	ns

Table 2-44 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus I/O Banks

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-45 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	7.07	0.04	1.00	0.43	7.20	6.23	2.07	2.15	ns
	-1	0.56	6.01	0.04	0.85	0.36	6.12	5.30	1.76	1.83	ns
	-2	0.49	5.28	0.03	0.75	0.32	5.37	4.65	1.55	1.60	ns
4 mA	Std.	0.66	7.07	0.04	1.00	0.43	7.20	6.23	2.07	2.15	ns
	–1	0.56	6.01	0.04	0.85	0.36	6.12	5.30	1.76	1.83	ns
	-2	0.49	5.28	0.03	0.75	0.32	5.37	4.65	1.55	1.60	ns
6 mA	Std.	0.66	4.41	0.04	1.00	0.43	4.49	3.75	2.39	2.69	ns
	–1	0.56	3.75	0.04	0.85	0.36	3.82	3.19	2.04	2.29	ns
	-2	0.49	3.29	0.03	0.75	0.32	3.36	2.80	1.79	2.01	ns
8 mA	Std.	0.66	4.41	0.04	1.00	0.43	4.49	3.75	2.39	2.69	ns
	-1	0.56	3.75	0.04	0.85	0.36	3.82	3.19	2.04	2.29	ns

Table 2-73 • 1.8 V LVCMOS Low Slew

Commercial-Case Conditions: T _J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V
Applicable to Standard Plus I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
2 mA	Std.	0.66	14.80	0.04	1.20	0.43	13.49	14.80	2.25	1.46	15.73	17.04	ns
	-1	0.56	12.59	0.04	1.02	0.36	11.48	12.59	1.91	1.25	13.38	14.49	ns
	-2	0.49	11.05	0.03	0.90	0.32	10.08	11.05	1.68	1.09	11.75	12.72	ns
4 mA	Std.	0.66	9.90	0.04	1.20	0.43	9.73	9.90	2.65	2.50	11.97	12.13	ns
	-1	0.56	8.42	0.04	1.02	0.36	8.28	8.42	2.26	2.12	10.18	10.32	ns
	-2	0.49	7.39	0.03	0.90	0.32	7.27	7.39	1.98	1.86	8.94	9.06	ns
6 mA	Std.	0.66	7.44	0.04	1.20	0.43	7.58	7.32	2.94	2.99	9.81	9.56	ns
	-1	0.56	6.33	0.04	1.02	0.36	6.44	6.23	2.50	2.54	8.35	8.13	ns
	-2	0.49	5.55	0.03	0.90	0.32	5.66	5.47	2.19	2.23	7.33	7.14	ns
8 mA	Std.	0.66	7.44	0.04	1.20	0.43	7.58	7.32	2.94	2.99	9.81	9.56	ns
	-1	0.56	6.33	0.04	1.02	0.36	6.44	6.23	2.50	2.54	8.35	8.13	ns
	-2	0.49	5.55	0.03	0.90	0.32	5.66	5.47	2.19	2.23	7.33	7.14	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-74 • 1.8 V LVCMOS High SlewCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 VApplicable to Standard I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	11.21	0.04	1.20	0.43	8.53	11.21	1.99	1.21	ns
	-1	0.56	9.54	0.04	1.02	0.36	7.26	9.54	1.69	1.03	ns
	-2	0.49	8.37	0.03	0.90	0.32	6.37	8.37	1.49	0.90	ns
4 mA	Std.	0.66	6.34	0.04	1.20	0.43	5.38	6.34	2.41	2.48	ns
	-1	0.56	5.40	0.04	1.02	0.36	4.58	5.40	2.05	2.11	ns
	-2	0.49	4.74	0.03	0.90	0.32	4.02	4.74	1.80	1.85	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-83 • 1.5 V LVCMOS Low Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V Applicable to Standard Plus I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.66	12.08	0.04	1.42	0.43	12.01	12.08	2.72	2.43	14.24	14.31	ns
	-1	0.56	10.27	0.04	1.21	0.36	10.21	10.27	2.31	2.06	12.12	12.18	ns
	-2	0.49	9.02	0.03	1.06	0.32	8.97	9.02	2.03	1.81	10.64	10.69	ns
4 mA	Std.	0.66	9.28	0.04	1.42	0.43	9.45	8.91	3.04	3.00	11.69	11.15	ns
	-1	0.56	7.89	0.04	1.21	0.36	8.04	7.58	2.58	2.55	9.94	9.49	ns
	-2	0.49	6.93	0.03	1.06	0.32	7.06	6.66	2.27	2.24	8.73	8.33	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-84 • 1.5 V LVCMOS High Slew Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	7.65	0.04	1.42	0.43	6.31	7.65	2.45	2.45	ns
	-1	0.56	6.50	0.04	1.21	0.36	5.37	6.50	2.08	2.08	ns
	-2	0.49	5.71	0.03	1.06	0.32	4.71	5.71	1.83	1.83	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-85 • 1.5 V LVCMOS Low Slew Commercial-Case Conditions

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	12.33	0.04	1.42	0.43	11.79	12.33	2.45	2.32	ns
	-1	0.56	10.49	0.04	1.21	0.36	10.03	10.49	2.08	1.98	ns
	-2	0.49	9.21	0.03	1.06	0.32	8.81	9.21	1.83	1.73	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-111 • A3P250 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		-	-2	-	-1	S	td.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.80	1.01	0.91	1.15	1.07	1.36	ns
t _{RCKH}	Input High Delay for Global Clock	0.78	1.04	0.89	1.18	1.04	1.39	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-112 • A3P400 Global Resource

```
Commercial-Case Conditions: T<sub>J</sub> = 70°C, VCC = 1.425 V
```

		-	-2		-1		Std.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.87	1.09	0.99	1.24	1.17	1.46	ns
t _{RCKH}	Input High Delay for Global Clock	0.86	1.11	0.98	1.27	1.15	1.49	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

FIFO

Figure 2-36 • FIFO Model

Table 2-123 • A3P250 FIFO 4k×1 (continued)	
Worst Commercial-Case Conditions: T ₁ = 70°C, VCC = 1.	425 V

Parameter	Description	-2	-1	Std.	Units
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	6.13	6.98	8.20	ns
t _{RSTBQ}	RESET Low to Data Out Low on DO (pass-through)	0.92	1.05	1.23	ns
	RESET Low to Data Out Low on DO (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET Removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET Recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.21	0.24	0.29	ns
t _{CYC}	Clock Cycle Time	3.23	3.68	4.32	ns
F _{MAX}	Maximum Frequency	310	272	231	MHz

Embedded FlashROM Characteristics

Figure 2-44 • Timing Diagram

Timing Characteristics

Table 2-124 • Embedded FlashROM Access Time

Parameter	Description	-2	-1	Std.	Units
t _{SU}	Address Setup Time	0.53	0.61	0.71	ns
t _{HOLD}	Address Hold Time	0.00	0.00	0.00	ns
t _{CK2Q}	Clock to Out	21.42	24.40	28.68	ns
F _{MAX}	Maximum Clock Frequency	15	15	15	MHz

mode is not used in the design, the FF pin is available as a regular I/O. For IGLOOe, ProASIC3EL, and RT ProASIC3 only, the FF pin can be configured as a Schmitt trigger input.

When Flash*Freeze mode is used, the FF pin must not be left floating to avoid accidentally entering Flash*Freeze mode. While in Flash*Freeze mode, the Flash*Freeze pin should be constantly asserted.

The Flash*Freeze pin can be used with any single-ended I/O standard supported by the I/O bank in which the pin is located, and input signal levels compatible with the I/O standard selected. The FF pin should be treated as a sensitive asynchronous signal. When defining pin placement and board layout, simultaneously switching outputs (SSOs) and their effects on sensitive asynchronous pins must be considered.

Unused FF or I/O pins are tristated with weak pull-up. This default configuration applies to both Flash*Freeze mode and normal operation mode. No user intervention is required.

JTAG Pins

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND.

TCK Test Clock

Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pull-up/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements. Refer to Table 1 for more information.

VJTAG	Tie-Off Resistance
3.3 V	200 Ω –1 kΩ
2.5 V	200 Ω –1 kΩ
1.8 V	500 Ω –1 kΩ
1.5 V	500 Ω –1 kΩ

Table 1 • Recommended Tie-Off Values for the TCK and TRST Pins

Notes:

- 1. Equivalent parallel resistance if more than one device is on the JTAG chain
- 2. The TCK pin can be pulled up/down.
- 3. The TRST pin is pulled down.

TDI Test Data Input

Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin.

TDO Test Data Output

Serial output for JTAG boundary scan, ISP, and UJTAG usage.

TMS Test Mode Select

The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin.

TRST Boundary Scan Reset Pin

The TRST pin functions as an active low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-down resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor values must be chosen from Table 1 and must satisfy the parallel resistance value requirement. The values in Table 1 correspond to the resistor recommended when a single device is used, and the equivalent parallel resistor when multiple devices are connected via a JTAG chain.

CS121 – Bottom View

Note: The die attach paddle center of the package is tied to ground (GND).

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

TQ144					
Pin Number	A3P060 Function				
109	NC				
110	NC				
111	GBA1/IO24RSB0				
112	GBA0/IO23RSB0				
113	GBB1/IO22RSB0				
114	GBB0/IO21RSB0				
115	GBC1/IO20RSB0				
116	GBC0/IO19RSB0				
117	VCCIB0				
118	GND				
119	VCC				
120	IO18RSB0				
121	IO17RSB0				
122	IO16RSB0				
123	IO15RSB0				
124	IO14RSB0				
125	IO13RSB0				
126	6 IO12RSB0				
127	IO11RSB0				
128	NC				
129	IO10RSB0				
130	IO09RSB0				
131	IO08RSB0				
132	GAC1/IO07RSB0				
133	GAC0/IO06RSB0				
134	NC				
135	GND				
136	NC				
137	GAB1/IO05RSB0				
138	GAB0/IO04RSB0				
139	GAA1/IO03RSB0				
140	GAA0/IO02RSB0				
141	IO01RSB0				
142	IO00RSB0				
143	GNDQ				
144	VMV0				

Package Pin Assignments

PQ208 – Top View

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

Microsemi

Package Pin Assignments

PQ208			PQ208		PQ208
Pin Number	A3P125 Function	Pin Number	A3P125 Function	Pin Number	A3P125 Function
109	TRST	145	IO46RSB0	181	IO21RSB0
110	VJTAG	146	NC	182	IO20RSB0
111	GDA0/IO66RSB0	147	NC	183	IO19RSB0
112	GDA1/IO65RSB0	148	NC	184	IO18RSB0
113	GDB0/IO64RSB0	149	GBC2/IO45RSB0	185	IO17RSB0
114	GDB1/IO63RSB0	150	IO44RSB0	186	VCCIB0
115	GDC0/IO62RSB0	151	GBB2/IO43RSB0	187	VCC
116	GDC1/IO61RSB0	152	IO42RSB0	188	IO16RSB0
117	NC	153	GBA2/IO41RSB0	189	IO15RSB0
118	NC	154	VMV0	190	IO14RSB0
119	NC	155	GNDQ	191	IO13RSB0
120	NC	156	GND	192	IO12RSB0
121	NC	157	NC	193	IO11RSB0
122	GND	158	GBA1/IO40RSB0	194	IO10RSB0
123	VCCIB0	159	GBA0/IO39RSB0	195	GND
124	NC	160	GBB1/IO38RSB0	196	IO09RSB0
125	NC	161	GBB0/IO37RSB0	197	IO08RSB0
126	VCC	162	GND	198	IO07RSB0
127	IO60RSB0	163	GBC1/IO36RSB0	199	IO06RSB0
128	GCC2/IO59RSB0	164	GBC0/IO35RSB0	200	VCCIB0
129	GCB2/IO58RSB0	165	IO34RSB0	201	GAC1/IO05RSB0
130	GND	166	IO33RSB0	202	GAC0/IO04RSB0
131	GCA2/IO57RSB0	167	IO32RSB0	203	GAB1/IO03RSB0
132	GCA0/IO56RSB0	168	IO31RSB0	204	GAB0/IO02RSB0
133	GCA1/IO55RSB0	169	IO30RSB0	205	GAA1/IO01RSB0
134	GCB0/IO54RSB0	170	VCCIB0	206	GAA0/IO00RSB0
135	GCB1/IO53RSB0	171	VCC	207	GNDQ
136	GCC0/IO52RSB0	172	IO29RSB0	208	VMV0
137	GCC1/IO51RSB0	173	IO28RSB0		
138	IO50RSB0	174	IO27RSB0		
139	IO49RSB0	175	IO26RSB0		
140	VCCIB0	176	IO25RSB0		
141	GND	177	IO24RSB0		
142	VCC	178	GND		
143	IO48RSB0	179	IO23RSB0		
144	IO47RSB0	180	IO22RSB0		

PQ208		P	Q208	P	Q208
Pin Number	A3P400 Function	Pin Number	A3P400 Function	Pin Number	A3P400 Function
1	GND	37	IO141PSB3	73	IO112RSB2
2	GAA2/IO155UDB3	38	IO140PDB3	74	IO111RSB2
3	IO155VDB3	39	IO140NDB3	75	IO110RSB2
4	GAB2/IO154UDB3	40	VCCIB3	76	IO109RSB2
5	IO154VDB3	41	GND	77	IO108RSB2
6	GAC2/IO153UDB3	42	IO138PDB3	78	IO107RSB2
7	IO153VDB3	43	IO138NDB3	79	IO106RSB2
8	IO152UDB3	44	GEC1/IO137PDB3	80	IO104RSB2
9	IO152VDB3	45	GEC0/IO137NDB3	81	GND
10	IO151UDB3	46	GEB1/IO136PDB3	82	IO102RSB2
11	IO151VDB3	47	GEB0/IO136NDB3	83	IO101RSB2
12	IO150PDB3	48	GEA1/IO135PDB3	84	IO100RSB2
13	IO150NDB3	49	GEA0/IO135NDB3	85	IO99RSB2
14	IO149PDB3	50	VMV3	86	IO98RSB2
15	IO149NDB3	51	GNDQ	87	IO97RSB2
16	VCC	52	GND	88	VCC
17	GND	53	VMV2	89	VCCIB2
18	VCCIB3	54	NC	90	IO94RSB2
19	IO148PDB3	55	GEA2/IO134RSB2	91	IO92RSB2
20	IO148NDB3	56	GEB2/IO133RSB2	92	IO90RSB2
21	GFC1/IO147PDB3	57	GEC2/IO132RSB2	93	IO88RSB2
22	GFC0/IO147NDB3	58	IO131RSB2	94	IO86RSB2
23	GFB1/IO146PDB3	59	IO130RSB2	95	IO84RSB2
24	GFB0/IO146NDB3	60	IO129RSB2	96	GDC2/IO82RSB2
25	VCOMPLF	61	IO128RSB2	97	GND
26	GFA0/IO145NPB3	62	VCCIB2	98	GDB2/IO81RSB2
27	VCCPLF	63	IO125RSB2	99	GDA2/IO80RSB2
28	GFA1/IO145PPB3	64	IO123RSB2	100	GNDQ
29	GND	65	GND	101	ТСК
30	GFA2/IO144PDB3	66	IO121RSB2	102	TDI
31	IO144NDB3	67	IO119RSB2	103	TMS
32	GFB2/IO143PDB3	68	IO117RSB2	104	VMV2
33	IO143NDB3	69	IO115RSB2	105	GND
34	GFC2/IO142PDB3	70	IO113RSB2	106	VPUMP
35	IO142NDB3	71	VCC	107	NC
36	NC	72	VCCIB2	108	TDO

FG144				
Pin Number	A3P125 Function			
K1	GEB0/IO109RSB1			
K2	GEA1/IO108RSB1			
K3	GEA0/IO107RSB1			
K4	GEA2/IO106RSB1			
K5	IO100RSB1			
K6	IO98RSB1			
K7	GND			
K8	IO73RSB1			
K9	GDC2/IO72RSB1			
K10	GND			
K11	GDA0/IO66RSB0			
K12	GDB0/IO64RSB0			
L1	GND			
L2	VMV1			
L3	GEB2/IO105RSB1			
L4	IO102RSB1			
L5	VCCIB1			
L6	IO95RSB1			
L7	IO85RSB1			
L8	IO74RSB1			
L9	TMS			
L10	VJTAG			
L11	VMV1			
L12	TRST			
M1	GNDQ			
M2	GEC2/IO104RSB1			
M3	IO103RSB1			
M4	IO101RSB1			
M5	IO97RSB1			
M6	IO94RSB1			
M7	IO86RSB1			
M8	IO75RSB1			
M9	TDI			
M10	VCCIB1			
M11	VPUMP			
M12 GNDQ				

FG484			FG484		FG484		
Pin Number	A3P400 Function	Pin Number	A3P400 Function	Pin Number	A3P400 Function		
E21	NC	G13	IO40RSB0	J5	IO149NPB3		
E22	NC	G14	IO46RSB0	J6	IO09RSB0		
F1	NC	G15	GNDQ	J7	IO152UDB3		
F2	NC	G16	IO47RSB0	J8	VCCIB3		
F3	NC	G17	GBB2/IO61PPB1	J9	GND		
F4	IO154VDB3	G18	IO53RSB0	J10	VCC		
F5	IO155VDB3	G19	IO63NDB1	J11	VCC		
F6	IO11RSB0	G20	NC	J12	VCC		
F7	IO07RSB0	G21	NC	J13	VCC		
F8	GAC0/IO04RSB0	G22	NC	J14	GND		
F9	GAC1/IO05RSB0	H1	NC	J15	VCCIB1		
F10	IO20RSB0	H2	NC	J16	IO62NDB1		
F11	IO24RSB0	H3	VCC	J17	IO49RSB0		
F12	IO33RSB0	H4	IO150PDB3	J18	IO64PPB1		
F13	IO39RSB0	H5	IO08RSB0	J19	IO66NDB1		
F14	IO45RSB0	H6	IO153VDB3	J20	NC		
F15	GBC0/IO54RSB0	H7	IO152VDB3	J21	NC		
F16	IO48RSB0	H8	VMV0	J22	NC		
F17	VMV0	H9	VCCIB0	K1	NC		
F18	IO61NPB1	H10	VCCIB0	K2	NC		
F19	IO63PDB1	H11	IO25RSB0	K3	NC		
F20	NC	H12	IO31RSB0	K4	IO148NDB3		
F21	NC	H13	VCCIB0	K5	IO148PDB3		
F22	NC	H14	VCCIB0	K6	IO149PPB3		
G1	NC	H15	VMV1	K7	GFC1/IO147PPB3		
G2	NC	H16	GBC2/IO62PDB1	K8	VCCIB3		
G3	NC	H17	IO65RSB1	K9	VCC		
G4	IO151VDB3	H18	IO52RSB0	K10	GND		
G5	IO151UDB3	H19	IO66PDB1	K11	GND		
G6	GAC2/IO153UDB3	H20	VCC	K12	GND		
G7	IO06RSB0	H21	NC	K13	GND		
G8	GNDQ	H22	NC	K14	VCC		
G9	IO10RSB0	J1	NC	K15	VCCIB1		
G10	IO19RSB0	J2	NC	K16	GCC1/IO67PPB1		
G11	IO26RSB0	J3	NC	K17	IO64NPB1		
G12	IO30RSB0	J4	IO150NDB3	K18	IO73PDB1		

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in the "ProASIC3 Device Status" table on page IV, is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Unmarked (production)

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications Policy

The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information.

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2016 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi Corporation (MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense and security, aerospace, and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet Solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has approximately 4,800 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.