

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	147456
Number of I/O	177
Number of Gates	1000000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m7a3p1000-1fg256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ProASIC3 Devices	A3P015 ¹	A3P030	A3P060	A3P125	A3P250	A3P400	A3P600	A3P1000
Cortex-M1 Devices ²					M1A3P250	M1A3P400	M1A3P600	M1A3P1000
Package Pins QFN CS VQFP TQFP PQFP FBGA	QN68	QN48, QN68, QN132 ⁷ VQ100	QN132 ⁷ CS121 VQ100 TQ144 FG144	QN132 ⁷ VQ100 TQ144 PQ208 FG144	QN132 ⁷ VQ100 PQ208 FG144/256 ⁵	PQ208 FG144/256/ 484	PQ208 FG144/256/ 484	PQ208 FG144/256/ 484

Notes:

- A3P015 is not recommended for new designs.
 Refer to the Cortex-M1 product brief for more information.
 AES is not available for Cortex-M1 ProASIC3 devices.
 Six chip (main) and three quadrant global networks are available for A3P060 and above.
 The M1A3P250 device does not support this package.
 For higher densities and support of additional features, refer to the ProASIC3E Flash Family FPGAs datasheet.
 Package not available.

1 – ProASIC3 Device Family Overview

General Description

ProASIC3, the third-generation family of Microsemi flash FPGAs, offers performance, density, and features beyond those of the ProASIC^{PLUS®} family. Nonvolatile flash technology gives ProASIC3 devices the advantage of being a secure, low power, single-chip solution that is Instant On. ProASIC3 is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

ProASIC3 devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on an integrated phase-locked loop (PLL). The A3P015 and A3P030 devices have no PLL or RAM support. ProASIC3 devices have up to 1 million system gates, supported with up to 144 kbits of true dual-port SRAM and up to 300 user I/Os.

ProASIC3 devices support the ARM Cortex-M1 processor. The ARM-enabled devices have Microsemi ordering numbers that begin with M1A3P (Cortex-M1) and do not support AES decryption.

Flash Advantages

Reduced Cost of Ownership

Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAMbased FPGAs, flash-based ProASIC3 devices allow all functionality to be Instant On; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property (IP) cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The ProASIC3 family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the ProASIC3 family a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/ communications, computing, and avionics markets.

Security

The nonvolatile, flash-based ProASIC3 devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. ProASIC3 devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.

ProASIC3 devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of protection in the FPGA industry for intellectual property and configuration data. In addition, all FlashROM data in ProASIC3 devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. The AES standard was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. ProASIC3 devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. ProASIC3 devices with AES-based security provide a high level of protection for remote field updates over public networks such as the Internet, and are designed to ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves.

ARM-enabled ProASIC3 devices do not support user-controlled AES security mechanisms. Since the ARM core must be protected at all times, AES encryption is always on for the core logic, so bitstreams are always encrypted. There is no user access to encryption for the FlashROM programming data.

Security, built into the FPGA fabric, is an inherent component of the ProASIC3 family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. The ProASIC3 family, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks.

I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)

Sophisticated power-up management circuitry is designed into every ProASIC[®]3 device. These circuits ensure easy transition from the powered-off state to the powered-up state of the device. The many different supplies can power up in any sequence with minimized current spikes or surges.

In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-2 on page 2-5.

There are five regions to consider during power-up.

ProASIC3 I/Os are activated only if ALL of the following three conditions are met:

- 1. VCC and VCCI are above the minimum specified trip points (Figure 2-2 on page 2-5).
- 2. VCCI > VCC 0.75 V (typical)
- 3. Chip is in the operating mode.

VCCI Trip Point:

```
Ramping up: 0.6 V < trip_point_up < 1.2 V
Ramping down: 0.5 V < trip_point_down < 1.1 V
```

VCC Trip Point:

```
Ramping up: 0.6 V < trip_point_up < 1.1 V
Ramping down: 0.5 V < trip_point_down < 1 V
```

VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:

- During programming, I/Os become tristated and weakly pulled up to VCCI.
- JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O behavior.

PLL Behavior at Brownout Condition

Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper power-up behavior. Power ramp-up should be monotonic at least until VCC and VCCPLLX exceed brownout activation levels. The VCC activation level is specified as 1.1 V worst-case (see Figure 2-2 on page 2-5 for more details).

When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V \pm 0.25 V), the PLL output lock signal goes low and/or the output clock is lost. Refer to the "Power-Up/Down Behavior of Low Power Flash Devices" chapter of the *ProASIC3 FPGA Fabric User's Guide* for information on clock and lock recovery.

Internal Power-Up Activation Sequence

- 1. Core
- 2. Input buffers

Output buffers, after 200 ns delay from input buffer activation.

Thermal Characteristics

Introduction

The temperature variable in the Microsemi Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because dynamic and static power consumption cause the chip junction to be higher than the ambient temperature.

EQ can be used to calculate junction temperature.

 T_J = Junction Temperature = $\Delta T + T_A$

where:

T_A = Ambient Temperature

 ΔT = Temperature gradient between junction (silicon) and ambient ΔT = θ_{ia} * P

 θ_{ia} = Junction-to-ambient of the package. θ_{ia} numbers are located in Table 2-5 on page 2-6.

P = Power dissipation

Table 2-25 • Summary of I/O Timing Characteristics—Software Default Settings

-2 Speed Grade, Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst Case VCC = 1.425 V, Worst-Case VCCI (per standard)

Standard Plus I/O Banks

I/O Standard	Drive Strength	Equiv. Software Default Drive Strength Option ¹	Slew Rate	Capacitive Load (pF)	External Resistor	t _{bour} (ns)	t _{DP} (ns)	t _{DIN} (ns)	t _{pΥ} (ns)	t _{EOUT} (ns)	t _{ZL} (ns)	t _{zH} (ns)	t _{LZ} (ns)	t _{HZ} (ns)	t _{ZLS} (ns)	t _{zHS} (ns)	Units
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	35	-	0.45	2.36	0.03	0.75	0.32	2.40	1.93	2.08	2.41	4.07	3.60	ns
3.3 V LVCMOS Wide Range ²	100 µA	12 mA	High	35	-	0.45	3.65	0.03	1.14	0.32	3.65	2.93	3.22	3.72	6.18	5.46	ns
2.5 V LVCMOS	12 mA	12 mA	High	35	-	0.45	2.39	0.03	0.97	0.32	2.44	2.35	2.11	2.32	4.11	4.02	ns
1.8 V LVCMOS	8 mA	8 mA	High	35	-	0.45	3.03	0.03	0.90	0.32	2.87	3.03	2.19	2.32	4.54	4.70	ns
1.5 V LVCMOS	4 mA	4 mA	High	35	-	0.45	3.61	0.03	1.06	0.32	3.35	3.61	2.26	2.34	5.02	5.28	ns
3.3 V PCI	Per PCI spec	-	High	10	25 ⁴	0.45	1.72	0.03	0.64	0.32	1.76	1.27	2.08	2.41	3.42	2.94	ns
3.3 V PCI-X	Per PCI-X spec	-	High	10	25 ⁴	0.45	1.72	0.03	0.62	0.32	1.76	1.27	2.08	2.41	3.42	2.94	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-11 on page 2-64 for connectivity. This resistor is not required during normal operation.

Table 2-29 • I/O Output Buffer Maximum Resistances ¹ Applicable to Standard Plus I/O Banks

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	R _{PULL-UP} (Ω) ³
3.3 V LVTTL / 3.3 V	2 mA	100	300
LVCMOS	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
	12 mA	25	75
	16 mA	25	75
3.3 V LVCMOS Wide Range ⁴	100 µA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
	12 mA	25	50
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
	6 mA	50	56
	8 mA	50	56
1.5 V LVCMOS	2 mA	200	224
	4 mA	100	112
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	25	75

Notes:

 These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

^{2.} R_(PULL-DOWN-MAX) = (VOLspec) / IOLspec

^{3.} R_(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec

Table 2-54 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Drive Strength	Equiv. Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
100 µA	2 mA	Std.	0.60	10.93	0.04	1.52	0.43	10.93	9.46	3.20	3.32	ns
		-1	0.51	9.29	0.04	1.29	0.36	9.29	8.04	2.72	2.82	ns
		-2	0.45	8.16	0.03	1.13	0.32	8.16	7.06	2.39	2.48	ns
100 µA	4 mA	Std.	0.60	10.93	0.04	1.52	0.43	10.93	9.46	3.20	3.32	ns
		-1	0.51	9.29	0.04	1.29	0.36	9.29	8.04	2.72	2.82	ns
		-2	0.45	8.16	0.03	1.13	0.32	8.16	7.06	2.39	2.48	ns
100 µA	6 mA	Std.	0.60	6.82	0.04	1.52	0.43	6.82	5.70	3.70	4.16	ns
		-1	0.51	5.80	0.04	1.29	0.36	5.80	4.85	3.15	3.54	ns
		-2	0.45	5.09	0.03	1.13	0.32	5.09	4.25	2.77	3.11	ns
100 µA	8 mA	Std.	0.60	6.82	0.04	1.52	0.43	6.82	5.70	3.70	4.16	ns
		-1	0.51	5.80	0.04	1.29	0.36	5.80	4.85	3.15	3.54	ns
		-2	0.45	5.09	0.03	1.13	0.32	5.09	4.25	2.77	3.11	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is $\pm 100 \ \mu$ A. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. Software default selection highlighted in gray.

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

3.3 V PCI, 3.3 V PCI-X

Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus applications.

Table 2-86 •	Minimum and	Maximum D	OC Input and	Output Levels
--------------	-------------	-----------	--------------	---------------

3.3 V PCI/PCI-X	V	ΊL	V	IH	VOL	VOH	IOL	IOH	IOSL	IOSH	IIL	IIH
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max,. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
Per PCI specification					Per PCI	curves					10	10

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

AC loadings are defined per the PCI/PCI-X specifications for the datapath; Microsemi loadings for enable path characterization are described in Figure 2-11.

Figure 2-11 • AC Loading

AC loadings are defined per PCI/PCI-X specifications for the datapath; Microsemi loading for tristate is described in Table 2-87.

Table 2-87 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	3.3	0.285 * VCCI for t _{DP(R)}	10
		0.615 * VCCI for t _{DP(F)}	

Note: *Measuring point = V_{trip} . See Table 2-22 on page 2-22 for a complete table of trip points.

Timing Characteristics

Table 2-100 • Output Enable Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	0.59	0.67	0.79	ns
t _{OESUD}	Data Setup Time for the Output Enable Register	0.31	0.36	0.42	ns
t _{OEHD}	Data Hold Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OESUE}	Enable Setup Time for the Output Enable Register	0.44	0.50	0.58	ns
t _{OEHE}	Enable Hold Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	0.67	0.76	0.89	ns
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	0.67	0.76	0.89	ns
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	0.22	0.25	0.30	ns
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	0.22	0.25	0.30	ns
t _{OEWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Enable Register	0.22	0.25	0.30	ns
t _{OEWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Enable Register	0.22	0.25	0.30	ns
t _{OECKMPWH}	Clock Minimum Pulse Width High for the Output Enable Register	0.36	0.41	0.48	ns
t _{OECKMPWL}	Clock Minimum Pulse Width Low for the Output Enable Register	0.32	0.37	0.43	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

DDR Module Specifications

Input DDR Module

Figure 2-20 • Input DDR Timing Model

	Table 2	2-101 •	Parameter	Definitions
--	---------	---------	-----------	-------------

Parameter Name	Parameter Definition	Measuring Nodes (from, to)
t _{DDRICLKQ1}	Clock-to-Out Out_QR	B, D
t _{DDRICLKQ2}	Clock-to-Out Out_QF	B, E
t _{DDRISUD}	Data Setup Time of DDR input	А, В
t _{DDRIHD}	Data Hold Time of DDR input	А, В
t _{DDRICLR2Q1}	Clear-to-Out Out_QR	C, D
t _{DDRICLR2Q2}	Clear-to-Out Out_QF	C, E
t _{DDRIREMCLR}	Clear Removal	С, В
t _{DDRIRECCLR}	Clear Recovery	С, В

Figure 2-35 • RAM Reset. Applicable to Both RAM4K9 and RAM512x18.

QN132					
Pin Number	A3P030 Function				
C17	IO51RSB1				
C18	NC				
C19	ТСК				
C20	NC				
C21	VPUMP				
C22	VJTAG				
C23	NC				
C24	NC				
C25	NC				
C26	GDB0/IO38RSB0				
C27	NC				
C28	VCCIB0				
C29	IO32RSB0				
C30	IO29RSB0				
C31	IO28RSB0				
C32	IO25RSB0				
C33	NC				
C34	NC				
C35	VCCIB0				
C36	IO17RSB0				
C37	IO14RSB0				
C38	IO11RSB0				
C39	IO07RSB0				
C40	IO04RSB0				
D1	GND				
D2	GND				
D3	GND				
D4	GND				

TQ144				
Pin Number A3P125 Function				
109	GBA1/IO40RSB0			
110	GBA0/IO39RSB0			
111	GBB1/IO38RSB0			
112	GBB0/IO37RSB0			
113	GBC1/IO36RSB0			
114	GBC0/IO35RSB0			
115	IO34RSB0			
116	IO33RSB0			
117	VCCIB0			
118	GND			
119	VCC			
120	IO29RSB0			
121	IO28RSB0			
122	IO27RSB0			
123	IO25RSB0			
124	IO23RSB0			
125	IO21RSB0			
126	IO19RSB0			
127	IO17RSB0			
128	IO16RSB0			
129	IO14RSB0			
130	IO12RSB0			
131	IO10RSB0			
132	IO08RSB0			
133	IO06RSB0			
134	VCCIB0			
135	GND			
136	VCC			
137	GAC1/IO05RSB0			
138	GAC0/IO04RSB0			
139	GAB1/IO03RSB0			
140	GAB0/IO02RSB0			
141	GAA1/IO01RSB0			
142	GAA0/IO00RSB0			
143	GNDQ			
144	VMV0			

F	PQ208	F	PQ208	PQ208	
Pin Number	A3P600 Function	Pin Number	A3P600 Function	Pin Num	ber A3P600 Function
1	GND	37	IO152PDB3	73	IO120RSB2
2	GAA2/IO174PDB3	38	IO152NDB3	74	IO119RSB2
3	IO174NDB3	39	IO150PSB3	75	IO118RSB2
4	GAB2/IO173PDB3	40	VCCIB3	76	IO117RSB2
5	IO173NDB3	41	GND	77	IO116RSB2
6	GAC2/IO172PDB3	42	IO147PDB3	78	IO115RSB2
7	IO172NDB3	43	IO147NDB3	79	IO114RSB2
8	IO171PDB3	44	GEC1/IO146PDB3	80	IO112RSB2
9	IO171NDB3	45	GEC0/IO146NDB3	81	GND
10	IO170PDB3	46	GEB1/IO145PDB3	82	IO111RSB2
11	IO170NDB3	47	GEB0/IO145NDB3	83	IO110RSB2
12	IO169PDB3	48	GEA1/IO144PDB3	84	IO109RSB2
13	IO169NDB3	49	GEA0/IO144NDB3	85	IO108RSB2
14	IO168PDB3	50	VMV3	86	IO107RSB2
15	IO168NDB3	51	GNDQ	87	IO106RSB2
16	VCC	52	GND	88	VCC
17	GND	53	VMV2	89	VCCIB2
18	VCCIB3	54	GEA2/IO143RSB2	90	IO104RSB2
19	IO166PDB3	55	GEB2/IO142RSB2	91	IO102RSB2
20	IO166NDB3	56	GEC2/IO141RSB2	92	IO100RSB2
21	GFC1/IO164PDB3	57	IO140RSB2	93	IO98RSB2
22	GFC0/IO164NDB3	58	IO139RSB2	94	IO96RSB2
23	GFB1/IO163PDB3	59	IO138RSB2	95	IO92RSB2
24	GFB0/IO163NDB3	60	IO137RSB2	96	GDC2/IO91RSB2
25	VCOMPLF	61	IO136RSB2	97	GND
26	GFA0/IO162NPB3	62	VCCIB2	98	GDB2/IO90RSB2
27	VCCPLF	63	IO135RSB2	99	GDA2/IO89RSB2
28	GFA1/IO162PPB3	64	IO133RSB2	100	GNDQ
29	GND	65	GND	101	ТСК
30	GFA2/IO161PDB3	66	IO131RSB2	102	TDI
31	IO161NDB3	67	IO129RSB2	103	TMS
32	GFB2/IO160PDB3	68	IO127RSB2	104	VMV2
33	IO160NDB3	69	IO125RSB2	105	GND
34	GFC2/IO159PDB3	70	IO123RSB2	106	VPUMP
35	IO159NDB3	71	VCC	107	GNDQ
36	VCC	72	VCCIB2	108	TDO

FG144 – Bottom View

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

🌜 Microsemi.

	FG144 FG144 FG144		FG144		
Pin Number	A3P400 Function	Pin Number	A3P400 Function	Pin Number	A3P400 Function
A1	GNDQ	D1	IO149NDB3	G1	GFA1/IO145PPB3
A2	VMV0	D2	IO149PDB3	G2	GND
A3	GAB0/IO02RSB0	D3	IO153VDB3	G3	VCCPLF
A4	GAB1/IO03RSB0	D4	GAA2/IO155UPB3	G4	GFA0/IO145NPB3
A5	IO16RSB0	D5	GAC0/IO04RSB0	G5	GND
A6	GND	D6	GAC1/IO05RSB0	G6	GND
A7	IO30RSB0	D7	GBC0/IO54RSB0	G7	GND
A8	VCC	D8	GBC1/IO55RSB0	G8	GDC1/IO77UPB1
A9	IO34RSB0	D9	GBB2/IO61PDB1	G9	IO72NDB1
A10	GBA0/IO58RSB0	D10	IO61NDB1	G10	GCC2/IO72PDB1
A11	GBA1/IO59RSB0	D11	IO62NPB1	G11	IO71NDB1
A12	GNDQ	D12	GCB1/IO68PPB1	G12	GCB2/IO71PDB1
B1	GAB2/IO154UDB3	E1	VCC	H1	VCC
B2	GND	E2	GFC0/IO147NDB3	H2	GFB2/IO143PDB3
B3	GAA0/IO00RSB0	E3	GFC1/IO147PDB3	H3	GFC2/IO142PSB3
B4	GAA1/IO01RSB0	E4	VCCIB3	H4	GEC1/IO137PDB3
B5	IO14RSB0	E5	IO155VPB3	H5	VCC
B6	IO19RSB0	E6	VCCIB0	H6	IO75PDB1
B7	IO23RSB0	E7	VCCIB0	H7	IO75NDB1
B8	IO31RSB0	E8	GCC1/IO67PDB1	H8	GDB2/IO81RSB2
B9	GBB0/IO56RSB0	E9	VCCIB1	H9	GDC0/IO77VPB1
B10	GBB1/IO57RSB0	E10	VCC	H10	VCCIB1
B11	GND	E11	GCA0/IO69NDB1	H11	IO73PSB1
B12	VMV1	E12	IO70NDB1	H12	VCC
C1	IO154VDB3	F1	GFB0/IO146NPB3	J1	GEB1/IO136PDB3
C2	GFA2/IO144PPB3	F2	VCOMPLF	J2	IO143NDB3
C3	GAC2/IO153UDB3	F3	GFB1/IO146PPB3	J3	VCCIB3
C4	VCC	F4	IO144NPB3	J4	GEC0/IO137NDB3
C5	IO12RSB0	F5	GND	J5	IO125RSB2
C6	IO17RSB0	F6	GND	J6	IO116RSB2
C7	IO25RSB0	F7	GND	J7	VCC
C8	IO32RSB0	F8	GCC0/IO67NDB1	J8	ТСК
C9	IO53RSB0	F9	GCB0/IO68NPB1	J9	GDA2/IO80RSB2
C10	GBA2/IO60PDB1	F10	GND	J10	TDO
C11	IO60NDB1	F11	GCA1/IO69PDB1	J11	GDA1/IO79UDB1
C12	GBC2/IO62PPB1	F12	GCA2/IO70PDB1	J12	GDB1/IO78UDB1

FG144			
Pin Number	A3P600 Function		
K1	GEB0/IO145NDB3		
K2	GEA1/IO144PDB3		
K3	GEA0/IO144NDB3		
K4	GEA2/IO143RSB2		
K5	IO119RSB2		
K6	IO111RSB2		
K7	GND		
K8	IO94RSB2		
K9	GDC2/IO91RSB2		
K10	GND		
K11	GDA0/IO88NDB1		
K12	GDB0/IO87NDB1		
L1	GND		
L2	VMV3		
L3	GEB2/IO142RSB2		
L4	IO136RSB2		
L5	VCCIB2		
L6	IO115RSB2		
L7	IO103RSB2		
L8	IO97RSB2		
L9	TMS		
L10	VJTAG		
L11	VMV2		
L12	TRST		
M1	GNDQ		
M2	GEC2/IO141RSB2		
M3	IO138RSB2		
M4	IO123RSB2		
M5	IO126RSB2		
M6	IO134RSB2		
M7	IO108RSB2		
M8	IO99RSB2		
M9	TDI		
M10	VCCIB2		
M11	VPUMP		
M12	GNDQ		

	FG256 FG256 FG256		FG256		
Pin Number	A3P600 Function	Pin Number	A3P600 Function	Pin Number	A3P600 Function
G13	GCC1/IO69PPB1	K1	GFC2/IO159PDB3	M5	VMV3
G14	IO65NPB1	K2	IO161NPB3	M6	VCCIB2
G15	IO75PDB1	K3	IO156PPB3	M7	VCCIB2
G16	IO75NDB1	K4	IO129RSB2	M8	IO117RSB2
H1	GFB0/IO163NPB3	K5	VCCIB3	M9	IO110RSB2
H2	GFA0/IO162NDB3	K6	VCC	M10	VCCIB2
H3	GFB1/IO163PPB3	K7	GND	M11	VCCIB2
H4	VCOMPLF	K8	GND	M12	VMV2
H5	GFC0/IO164NPB3	K9	GND	M13	IO94RSB2
H6	VCC	K10	GND	M14	GDB1/IO87PPB1
H7	GND	K11	VCC	M15	GDC1/IO86PDB1
H8	GND	K12	VCCIB1	M16	IO84NDB1
H9	GND	K13	IO73NPB1	N1	IO150NDB3
H10	GND	K14	IO80NPB1	N2	IO147PPB3
H11	VCC	K15	IO74NPB1	N3	GEC1/IO146PPB3
H12	GCC0/IO69NPB1	K16	IO72NDB1	N4	IO140RSB2
H13	GCB1/IO70PPB1	L1	IO159NDB3	N5	GNDQ
H14	GCA0/IO71NPB1	L2	IO156NPB3	N6	GEA2/IO143RSB2
H15	IO67NPB1	L3	IO151PPB3	N7	IO126RSB2
H16	GCB0/IO70NPB1	L4	IO158PSB3	N8	IO120RSB2
J1	GFA2/IO161PPB3	L5	VCCIB3	N9	IO108RSB2
J2	GFA1/IO162PDB3	L6	GND	N10	IO103RSB2
J3	VCCPLF	L7	VCC	N11	IO99RSB2
J4	IO160NDB3	L8	VCC	N12	GNDQ
J5	GFB2/IO160PDB3	L9	VCC	N13	IO92RSB2
J6	VCC	L10	VCC	N14	VJTAG
J7	GND	L11	GND	N15	GDC0/IO86NDB1
J8	GND	L12	VCCIB1	N16	GDA1/IO88PDB1
J9	GND	L13	GDB0/IO87NPB1	P1	GEB1/IO145PDB3
J10	GND	L14	IO85NDB1	P2	GEB0/IO145NDB3
J11	VCC	L15	IO85PDB1	P3	VMV2
J12	GCB2/IO73PPB1	L16	IO84PDB1	P4	IO138RSB2
J13	GCA1/IO71PPB1	M1	IO150PDB3	P5	IO136RSB2
J14	GCC2/IO74PPB1	M2	IO151NPB3	P6	IO131RSB2
J15	IO80PPB1	M3	IO147NPB3	P7	IO124RSB2
J16	GCA2/IO72PDB1	M4	GEC0/IO146NPB3	P8	IO119RSB2

FG256				
Pin Number A3P600 Function				
P9	IO107RSB2			
P10	IO104RSB2			
P11	IO97RSB2			
P12	VMV1			
P13	ТСК			
P14	VPUMP			
P15	TRST			
P16	GDA0/IO88NDB1			
R1	GEA1/IO144PDB3			
R2	GEA0/IO144NDB3			
R3	IO139RSB2			
R4	GEC2/IO141RSB2			
R5	IO132RSB2			
R6	IO127RSB2			
R7	IO121RSB2			
R8	IO114RSB2			
R9	IO109RSB2			
R10	IO105RSB2			
R11	IO98RSB2			
R12	IO96RSB2			
R13	GDB2/IO90RSB2			
R14	TDI			
R15	GNDQ			
R16	TDO			
T1	GND			
T2	IO137RSB2			
Т3	GEB2/IO142RSB2			
T4	IO134RSB2			
T5	IO125RSB2			
Т6	IO123RSB2			
T7	IO118RSB2			
Т8	IO115RSB2			
Т9	IO111RSB2			
T10	IO106RSB2			
T11	IO102RSB2			
T12	GDC2/IO91RSB2			

FG256			
Pin Number	A3P600 Function		
T13	IO93RSB2		
T14	GDA2/IO89RSB2		
T15	TMS		
T16	GND		

🌜 Microsemi.

	FG484		FG484		FG484
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function
K19	IO88NDB1	M11	GND	P3	IO199NDB3
K20	IO94NPB1	M12	GND	P4	IO202NDB3
K21	IO98NDB1	M13	GND	P5	IO202PDB3
K22	IO98PDB1	M14	VCC	P6	IO196PPB3
L1	NC	M15	GCB2/IO95PPB1	P7	IO193PPB3
L2	IO200PDB3	M16	GCA1/IO93PPB1	P8	VCCIB3
L3	IO210NPB3	M17	GCC2/IO96PPB1	P9	GND
L4	GFB0/IO208NPB3	M18	IO100PPB1	P10	VCC
L5	GFA0/IO207NDB3	M19	GCA2/IO94PPB1	P11	VCC
L6	GFB1/IO208PPB3	M20	IO101PPB1	P12	VCC
L7	VCOMPLF	M21	IO99PPB1	P13	VCC
L8	GFC0/IO209NPB3	M22	NC	P14	GND
L9	VCC	N1	IO201NDB3	P15	VCCIB1
L10	GND	N2	IO201PDB3	P16	GDB0/IO112NPB1
L11	GND	N3	NC	P17	IO106NDB1
L12	GND	N4	GFC2/IO204PDB3	P18	IO106PDB1
L13	GND	N5	IO204NDB3	P19	IO107PDB1
L14	VCC	N6	IO203NDB3	P20	NC
L15	GCC0/IO91NPB1	N7	IO203PDB3	P21	IO104PDB1
L16	GCB1/IO92PPB1	N8	VCCIB3	P22	IO103NDB1
L17	GCA0/IO93NPB1	N9	VCC	R1	NC
L18	IO96NPB1	N10	GND	R2	IO197PPB3
L19	GCB0/IO92NPB1	N11	GND	R3	VCC
L20	IO97PDB1	N12	GND	R4	IO197NPB3
L21	IO97NDB1	N13	GND	R5	IO196NPB3
L22	IO99NPB1	N14	VCC	R6	IO193NPB3
M1	NC	N15	VCCIB1	R7	GEC0/IO190NPB3
M2	IO200NDB3	N16	IO95NPB1	R8	VMV3
M3	IO206NDB3	N17	IO100NPB1	R9	VCCIB2
M4	GFA2/IO206PDB3	N18	IO102NDB1	R10	VCCIB2
M5	GFA1/IO207PDB3	N19	IO102PDB1	R11	IO147RSB2
M6	VCCPLF	N20	NC	R12	IO136RSB2
M7	IO205NDB3	N21	IO101NPB1	R13	VCCIB2
M8	GFB2/IO205PDB3	N22	IO103PDB1	R14	VCCIB2
M9	VCC	P1	NC	R15	VMV2
M10	GND	P2	IO199PDB3	R16	IO110NDB1

Revision	Changes	Page
Revision 10 (September 2011)	The "In-System Programming (ISP) and Security" section and Security section were revised to clarify that although no existing security measures can give an absolute guarantee, Microsemi FPGAs implement the best security available in the industry (SAR 32865).	I
	The value of 34 I/Os for the QN48 package in A3P030 was added to the "I/Os Per Package 1" section (SAR 33907).	Ш
	The Y security option and Licensed DPA Logo were added to the "ProASIC3 Ordering Information" section. The trademarked Licensed DPA Logo identifies that a product is covered by a DPA counter-measures license from Cryptography Research (SAR 32151).	IV
	The "Specifying I/O States During Programming" section is new (SAR 21281).	1-7
	In Table 2-2 • Recommended Operating Conditions 1, VPUMP programming voltage in programming mode was changed from "3.0 to 3.6" to "3.15 to 3.45" (SAR 30666). It was corrected in v2.0 of this datasheet in April 2007 but inadvertently changed back to "3.0 to 3.6 V" in v1.4 in August 2009. The following changes were made to Table 2-2 • Recommended Operating Conditions 1: VCCPLL analog power supply (PLL) was changed from "1.4 to 1.6" to "1.425 to 1.575" (SAR 33850). For VCCI and VMV, values for 3.3 V DC and 3.3 V DC Wide Range were corrected. The correct value for 3.3 V DC is "3.0 to 3.6 V" and the correct value for 3.3 V Wide Range is "2.7 to 3.6" (SAR 33848).	2-2
	Table 2-25 • Summary of I/O Timing Characteristics—Software Default Settings was update to restore values to the correct columns. Previously the Slew Rate column was missing and data were aligned incorrectly (SAR 34034).	2-24
	The notes regarding drive strength in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section and "3.3 V LVCMOS Wide Range" section tables were revised for clarification. They now state that the minimum drive strength for the default software configuration when run in wide range is $\pm 100 \ \mu$ A. The drive strength displayed in software is supported in normal range only. For a detailed I/V curve, refer to the IBIS models (SAR 25700).	2-22, 2-39