

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	147456
Number of I/O	177
Number of Gates	100000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m7a3p1000-2fg256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Calculating Power Dissipation

Quiescent Supply Current

Table 2-7 • Quiescent Supply Current Characteristics

	A3P015	A3P030	A3P060	A3P125	A3P250	A3P400	A3P600	A3P1000
Typical (25°C)	2 mA	2 mA	2 mA	2 mA	3 mA	3 mA	5 mA	8 mA
Max. (Commercial)	10 mA	10 mA	10 mA	10 mA	20 mA	20 mA	30 mA	50 mA
Max. (Industrial)	15 mA	15 mA	15 mA	15 mA	30 mA	30 mA	45 mA	75 mA

Note: IDD Includes VCC, VPUMP, VCCI, and VMV currents. Values do not include I/O static contribution, which is shown in Table 2-11 and Table 2-12 on page 2-9.

Power per I/O Pin

Table 2-8 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Advanced I/O Banks

	VMV (V)	Static Power P _{DC2} (mW) ¹	Dynamic Power PAC9 (μW/MHz) ²
Single-Ended		1	
3.3 V LVTTL / 3.3 V LVCMOS	3.3	-	16.22
3.3 V LVCMOS Wide Range ³	3.3	-	16.22
2.5 V LVCMOS	2.5	-	5.12
1.8 V LVCMOS	1.8	-	2.13
1.5 V LVCMOS (JESD8-11)	1.5	-	1.45
3.3 V PCI	3.3	-	18.11
3.3 V PCI-X	3.3	-	18.11
Differential			
LVDS	2.5	2.26	1.20
LVPECL	3.3	5.72	1.87

Notes:

- 1. PDC2 is the static power (where applicable) measured on VMV.
- 2. PAC9 is the total dynamic power measured on VCC and VMV.
- 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Table 2-9 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Standard Plus I/O Banks

	VMV (V)	Static Power PDC2 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
Single-Ended			
3.3 V LVTTL / 3.3 V LVCMOS	3.3	-	16.23
3.3 V LVCMOS Wide Range ³	3.3	-	16.23

Notes:

- 1. PDC2 is the static power (where applicable) measured on VMV.
- 2. PAC9 is the total dynamic power measured on VCC and VMV.
- 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Table 2-13 • Summary of I/O Output Buffer Power (Per Pin) – Default I/O Software Settings ¹ Applicable to Standard I/O Banks

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC3 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	35	3.3	-	431.08
3.3 V LVCMOS Wide Range ⁴	35	3.3	-	431.08
2.5 V LVCMOS	35	2.5	-	247.36
1.8 V LVCMOS	35	1.8	-	128.46
1.5 V LVCMOS (JESD8-11)	35	1.5	-	89.46

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

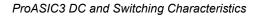
2. P_{DC3} is the static power (where applicable) measured on VCCI.

3. P_{AC10} is the total dynamic power measured on VCC and VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Table 2-29 • I/O Output Buffer Maximum Resistances ¹ Applicable to Standard Plus I/O Banks

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	R _{PULL-UP} (Ω) ³
3.3 V LVTTL / 3.3 V	2 mA	100	300
LVCMOS	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
	12 mA	25	75
	16 mA	25	75
3.3 V LVCMOS Wide Range ⁴	100 µA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
-	6 mA	50	100
	8 mA	50	100
	12 mA	25	50
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
	6 mA	50	56
	8 mA	50	56
1.5 V LVCMOS	2 mA	200	224
Γ	4 mA	100	112
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	25	75


Notes:

 These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

^{2.} R_(PULL-DOWN-MAX) = (VOLspec) / IOLspec

^{3.} R_(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec

Table 2-54 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

	Applicable to	Stanuaru i		S								
Drive Strength	Equiv. Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{eout}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
100 µA	2 mA	Std.	0.60	10.93	0.04	1.52	0.43	10.93	9.46	3.20	3.32	ns
		-1	0.51	9.29	0.04	1.29	0.36	9.29	8.04	2.72	2.82	ns
		-2	0.45	8.16	0.03	1.13	0.32	8.16	7.06	2.39	2.48	ns
100 µA	4 mA	Std.	0.60	10.93	0.04	1.52	0.43	10.93	9.46	3.20	3.32	ns
		-1	0.51	9.29	0.04	1.29	0.36	9.29	8.04	2.72	2.82	ns
		-2	0.45	8.16	0.03	1.13	0.32	8.16	7.06	2.39	2.48	ns
100 µA	6 mA	Std.	0.60	6.82	0.04	1.52	0.43	6.82	5.70	3.70	4.16	ns
		-1	0.51	5.80	0.04	1.29	0.36	5.80	4.85	3.15	3.54	ns
		-2	0.45	5.09	0.03	1.13	0.32	5.09	4.25	2.77	3.11	ns
100 µA	8 mA	Std.	0.60	6.82	0.04	1.52	0.43	6.82	5.70	3.70	4.16	ns
		-1	0.51	5.80	0.04	1.29	0.36	5.80	4.85	3.15	3.54	ns
		-2	0.45	5.09	0.03	1.13	0.32	5.09	4.25	2.77	3.11	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is $\pm 100 \ \mu$ A. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. Software default selection highlighted in gray.

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-71 • 1.8 V LVCMOS Low Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Advanced I/O Banks

			uvanced		anne								
Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.66	15.53	0.04	1.22	0.43	14.11	15.53	2.78	1.60	16.35	17.77	ns
	–1	0.56	13.21	0.04	1.04	0.36	12.01	13.21	2.36	1.36	13.91	15.11	ns
	-2	0.49	11.60	0.03	0.91	0.32	10.54	11.60	2.07	1.19	12.21	13.27	ns
4 mA	Std.	0.66	10.48	0.04	1.22	0.43	10.41	10.48	3.23	2.73	12.65	12.71	ns
	-1	0.56	8.91	0.04	1.04	0.36	8.86	8.91	2.75	2.33	10.76	10.81	ns
	-2	0.49	7.82	0.03	0.91	0.32	7.77	7.82	2.41	2.04	9.44	9.49	ns
6 mA	Std.	0.66	8.05	0.04	1.22	0.43	8.20	7.84	3.54	3.27	10.43	10.08	ns
	-1	0.56	6.85	0.04	1.04	0.36	6.97	6.67	3.01	2.78	8.88	8.57	ns
	-2	0.49	6.01	0.03	0.91	0.32	6.12	5.86	2.64	2.44	7.79	7.53	ns
8 mA	Std.	0.66	7.50	0.04	1.22	0.43	7.64	7.30	3.61	3.41	9.88	9.53	ns
	-1	0.56	6.38	0.04	1.04	0.36	6.50	6.21	3.07	2.90	8.40	8.11	ns
	-2	0.49	5.60	0.03	0.91	0.32	5.71	5.45	2.69	2.55	7.38	7.12	ns
12 mA	Std.	0.66	7.29	0.04	1.22	0.43	7.23	7.29	3.71	3.95	9.47	9.53	ns
	-1	0.56	6.20	0.04	1.04	0.36	6.15	6.20	3.15	3.36	8.06	8.11	ns
	-2	0.49	5.45	0.03	0.91	0.32	5.40	5.45	2.77	2.95	7.07	7.12	ns
16 mA	Std.	0.66	7.29	0.04	1.22	0.43	7.23	7.29	3.71	3.95	9.47	9.53	ns
	–1	0.56	6.20	0.04	1.04	0.36	6.15	6.20	3.15	3.36	8.06	8.11	ns
	-2	0.49	5.45	0.03	0.91	0.32	5.40	5.45	2.77	2.95	7.07	7.12	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

DC Parameter	Description	Min.	Тур.	Max.	Units
VCCI	Supply Voltage	2.375	2.5	2.625	V
VOL	Output Low Voltage	0.9	1.075	1.25	V
VOH	Output High Voltage	1.25	1.425	1.6	V
IOL ¹	Output Lower Current	0.65	0.91	1.16	mA
IOH ¹	Output High Current	0.65	0.91	1.16	mA
VI	Input Voltage	0		2.925	V
IIH ^{2,3}	Input High Leakage Current			10	μA
IIL ^{2,4}	Input Low Leakage Current			10	μA
VODIFF	Differential Output Voltage	250	350	450	mV
VOCM	Output Common Mode Voltage	1.125	1.25	1.375	V
VICM	Input Common Mode Voltage	0.05	1.25	2.35	V
VIDIFF	Input Differential Voltage	100	350		mV

Table 2-90 • LVDS Minimum and Maximum DC Input and Output Levels

Notes:

1. IOL/IOH defined by VODIFF/(Resistor Network)

2. Currents are measured at 85°C junction temperature.

- 3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN <VCCI. Input current is larger when operating outside recommended ranges.
- 4. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN <VIL.

Table 2-91 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)
1.075	1.325	Cross point

Note: *Measuring point = $V_{trip.}$ See Table 2-22 on page 2-22 for a complete table of trip points.

Timing Characteristics

Table 2-92 • LVDS

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.66	1.83	0.04	1.60	ns
-1	0.56	1.56	0.04	1.36	ns
-2	0.49	1.37	0.03	1.20	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Timing Characteristics

Table 2-107 • A3P015 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		-2 -1		S				
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.66	0.81	0.75	0.92	0.88	1.08	ns
t _{RCKH}	Input High Delay for Global Clock	0.67	0.84	0.76	0.96	0.89	1.13	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.18		0.21		0.25	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage-supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-108 • A3P030 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		-	-2		-1		Std.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.67	0.81	0.76	0.92	0.89	1.09	ns
t _{RCKH}	Input High Delay for Global Clock	0.68	0.85	0.77	0.97	0.91	1.14	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.18		0.21		0.24	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-109 • A3P060 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		-	-2	-	-1	S	td.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.71	0.93	0.81	1.05	0.95	1.24	ns
t _{RCKH}	Input High Delay for Global Clock	0.70	0.96	0.80	1.09	0.94	1.28	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns

Microse

Power Matters.

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-110 • A3P125 Global Resource

```
Commercial-Case Conditions: T<sub>J</sub> = 70°C, VCC = 1.425 V
```

		-	-2	-	-1	S	td.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.77	0.99	0.87	1.12	1.03	1.32	ns
t _{RCKH}	Input High Delay for Global Clock	0.76	1.02	0.87	1.16	1.02	1.37	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Timing Characteristics

Table 2-118 • FIFO (for all dies except A3P250)Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ENS}	REN, WEN Setup Time	1.34	1.52	1.79	ns
t _{ENH}	REN, WEN Hold Time	0.00	0.00	0.00	ns
t _{BKS}	BLK Setup Time	0.19	0.22	0.26	ns
t _{BKH}	BLK Hold Time	0.00	0.00	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.18	0.21	0.25	ns
t _{DH}	Input Data (WD) Hold Time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	2.17	2.47	2.90	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	0.94	1.07	1.26	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	1.72	1.96	2.30	ns
t _{WCKFF}	WCLK High to Full Flag Valid	1.63	1.86	2.18	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	6.19	7.05	8.29	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	1.69	1.93	2.27	ns
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	6.13	6.98	8.20	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	0.92	1.05	1.23	ns
	RESET Low to Data Out Low on RD (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET Removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET Recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.21	0.24	0.29	ns
t _{CYC}	Clock Cycle Time	3.23	3.68	4.32	ns
F _{MAX}	Maximum Frequency for FIFO	310	272	231	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements.

Special Function Pins

NC

No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

DC Do Not Connect

This pin should not be connected to any signals on the PCB. These pins should be left unconnected.

Related Documents

User's Guides

ProASIC FPGA Fabric User's Guide http://www.microsemi.com/soc/documents/PA3_UG.pdf

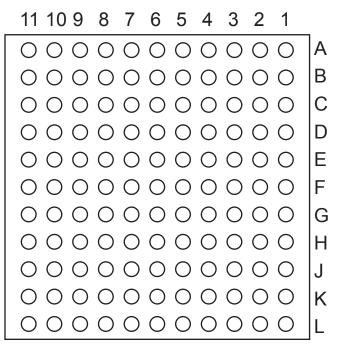
Packaging

The following documents provide packaging information and device selection for low power flash devices.

Product Catalog

http://www.microsemi.com/soc/documents/ProdCat_PIB.pdf

Lists devices currently recommended for new designs and the packages available for each member of the family. Use this document or the datasheet tables to determine the best package for your design, and which package drawing to use.


Package Mechanical Drawings

http://www.microsemi.com/soc/documents/PckgMechDrwngs.pdf

This document contains the package mechanical drawings for all packages currently or previously supplied by Actel. Use the bookmarks to navigate to the package mechanical drawings.

Additional packaging materials are at http://www.microsemi.com/products/solutions/package/docs.aspx.

CS121 – Bottom View

Note: The die attach paddle center of the package is tied to ground (GND).

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

Package Pin Assignments

VQ100		V	Q100	VQ100			
Pin Number	A3P060 Function	Pin Number	A3P060 Function	Pin Number	A3P060 Function		
1	GND	37	VCC	73	GBA2/IO25RSB0		
2	GAA2/IO51RSB1	38	GND	74	VMV0		
3	IO52RSB1	39	VCCIB1	75	GNDQ		
4	GAB2/IO53RSB1	40	IO60RSB1	76	GBA1/IO24RSB0		
5	IO95RSB1	41	IO59RSB1	77	GBA0/IO23RSB0		
6	GAC2/IO94RSB1	42	IO58RSB1	78	GBB1/IO22RSB0		
7	IO93RSB1	43	IO57RSB1	79	GBB0/IO21RSB0		
8	IO92RSB1	44	GDC2/IO56RSB1	80	GBC1/IO20RSB0		
9	GND	45	GDB2/IO55RSB1	81	GBC0/IO19RSB0		
10	GFB1/IO87RSB1	46	GDA2/IO54RSB1	82	IO18RSB0		
11	GFB0/IO86RSB1	47	ТСК	83	IO17RSB0		
12	VCOMPLF	48	TDI	84	IO15RSB0		
13	GFA0/IO85RSB1	49	TMS	85	IO13RSB0		
14	VCCPLF	50	VMV1	86	IO11RSB0		
15	GFA1/IO84RSB1	51	GND	87	VCCIB0		
16	GFA2/IO83RSB1	52	VPUMP	88	GND		
17	VCC	53	NC	89	VCC		
18	VCCIB1	54	TDO	90	IO10RSB0		
19	GEC1/IO77RSB1	55	TRST	91	IO09RSB0		
20	GEB1/IO75RSB1	56	VJTAG	92	IO08RSB0		
21	GEB0/IO74RSB1	57	GDA1/IO49RSB0	93	GAC1/IO07RSB0		
22	GEA1/IO73RSB1	58	GDC0/IO46RSB0	94	GAC0/IO06RSB0		
23	GEA0/IO72RSB1	59	GDC1/IO45RSB0	95	GAB1/IO05RSB0		
24	VMV1	60	GCC2/IO43RSB0	96	GAB0/IO04RSB0		
25	GNDQ	61	GCB2/IO42RSB0	97	GAA1/IO03RSB0		
26	GEA2/IO71RSB1	62	GCA0/IO40RSB0	98	GAA0/IO02RSB0		
27	GEB2/IO70RSB1	63	GCA1/IO39RSB0	99	IO01RSB0		
28	GEC2/IO69RSB1	64	GCC0/IO36RSB0	100	IO00RSB0		
29	IO68RSB1	65	GCC1/IO35RSB0		-		
30	IO67RSB1	66	VCCIB0				
31	IO66RSB1	67	GND				
32	IO65RSB1	68	VCC				
33	IO64RSB1	69	IO31RSB0				
34	IO63RSB1	70	GBC2/IO29RSB0				
35	IO62RSB1	71	GBB2/IO27RSB0				
36	IO61RSB1	72	IO26RSB0				

PQ208		F	PQ208	PQ208		
Pin Number	A3P600 Function	Pin Number	A3P600 Function	Pin Number	A3P600 Function	
1	GND	37	IO152PDB3	73	IO120RSB2	
2	GAA2/IO174PDB3	38	IO152NDB3	74	IO119RSB2	
3	IO174NDB3	39	IO150PSB3	75	IO118RSB2	
4	GAB2/IO173PDB3	40	VCCIB3	76	IO117RSB2	
5	IO173NDB3	41	GND	77	IO116RSB2	
6	GAC2/IO172PDB3	42	IO147PDB3	78	IO115RSB2	
7	IO172NDB3	43	IO147NDB3	79	IO114RSB2	
8	IO171PDB3	44	GEC1/IO146PDB3	80	IO112RSB2	
9	IO171NDB3	45	GEC0/IO146NDB3	81	GND	
10	IO170PDB3	46	GEB1/IO145PDB3	82	IO111RSB2	
11	IO170NDB3	47	GEB0/IO145NDB3	83	IO110RSB2	
12	IO169PDB3	48	GEA1/IO144PDB3	84	IO109RSB2	
13	IO169NDB3	49	GEA0/IO144NDB3	85	IO108RSB2	
14	IO168PDB3	50	VMV3	86	IO107RSB2	
15	IO168NDB3	51	GNDQ	87	IO106RSB2	
16	VCC	52	GND	88	VCC	
17	GND	53	VMV2	89	VCCIB2	
18	VCCIB3	54	GEA2/IO143RSB2	90	IO104RSB2	
19	IO166PDB3	55	GEB2/IO142RSB2	91	IO102RSB2	
20	IO166NDB3	56	GEC2/IO141RSB2	92	IO100RSB2	
21	GFC1/IO164PDB3	57	IO140RSB2	93	IO98RSB2	
22	GFC0/IO164NDB3	58	IO139RSB2	94	IO96RSB2	
23	GFB1/IO163PDB3	59	IO138RSB2	95	IO92RSB2	
24	GFB0/IO163NDB3	60	IO137RSB2	96	GDC2/IO91RSB2	
25	VCOMPLF	61	IO136RSB2	97	GND	
26	GFA0/IO162NPB3	62	VCCIB2	98	GDB2/IO90RSB2	
27	VCCPLF	63	IO135RSB2	99	GDA2/IO89RSB2	
28	GFA1/IO162PPB3	64	IO133RSB2	100	GNDQ	
29	GND	65	GND	101	ТСК	
30	GFA2/IO161PDB3	66	IO131RSB2	102	TDI	
31	IO161NDB3	67	IO129RSB2	103	TMS	
32	GFB2/IO160PDB3	68	IO127RSB2	104	VMV2	
33	IO160NDB3	69	IO125RSB2	105	GND	
34	GFC2/IO159PDB3	70	IO123RSB2	106	VPUMP	
35	IO159NDB3	71	VCC	107	GNDQ	
36	VCC	72	VCCIB2	108	TDO	

Package Pin Assignments

PQ208		PQ208		PQ208			
Pin Number	A3P600 Function	Pin Number	A3P600 Function	Pin Number	A3P600 Function		
109	TRST	145	IO64PDB1	181	IO27RSB0		
110	VJTAG	146	IO63NDB1	182	IO26RSB0		
111	GDA0/IO88NDB1	147	IO63PDB1	183	IO25RSB0		
112	GDA1/IO88PDB1	148	IO62NDB1	184	IO24RSB0		
113	GDB0/IO87NDB1	149	GBC2/IO62PDB1	185	IO23RSB0		
114	GDB1/IO87PDB1	150	IO61NDB1	186	VCCIB0		
115	GDC0/IO86NDB1	151	GBB2/IO61PDB1	187	VCC		
116	GDC1/IO86PDB1	152	IO60NDB1	188	IO20RSB0		
117	IO84NDB1	153	GBA2/IO60PDB1	189	IO19RSB0		
118	IO84PDB1	154	VMV1	190	IO18RSB0		
119	IO82NDB1	155	GNDQ	191	IO17RSB0		
120	IO82PDB1	156	GND	192	IO16RSB0		
121	IO81PSB1	157	VMV0	193	IO14RSB0		
122	GND	158	GBA1/IO59RSB0	194	IO12RSB0		
123	VCCIB1	159	GBA0/IO58RSB0	195	GND		
124	IO77NDB1	160	GBB1/IO57RSB0	196	IO10RSB0		
125	IO77PDB1	161	GBB0/IO56RSB0	197	IO09RSB0		
126	NC	162	GND	198	IO08RSB0		
127	IO74NDB1	163	GBC1/IO55RSB0	199	IO07RSB0		
128	GCC2/IO74PDB1	164	GBC0/IO54RSB0	200	VCCIB0		
129	GCB2/IO73PSB1	165	IO52RSB0	201	GAC1/IO05RSB0		
130	GND	166	IO50RSB0	202	GAC0/IO04RSB0		
131	GCA2/IO72PSB1	167	IO48RSB0	203	GAB1/IO03RSB0		
132	GCA1/IO71PDB1	168	IO46RSB0	204	GAB0/IO02RSB0		
133	GCA0/IO71NDB1	169	IO44RSB0	205	GAA1/IO01RSB0		
134	GCB0/IO70NDB1	170	VCCIB0	206	GAA0/IO00RSB0		
135	GCB1/IO70PDB1	171	VCC	207	GNDQ		
136	GCC0/IO69NDB1	172	IO36RSB0	208	VMV0		
137	GCC1/IO69PDB1	173	IO35RSB0				
138	IO67NDB1	174	IO34RSB0				
139	IO67PDB1	175	IO33RSB0				
140	VCCIB1	176	IO32RSB0				
141	GND	177	IO31RSB0				
142	VCC	178	GND				
143	IO65PSB1	179	IO29RSB0				
144	IO64NDB1	180	IO28RSB0				

F	G144
Pin Number	A3P060 Function
K1	GEB0/IO74RSB1
K2	GEA1/IO73RSB1
K3	GEA0/IO72RSB1
K4	GEA2/IO71RSB1
K5	IO65RSB1
K6	IO64RSB1
K7	GND
K8	IO57RSB1
K9	GDC2/IO56RSB1
K10	GND
K11	GDA0/IO50RSB0
K12	GDB0/IO48RSB0
L1	GND
L2	VMV1
L3	GEB2/IO70RSB1
L4	IO67RSB1
L5	VCCIB1
L6	IO62RSB1
L7	IO59RSB1
L8	IO58RSB1
L9	TMS
L10	VJTAG
L11	VMV1
L12	TRST
M1	GNDQ
M2	GEC2/IO69RSB1
M3	IO68RSB1
M4	IO66RSB1
M5	IO63RSB1
M6	IO61RSB1
M7	IO60RSB1
M8	NC
M9	TDI
M10	VCCIB1
M11	VPUMP
M12	GNDQ

🌜 Microsemi.

Package Pin Assignments

FG144		F	G144	F	G144
Pin Number	A3P250 Function	Pin Number	A3P250 Function	Pin Number	A3P250 Function
A1	GNDQ	D1	IO112NDB3	G1	GFA1/IO108PPB3
A2	VMV0	D2	IO112PDB3	G2	GND
A3	GAB0/IO02RSB0	D3	IO116VDB3	G3	VCCPLF
A4	GAB1/IO03RSB0	D4	GAA2/IO118UPB3	G4	GFA0/IO108NPB3
A5	IO16RSB0	D5	GAC0/IO04RSB0	G5	GND
A6	GND	D6	GAC1/IO05RSB0	G6	GND
A7	IO29RSB0	D7	GBC0/IO35RSB0	G7	GND
A8	VCC	D8	GBC1/IO36RSB0	G8	GDC1/IO58UPB1
A9	IO33RSB0	D9	GBB2/IO42PDB1	G9	IO53NDB1
A10	GBA0/IO39RSB0	D10	IO42NDB1	G10	GCC2/IO53PDB1
A11	GBA1/IO40RSB0	D11	IO43NPB1	G11	IO52NDB1
A12	GNDQ	D12	GCB1/IO49PPB1	G12	GCB2/IO52PDB1
B1	GAB2/IO117UDB3	E1	VCC	H1	VCC
B2	GND	E2	GFC0/IO110NDB3	H2	GFB2/IO106PDB3
B3	GAA0/IO00RSB0	E3	GFC1/IO110PDB3	H3	GFC2/IO105PSB3
B4	GAA1/IO01RSB0	E4	VCCIB3	H4	GEC1/IO100PDB3
B5	IO14RSB0	E5	IO118VPB3	H5	VCC
B6	IO19RSB0	E6	VCCIB0	H6	IO79RSB2
B7	IO22RSB0	E7	VCCIB0	H7	IO65RSB2
B8	IO30RSB0	E8	GCC1/IO48PDB1	H8	GDB2/IO62RSB2
B9	GBB0/IO37RSB0	E9	VCCIB1	H9	GDC0/IO58VPB1
B10	GBB1/IO38RSB0	E10	VCC	H10	VCCIB1
B11	GND	E11	GCA0/IO50NDB1	H11	IO54PSB1
B12	VMV1	E12	IO51NDB1	H12	VCC
C1	IO117VDB3	F1	GFB0/IO109NPB3	J1	GEB1/IO99PDB3
C2	GFA2/IO107PPB3	F2	VCOMPLF	J2	IO106NDB3
C3	GAC2/IO116UDB3	F3	GFB1/IO109PPB3	J3	VCCIB3
C4	VCC	F4	IO107NPB3	J4	GEC0/IO100NDB3
C5	IO12RSB0	F5	GND	J5	IO88RSB2
C6	IO17RSB0	F6	GND	J6	IO81RSB2
C7	IO24RSB0	F7	GND	J7	VCC
C8	IO31RSB0	F8	GCC0/IO48NDB1	J8	ТСК
C9	IO34RSB0	F9	GCB0/IO49NPB1	J9	GDA2/IO61RSB2
C10	GBA2/IO41PDB1	F10	GND	J10	TDO
C11	IO41NDB1	F11	GCA1/IO50PDB1	J11	GDA1/IO60UDB1
C12	GBC2/IO43PPB1	F12	GCA2/IO51PDB1	J12	GDB1/IO59UDB1

FG144					
Pin Number	A3P1000 Function				
K1	GEB0/IO189NDB3				
K2	GEA1/IO188PDB3				
K3	GEA0/IO188NDB3				
K4	GEA2/IO187RSB2				
K5	IO169RSB2				
K6	IO152RSB2				
K7	GND				
K8	IO117RSB2				
K9	GDC2/IO116RSB2				
K10	GND				
K11	GDA0/IO113NDB1				
K12	GDB0/IO112NDB1				
L1	GND				
L2	VMV3				
L3	GEB2/IO186RSB2				
L4	IO172RSB2				
L5	VCCIB2				
L6	IO153RSB2				
L7	IO144RSB2				
L8	IO140RSB2				
L9	TMS				
L10	VJTAG				
L11	VMV2				
L12	TRST				
M1	GNDQ				
M2	GEC2/IO185RSB2				
M3	IO173RSB2				
M4	IO168RSB2				
M5	IO161RSB2				
M6	IO156RSB2				
M7	IO145RSB2				
M8	IO141RSB2				
M9	TDI				
M10	VCCIB2				
M11	VPUMP				
M12	GNDQ				

1		-	
F	FG484		FG484
Pin Number	A3P400 Function	Pin Number	A3P400 Function
R17	GDB1/IO78UPB1	U9	IO122RSB2
R18	GDC1/IO77UDB1	U10	IO115RSB2
R19	IO75NDB1	U11	IO110RSB2
R20	VCC	U12	IO98RSB2
R21	NC	U13	IO95RSB2
R22	NC	U14	IO88RSB2
T1	NC	U15	IO84RSB2
T2	NC	U16	ТСК
Т3	NC	U17	VPUMP
T4	IO140NDB3	U18	TRST
T5	IO138PPB3	U19	GDA0/IO79VDB1
T6	GEC1/IO137PPB3	U20	NC
T7	IO131RSB2	U21	NC
Т8	GNDQ	U22	NC
Т9	GEA2/IO134RSB2	V1	NC
T10	IO117RSB2	V2	NC
T11	IO111RSB2	V3	GND
T12	IO99RSB2	V4	GEA1/IO135PDB3
T13	IO94RSB2	V5	GEA0/IO135NDB3
T14	IO87RSB2	V6	IO127RSB2
T15	GNDQ	V7	GEC2/IO132RSB2
T16	IO93RSB2	V8	IO123RSB2
T17	VJTAG	V9	IO118RSB2
T18	GDC0/IO77VDB1	V10	IO112RSB2
T19	GDA1/IO79UDB1	V11	IO106RSB2
T20	NC	V12	IO100RSB2
T21	NC	V13	IO96RSB2
T22	NC	V14	IO89RSB2
U1	NC	V15	IO85RSB2
U2	NC	V16	GDB2/IO81RSB2
U3	NC	V17	TDI
U4	GEB1/IO136PDB3	V18	NC
U5	GEB0/IO136NDB3	V19	TDO
U6	VMV2	V20	GND
U7	IO129RSB2	V21	NC
U8	IO128RSB2	V22	NC

FG484					
Pin Number	A3P400 Function				
W1	NC				
W2	NC				
W3	NC				
W4	GND				
W5	IO126RSB2				
W6	GEB2/IO133RSB2				
W7	IO124RSB2				
W8	IO116RSB2				
W9	IO113RSB2				
W10	IO107RSB2				
W11	IO105RSB2				
W12	IO102RSB2				
W13	IO97RSB2				
W14	IO92RSB2				
W15	GDC2/IO82RSB2				
W16	IO86RSB2				
W17	GDA2/IO80RSB2				
W18	TMS				
W19	GND				
W20	NC				
W21	NC				
W22	NC				
Y1	VCCIB3				
Y2	NC				
Y3	NC				
Y4	NC				
Y5	GND				
Y6	NC				
Y7	NC				
Y8	VCC				
Y9	VCC				
Y10	NC				
Y11	NC				
Y12	NC				
Y13	NC				
Y14	VCC				

Datasheet Information

Revision	Changes	Page
v2.0 (April 2007)	In the "Packaging Tables", Ambient was deleted.	ii
	The timing characteristics tables were updated.	N/A
	The "PLL Macro" section was updated to add information on the VCO and PLL outputs during power-up.	2-15
	The "PLL Macro" section was updated to include power-up information.	2-15
	Table 2-11 • ProASIC3 CCC/PLL Specification was updated.	2-29
	Figure 2-19 • Peak-to-Peak Jitter Definition is new.	2-18
	The "SRAM and FIFO" section was updated with operation and timing requirement information.	2-21
	The "RESET" section was updated with read and write information.	2-25
	The "RESET" section was updated with read and write information.	2-25
	The "Introduction" in the "Advanced I/Os" section was updated to include information on input and output buffers being disabled.	2-28
	PCI-X 3.3 V was added to Table 2-11 • VCCI Voltages and Compatible Standards.	2-29
	In the Table 2-15 • Levels of Hot-Swap Support, the ProASIC3 compliance descriptions were updated for levels 3 and 4.	2-34
	Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices was updated.	2-64
	Notes 3, 4, and 5 were added to Table 2-17 \cdot Comparison Table for 5 V–Compliant Receiver Scheme. 5 x 52.72 was changed to 52.7 and the Maximum current was updated from 4 x 52.7 to 5 x 52.7.	2-40
	The "VCCPLF PLL Supply Voltage" section was updated.	2-50
	The "VPUMP Programming Supply Voltage" section was updated.	2-50
	The "GL Globals" section was updated to include information about direct input into quadrant clocks.	2-51
	V _{JTAG} was deleted from the "TCK Test Clock" section.	2-51
	In Table 2-22 • Recommended Tie-Off Values for the TCK and TRST Pins, TSK was changed to TCK in note 2. Note 3 was also updated.	2-51
	Ambient was deleted from Table 3-2 • Recommended Operating Conditions. VPUMP programming mode was changed from "3.0 to 3.6" to "3.15 to 3.45".	3-2
	Note 3 is new in Table 3-4 • Overshoot and Undershoot Limits (as measured on quiet I/Os)1.	3-2
	In EQ 3-2, 150 was changed to 110 and the result changed from 3.9 to 1.951.	3-5
	Table 3-6 • Temperature and Voltage Derating Factors for Timing Delays was updated.	3-6
	Table 3-5 • Package Thermal Resistivities was updated.	3-5
	Table 3-14 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings (Advanced) and Table 3-17 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions (Standard Plus) were updated.	3-17 to 3- 17

Revision	Changes	Page
Advance v0.6 (continued)	The "Programming" section was updated to include information concerning serialization.	2-53
	The "JTAG 1532" section was updated to include SAMPLE/PRELOAD information.	2-54
	"DC and Switching Characteristics" chapter was updated with new information.	3-1
	The A3P060 "100-Pin VQFP" pin table was updated.	4-13
	The A3P125 "100-Pin VQFP" pin table was updated.	4-13
	The A3P060 "144-Pin TQFP" pin table was updated.	4-16
	The A3P125 "144-Pin TQFP" pin table was updated.	4-18
	The A3P125 "208-Pin PQFP" pin table was updated.	4-21
	The A3P400 "208-Pin PQFP" pin table was updated.	4-25
	The A3P060 "144-Pin FBGA" pin table was updated.	4-32
	The A3P125 "144-Pin FBGA" pin table is new.	4-34
	The A3P400 "144-Pin FBGA" is new.	4-38
	The A3P400 "256-Pin FBGA" was updated.	4-48
	The A3P1000 "256-Pin FBGA" was updated.	4-54
	The A3P400 "484-Pin FBGA" was updated.	4-58
	The A3P1000 "484-Pin FBGA" was updated.	4-68
	The A3P250 "100-Pin VQFP*" pin table was updated.	4-14
	The A3P250 "208-Pin PQFP*" pin table was updated.	4-23
	The A3P1000 "208-Pin PQFP*" pin table was updated.	4-29
	The A3P250 "144-Pin FBGA*" pin table was updated.	4-36
	The A3P1000 "144-Pin FBGA*" pin table was updated.	4-32
	The A3P250 "256-Pin FBGA*" pin table was updated.	4-45
	The A3P1000 "256-Pin FBGA*" pin table was updated.	4-54
	The A3P1000 "484-Pin FBGA*" pin table was updated.	4-68
Advance v0.5 (November 2005)	The "I/Os Per Package" table was updated for the following devices and packages:	ii
	Device Package A3P250/M7ACP250 VQ100	
	A3P250/M7ACP250 FG144 A3P1000 FG256	
Advance v0.4	M7 device information is new.	N/A
	The I/O counts in the "I/Os Per Package" table were updated.	
Advance v0.3	The "I/Os Per Package" table was updated.	" ii
	M7 device information is new.	N/A
	Table 2-4 • ProASIC3 Globals/Spines/Rows by Device was updated to include	2-16
	the number or rows in each top or bottom spine.	
	EXTFB was removed from Figure 2-24 • ProASIC3E CCC Options.	2-24