

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	147456
Number of I/O	300
Number of Gates	1000000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m7a3p1000-2fg484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

I/Os Per Package¹

ProASIC3 Devices	A3P015 ²	A3P030	A3P060	060 A3P125 A3P250 ³ A3P400 ³ A			A3P	600	A3P	1000			
Cortex-M1 Devices			M1A3P250 ^{3,5} M1A3P400 ³ M1A3P600								M1A3P1000		
					I/C) Туре							
Package	Single-Ended I/O	Single-Ended I/O	Single-Ended I/O	Single-Ended I/O	Single-Ended I/O ⁴	Differential I/O Pairs							
QN48	-	34	_	_	-	_		-	-	-	-	-	
QN68	49	49	-	-	-	-	-	-		-	-	-	
QN132 ⁷	-	81	80	84	87	19	-	_		-	-	-	
CS121	-	_	96	_	-	-	-	-	-	-	-	-	
VQ100	-	77	71	71	68	13	-	-		-	-	-	
TQ144	-	_	91	100	-	-	-	-	-	-	-	-	
PQ208	-	_	-	133	151	34	151	34	154	35	154	35	
FG144	-	_	96	97	97	24	97	25	97	25	97	25	
FG256 ^{5,6}	-	_	_	_	157	38	178	38	177	43	177	44	
FG484 ⁶	-	_	_	_	—	_	194	38	235	60	300	74	

Notes:

1. When considering migrating your design to a lower- or higher-density device, refer to the ProASIC3 FPGA Fabric User Guide to ensure complying with design and board migration requirements.

2. A3P015 is not recommended for new designs.

3. For A3P250 and A3P400 devices, the maximum number of LVPECL pairs in east and west banks cannot exceed 15. Refer to the ProASIC3 FPGA Fabric Users Guide for position assignments of the 15 LVPECL pairs.

4. Each used differential I/O pair reduces the number of single-ended I/Os available by two.

5. The M1A3P250 device does not support FG256 package.

6. FG256 and FG484 are footprint-compatible packages.

7. Package not available.

Table 1 • ProASIC3 FPGAs Package Sizes Dimensions

Package	CS121	QN48	QN68	QN132 [*]	VQ100	TQ144	PQ208	FG144	FG256	FG484
Length × Width (mm × mm)	6×6	6×6	8 × 8	8 × 8	14 × 14	20 × 20	28 × 28	13 × 13	17 × 17	23 × 23
Nominal Area (mm ²)	36	36	64	64	196	400	784	169	289	529
Pitch (mm)	0.5	0.4	0.4	0.5	0.5	0.5	0.5	1.0	1.0	1.0
Height (mm)	0.99	0.90	0.90	0.75	1.00	1.40	3.40	1.45	1.60	2.23

Note: * *Package not available*

User Nonvolatile FlashROM

ProASIC3 devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications:

- Internet protocol addressing (wireless or fixed)
- System calibration settings
- Device serialization and/or inventory control
- Subscription-based business models (for example, set-top boxes)
- Secure key storage for secure communications algorithms
- Asset management/tracking
- Date stamping
- Version management

The FlashROM is written using the standard ProASIC3 IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks (except in the A3P015 and A3P030 devices), as in security keys stored in the FlashROM for a user design.

The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array.

The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte.

The ProASIC3 development software solutions, Libero[®] System-on-Chip (SoC) and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents.

SRAM and FIFO

ProASIC3 devices (except the A3P015 and A3P030 devices) have embedded SRAM blocks along their north and south sides. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro (except in A3P015 and A3P030 devices).

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations.

PLL and CCC

ProASIC3 devices provide designers with very flexible clock conditioning capabilities. Each member of the ProASIC3 family contains six CCCs. One CCC (center west side) has a PLL. The A3P015 and A3P030 devices do not have a PLL.

The six CCC blocks are located at the four corners and the centers of the east and west sides.

All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay operations as well as clock spine access.

The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs located near the CCC that have dedicated connections to the CCC block.

Table 2-2 • Recommended Operating Conditions¹

Symbol	Parame	eters ¹	Commercial	Industrial	Units
TJ	Junction temperature		0 to 85 ²	-40 to 100 ²	°C
VCC ³	1.5 V DC core supply volta	ge	1.425 to 1.575	1.425 to 1.575	V
VJTAG	JTAG DC voltage		1.4 to 3.6	1.4 to 3.6	V
VPUMP	Programming voltage Programming Mode		3.15 to 3.45	3.15 to 3.45	V
		Operation ⁴		0 to 3.6	V
VCCPLL	Analog power supply (PLL))	1.425 to 1.575	1.425 to 1.575	V
VCCI and VMV ⁵	1.5 V DC supply voltage		1.425 to 1.575	1.425 to 1.575	V
	1.8 V DC supply voltage		1.7 to 1.9	1.7 to 1.9	V
	2.5 V DC supply voltage		2.3 to 2.7	2.3 to 2.7	V
	3.3 V DC supply voltage		3.0 to 3. <u>6</u>	3.0 to 3. <u>6</u>	V
	3.3 V wide range DC suppl	ly voltage ⁶	2.7 to 3.6	2.7 to 3.6	V
	LVDS/B-LVDS/M-LVDS differential I/O		2.375 to 2.625	2.375 to 2.625	V
	LVPECL differential I/O		3.0 to 3.6	3.0 to 3.6	V

Notes:

1. All parameters representing voltages are measured with respect to GND unless otherwise specified.

- 2. Software Default Junction Temperature Range in the Libero[®] System-on-Chip (SoC) software is set to 0°C to +70°C for commercial, and -40°C to +85°C for industrial. To ensure targeted reliability standards are met across the full range of junction temperatures, Microsemi recommends using custom settings for temperature range before running timing and power analysis tools. For more information regarding custom settings, refer to the New Project Dialog Box in the Libero SoC Online Help.
- 3. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-18 on page 2-19.
- 4. VPUMP can be left floating during operation (not programming mode).
- 5. VMV and VCCI should be at the same voltage within a given I/O bank. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information.
- 6. 3.3 V wide range is compliant to the JESD8-B specification and supports 3.0 V VCCI operation.

Figure 2-5 • Output Buffer Model and Delays (Example)

Table 2-25 • Summary of I/O Timing Characteristics—Software Default Settings

-2 Speed Grade, Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst Case VCC = 1.425 V, Worst-Case VCCI (per standard)

Standard Plus I/O Banks

I/O Standard	Drive Strength	Equiv. Software Default Drive Strength Option ¹	Slew Rate	Capacitive Load (pF)	External Resistor	t _{bour} (ns)	t _{DP} (ns)	t _{DIN} (ns)	t _{pΥ} (ns)	t _{EOUT} (ns)	t _{ZL} (ns)	t _{zH} (ns)	t _{LZ} (ns)	t _{HZ} (ns)	t _{ZLS} (ns)	t _{zHS} (ns)	Units
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	35	-	0.45	2.36	0.03	0.75	0.32	2.40	1.93	2.08	2.41	4.07	3.60	ns
3.3 V LVCMOS Wide Range ²	100 µA	12 mA	High	35	-	0.45	3.65	0.03	1.14	0.32	3.65	2.93	3.22	3.72	6.18	5.46	ns
2.5 V LVCMOS	12 mA	12 mA	High	35	-	0.45	2.39	0.03	0.97	0.32	2.44	2.35	2.11	2.32	4.11	4.02	ns
1.8 V LVCMOS	8 mA	8 mA	High	35	-	0.45	3.03	0.03	0.90	0.32	2.87	3.03	2.19	2.32	4.54	4.70	ns
1.5 V LVCMOS	4 mA	4 mA	High	35	-	0.45	3.61	0.03	1.06	0.32	3.35	3.61	2.26	2.34	5.02	5.28	ns
3.3 V PCI	Per PCI spec	-	High	10	25 ⁴	0.45	1.72	0.03	0.64	0.32	1.76	1.27	2.08	2.41	3.42	2.94	ns
3.3 V PCI-X	Per PCI-X spec	-	High	10	25 ⁴	0.45	1.72	0.03	0.62	0.32	1.76	1.27	2.08	2.41	3.42	2.94	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-11 on page 2-64 for connectivity. This resistor is not required during normal operation.

	Applica	ble to A	dvanced	l I/O Ba	anks								
Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{zL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
2 mA	Std.	0.66	10.26	0.04	1.02	0.43	10.45	8.90	2.64	2.46	12.68	11.13	ns
	-1	0.56	8.72	0.04	0.86	0.36	8.89	7.57	2.25	2.09	10.79	9.47	ns
	-2	0.49	7.66	0.03	0.76	0.32	7.80	6.64	1.98	1.83	9.47	8.31	ns
4 mA	Std.	0.66	10.26	0.04	1.02	0.43	10.45	8.90	2.64	2.46	12.68	11.13	ns
	-1	0.56	8.72	0.04	0.86	0.36	8.89	7.57	2.25	2.09	10.79	9.47	ns
	-2	0.49	7.66	0.03	0.76	0.32	7.80	6.64	1.98	1.83	9.47	8.31	ns
6 mA	Std.	0.66	7.27	0.04	1.02	0.43	7.41	6.28	2.98	3.04	9.65	8.52	ns
	-1	0.56	6.19	0.04	0.86	0.36	6.30	5.35	2.54	2.59	8.20	7.25	ns
	-2	0.49	5.43	0.03	0.76	0.32	5.53	4.69	2.23	2.27	7.20	6.36	ns
8 mA	Std.	0.66	7.27	0.04	1.02	0.43	7.41	6.28	2.98	3.04	9.65	8.52	ns
	-1	0.56	6.19	0.04	0.86	0.36	6.30	5.35	2.54	2.59	8.20	7.25	ns
	-2	0.49	5.43	0.03	0.76	0.32	5.53	4.69	2.23	2.27	7.20	6.36	ns
12 mA	Std.	0.66	5.58	0.04	1.02	0.43	5.68	4.87	3.21	3.42	7.92	7.11	ns
	-1	0.56	4.75	0.04	0.86	0.36	4.84	4.14	2.73	2.91	6.74	6.05	ns
	-2	0.49	4.17	0.03	0.76	0.32	4.24	3.64	2.39	2.55	5.91	5.31	ns
16 mA	Std.	0.66	5.21	0.04	1.02	0.43	5.30	4.56	3.26	3.51	7.54	6.80	ns
	-1	0.56	4.43	0.04	0.86	0.36	4.51	3.88	2.77	2.99	6.41	5.79	ns
	-2	0.49	3.89	0.03	0.76	0.32	3.96	3.41	2.43	2.62	5.63	5.08	ns
24 mA	Std.	0.66	4.85	0.04	1.02	0.43	4.94	4.54	3.32	3.88	7.18	6.78	ns
	-1	0.56	4.13	0.04	0.86	0.36	4.20	3.87	2.82	3.30	6.10	5.77	ns
	-2	0.49	3.62	0.03	0.76	0.32	3.69	3.39	2.48	2.90	5.36	5.06	ns

Table 2-42 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-71 • 1.8 V LVCMOS Low Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Advanced I/O Banks

		r	r			r							
Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.66	15.53	0.04	1.22	0.43	14.11	15.53	2.78	1.60	16.35	17.77	ns
	-1	0.56	13.21	0.04	1.04	0.36	12.01	13.21	2.36	1.36	13.91	15.11	ns
	-2	0.49	11.60	0.03	0.91	0.32	10.54	11.60	2.07	1.19	12.21	13.27	ns
4 mA	Std.	0.66	10.48	0.04	1.22	0.43	10.41	10.48	3.23	2.73	12.65	12.71	ns
	-1	0.56	8.91	0.04	1.04	0.36	8.86	8.91	2.75	2.33	10.76	10.81	ns
	-2	0.49	7.82	0.03	0.91	0.32	7.77	7.82	2.41	2.04	9.44	9.49	ns
6 mA	Std.	0.66	8.05	0.04	1.22	0.43	8.20	7.84	3.54	3.27	10.43	10.08	ns
	-1	0.56	6.85	0.04	1.04	0.36	6.97	6.67	3.01	2.78	8.88	8.57	ns
	-2	0.49	6.01	0.03	0.91	0.32	6.12	5.86	2.64	2.44	7.79	7.53	ns
8 mA	Std.	0.66	7.50	0.04	1.22	0.43	7.64	7.30	3.61	3.41	9.88	9.53	ns
	-1	0.56	6.38	0.04	1.04	0.36	6.50	6.21	3.07	2.90	8.40	8.11	ns
	-2	0.49	5.60	0.03	0.91	0.32	5.71	5.45	2.69	2.55	7.38	7.12	ns
12 mA	Std.	0.66	7.29	0.04	1.22	0.43	7.23	7.29	3.71	3.95	9.47	9.53	ns
	-1	0.56	6.20	0.04	1.04	0.36	6.15	6.20	3.15	3.36	8.06	8.11	ns
	-2	0.49	5.45	0.03	0.91	0.32	5.40	5.45	2.77	2.95	7.07	7.12	ns
16 mA	Std.	0.66	7.29	0.04	1.22	0.43	7.23	7.29	3.71	3.95	9.47	9.53	ns
	-1	0.56	6.20	0.04	1.04	0.36	6.15	6.20	3.15	3.36	8.06	8.11	ns
	-2	0.49	5.45	0.03	0.91	0.32	5.40	5.45	2.77	2.95	7.07	7.12	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

	745			O Dunk								
1.5 V LVCMOS		VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	2	2	16	13	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	4	4	33	25	10	10

Table 2-77 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks

Notes:

- 1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.
- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Table 2-78 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks

1.5 V LVCMOS		VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	13	16	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Figure 2-10 • AC Loading

Table 2-79 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	1.5	0.75	35

Note: *Measuring point = V_{trip} . See Table 2-22 on page 2-22 for a complete table of trip points.

Output DDR Module

Figure 2-22 • Output DDR Timing Model

Table 2-103 • Parameter Definitions

Parameter Name	Parameter Definition	Measuring Nodes (from, to)
t _{DDROCLKQ}	Clock-to-Out	B, E
t _{DDROCLR2Q}	Asynchronous Clear-to-Out	C, E
t _{DDROREMCLR}	Clear Removal	С, В
t _{DDRORECCLR}	Clear Recovery	С, В
t _{DDROSUD1}	Data Setup Data_F	А, В
t _{DDROSUD2}	Data Setup Data_R	D, B
t _{DDROHD1}	Data Hold Data_F	А, В
t _{DDROHD2}	Data Hold Data_R	D, B

Timing Characteristics

Table 2-116 • RAM4K9

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{AS}	Address setup time	0.25	0.28	0.33	ns
t _{AH}	Address hold time	0.00	0.00	0.00	ns
t _{ENS}	REN, WEN setup time	0.14	0.16	0.19	ns
t _{ENH}	REN, WEN hold time	0.10	0.11	0.13	ns
t _{BKS}	BLK setup time	0.23	0.27	0.31	ns
t _{BKH}	BLK hold time	0.02	0.02	0.02	ns
t _{DS}	Input data (DIN) setup time	0.18	0.21	0.25	ns
t _{DH}	Input data (DIN) hold time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to new data valid on DOUT (output retained, WMODE = 0)	2.36	2.68	3.15	ns
	Clock High to new data valid on DOUT (flow-through, WMODE = 1)	1.79	2.03	2.39	ns
t _{CKQ2}	Clock High to new data valid on DOUT (pipelined)	0.89	1.02	1.20	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address—Applicable to Closing Edge	0.33	0.28	0.25	ns
t _{C2CWWH} 1	Address collision clk-to-clk delay for reliable write after write on same address—Applicable to Rising Edge	0.30	0.26	0.23	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address—Applicable to Opening Edge	0.45	0.38	0.34	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address— Applicable to Opening Edge	0.49	0.42	0.37	ns
t _{RSTBQ}	RESET Low to data out Low on DOUT (flow-through)	0.92	1.05	1.23	ns
	RESET Low to Data Out Low on DOUT (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET minimum pulse width	0.21	0.24	0.29	ns
t _{CYC}	Clock cycle time	3.23	3.68	4.32	ns
F _{MAX}	Maximum frequency	310	272	231	MHz

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-120 • A3P250 FIFO 512×8

Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ENS}	REN, WEN Setup Time	3.75	4.27	5.02	ns
t _{ENH}	REN, WEN Hold Time	0.00	0.00	0.00	ns
t _{BKS}	BLK Setup Time	0.19	0.22	0.26	ns
t _{BKH}	BLK Hold Time	0.00	0.00	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.18	0.21	0.25	ns
t _{DH}	Input Data (WD) Hold Time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	2.17	2.47	2.90	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	0.94	1.07	1.26	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	1.72	1.96	2.30	ns
t _{WCKFF}	WCLK High to Full Flag Valid	1.63	1.86	2.18	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	6.19	7.05	8.29	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	1.69	1.93	2.27	ns
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	6.13	6.98	8.20	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	0.92	1.05	1.23	ns
	RESET Low to Data Out Low on RD (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET Removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET Recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.21	0.24	0.29	ns
t _{CYC}	Clock Cycle Time	3.23	3.68	4.32	ns
F _{MAX}	Maximum Frequency for FIFO	310	272	231	MHz

3 – Pin Descriptions

Supply Pins

Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always be connected to GND on the board.

VCC

GND

Core Supply Voltage

Supply voltage to the FPGA core, nominally 1.5 V. VCC is required for powering the JTAG state machine in addition to VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the device.

VCCIBx I/O Supply Voltage

Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to eight I/O banks on low power flash devices plus a dedicated VJTAG bank. Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. In general, unused I/O banks should have their corresponding VCCIX pins tied to GND. If an output pad is terminated to ground through any resistor and if the corresponding VCCIX is left floating, then the leakage current to ground is ~ 0uA. However, if an output pad is terminated to ground is ~ 3 uA. For unused banks the aforementioned behavior is to be taken into account while deciding if it's better to float VCCIX of unused bank or tie it to GND.

VMVx I/O Supply Voltage (quiet)

Quiet supply voltage to the input buffers of each I/O bank. *x* is the bank number. Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks. This minimizes the noise transfer within the package and improves input signal integrity. Each bank must have at least one VMV connection, and no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be connected to the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1, etc.).

VCCPLA/B/C/D/E/F PLL Supply Voltage

Supply voltage to analog PLL, nominally 1.5 V.

When the PLLs are not used, the Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple VCC noise from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning Circuits in IGLOO and ProASIC3 Devices" chapter of the *ProASIC3 FPGA Fabric User's Guide* for a complete board solution for the PLL analog power supply and ground.

There is one VCCPLF pin on ProASIC3 devices.

VCOMPLA/B/C/D/E/F PLL Ground

Ground to analog PLL power supplies. When the PLLs are not used, the Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground.

There is one VCOMPLF pin on ProASIC3 devices.

mode is not used in the design, the FF pin is available as a regular I/O. For IGLOOe, ProASIC3EL, and RT ProASIC3 only, the FF pin can be configured as a Schmitt trigger input.

When Flash*Freeze mode is used, the FF pin must not be left floating to avoid accidentally entering Flash*Freeze mode. While in Flash*Freeze mode, the Flash*Freeze pin should be constantly asserted.

The Flash*Freeze pin can be used with any single-ended I/O standard supported by the I/O bank in which the pin is located, and input signal levels compatible with the I/O standard selected. The FF pin should be treated as a sensitive asynchronous signal. When defining pin placement and board layout, simultaneously switching outputs (SSOs) and their effects on sensitive asynchronous pins must be considered.

Unused FF or I/O pins are tristated with weak pull-up. This default configuration applies to both Flash*Freeze mode and normal operation mode. No user intervention is required.

JTAG Pins

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND.

TCK Test Clock

Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pull-up/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements. Refer to Table 1 for more information.

VJTAG	Tie-Off Resistance
3.3 V	200 Ω –1 kΩ
2.5 V	200 Ω –1 kΩ
1.8 V	500 Ω –1 kΩ
1.5 V	500 Ω –1 kΩ

Table 1 • Recommended Tie-Off Values for the TCK and TRST Pins

Notes:

- 1. Equivalent parallel resistance if more than one device is on the JTAG chain
- 2. The TCK pin can be pulled up/down.
- 3. The TRST pin is pulled down.

TDI Test Data Input

Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin.

TDO Test Data Output

Serial output for JTAG boundary scan, ISP, and UJTAG usage.

TMS Test Mode Select

The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin.

TRST Boundary Scan Reset Pin

The TRST pin functions as an active low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-down resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor values must be chosen from Table 1 and must satisfy the parallel resistance value requirement. The values in Table 1 correspond to the resistor recommended when a single device is used, and the equivalent parallel resistor when multiple devices are connected via a JTAG chain.

Pin Number A3P125 Function Pin Number A3P125 Function A1 GAB2//OSPRSB1 A37 GBB1//O38RSB0 B25 GND A2 IO130RSB1 A38 GBC0/IO38RSB0 B26 NC A3 VCCIB1 A39 VCCIB0 B27 GCB2/IO58RSB0 A4 GFC1/IO128RSB1 A41 IO22RSB0 B28 GND A5 GFB0/IO123RSB1 A41 IO22RSB0 B29 GCB0/IO54RSB0 A6 VCCPLF A42 IO18RSB0 B31 GB21/O33RSB0 A7 GFA1/IO121RSB1 A43 IO14RSB0 B33 V/V/V A10 VCC A46 VCC B34 GB21/O33RSB0 A11 GEB1//O110RSB1 A44 IO11RSB0 B35 GB21/O33RSB0 A13 GEC2//IO14RSB1 B1 IO68RSB1 B36 GIC1/IO36RSB0 A13 GEC2//IO14RSB1 B2 GAC2//O131RSB1 B37 IO26RSB0 A14 IO909RSB1 B2 GAC2//O131RSB	QN132			QN132	QN132	
A1 GAB2/IO69RSB1 A37 GBB1/IO39RSB0 B25 GND A2 IO130RSB1 A38 GBC0/IO33RSB0 B26 NC A3 VCCIB1 A39 VCCIB0 B27 GCB2/IO58RSB0 A4 GFC1/IO128RSB1 A40 IO28RSB0 B28 GND A5 GFB0/IO123RSB1 A41 IO22RSB0 B29 GCB0/IO54RSB0 A6 VCCPLF A42 IO18RSB0 B30 GCC1/IO51RSB0 A7 GFA1/IO121RSB1 A43 IO14RSB0 B31 GND A8 GFC2/IO14RSB1 A44 IO17RSB0 B33 GWN0 A10 VCC A46 VCC B34 GBA0/IO39RSB0 A11 GE2/IO104RSB1 B41 IO68RSB1 B37 IO26RSB0 A13 GE2/IO104RSB1 B4 GAC2/IO131RSB1 B38 IO21RSB0 A14 IO100RSB1 B4 GFC0/IO125RSB1 B40 IO13RSB0 A15 VCC B3 GND	Pin Number	A3P125 Function	Pin Number	A3P125 Function	Pin Number	A3P125 Function
A2 I0130RSB1 A38 GBC0/I035RSB0 B26 NC A3 VCCIB1 A39 VCCIB0 B27 GCB2/I058RSB0 A4 GFC1/I0126RSB1 A40 I028RSB0 B28 GND A5 GFB0/I0123RSB1 A41 I022RSB0 B29 GCB0/I054RSB0 A6 VCCPLF A42 I018RSB0 B30 GCC1/I051RSB0 A7 GFA1/I0121RSB1 A43 I014RSB0 B31 GND A8 GFC2/I0118RSB1 A44 I011RSB0 B32 GB2/I043RSB0 A9 I0115RSB1 A44 I011RSB0 B33 VMV0 A10 VCC A46 VCC B34 GB2/I043RSB0 A13 GEC2/I014RSB1 B41 I069RSB1 B37 I026RSB0 A14 I0100RSB1 B4 GFC0/I0125RSB1 B40 I013RSB0 A15 VCC B3 GND B42 GND A15 VCC B3 GND B43	A1	GAB2/IO69RSB1	A37	GBB1/IO38RSB0	B25	GND
A3 VCCIB1 A39 VCCIB0 B27 GCB2/IO58RSB0 A4 GFC1/IO126RSB1 A40 IO28RSB0 B28 GND A5 GFB0/IO123RSB1 A41 IO28RSB0 B29 GCB0/IO54RSB0 A6 VCCPLF A42 IO18RSB0 B30 GCC1/IO51RSB0 A7 GFA1/IO121RSB1 A44 IO11RSB0 B31 GND A8 GFC2/IO118RSB1 A44 IO11RSB0 B33 VMV0 A10 VCC A46 VCC B34 GBA0/IO39RSB0 A11 GEB1/IO110RSB1 A47 GAC1/IO05RSB0 B35 GBC1/IO38RSB0 A12 GEA0/IO107RSB1 A48 GAB0/IO28RSB0 B36 GND A14 IO100RSB1 B2 GAC2/IO131RSB1 B38 IO21RSB0 A14 IO109RSB1 B4 GFC0/IO125RSB1 B38 IO21RSB0 A14 IO99RSB1 B4 GFD2/IO119RSB1 B44 GNDQ A17 IO96RSB1 B8	A2	IO130RSB1	A38	GBC0/IO35RSB0	B26	NC
A4 GFC1/I/O126RSB1 A40 IO28RSB0 B28 GND A5 GFB0/IO123RSB1 A41 IO22RSB0 B29 GCB0/IO54RSB0 A6 VCCPLF A42 IO18RSB0 B30 GCC1/IO51RSB0 A7 GFA1/IO121RSB1 A43 IO14RSB0 B31 GND A8 GFC2/IO118RSB1 A44 IO17RSB0 B33 VMV0 A10 VCC A46 VCC B34 GBA0/IO39RSB0 A11 GEB1/IO110RSB1 A47 GAC1/IO5RSB0 B35 GBC1/IO36RSB0 A13 GEC2/IO14RSB1 B1 IO668RSB1 B37 IO266RSB0 A14 IO100RSB1 B4 GFC0/IO125RSB1 B38 GND A16 IO99RSB1 B4 GFC0/IO125RSB1 B40 IO13RSB0 A17 IO465RSB1 B5 VCOMPLF B41 IO068RSB1 A20 IO35RSB1 B6 GND B42 GND A21 IO79RSB1 B10 GEB0/IO198	A3	VCCIB1	A39	VCCIB0	B27	GCB2/IO58RSB0
A5 GFB0/IO123RSB1 A41 IO22RSB0 B29 GCB0/IO54RSB0 A6 VCCPLF A42 IO18RSB0 B30 GCC1/IO51RSB0 A7 GFA1/0121RSB1 A43 IO14RSB0 B32 GB2/IO43RSB0 A9 IO115RSB1 A44 IO11RSB0 B32 GB2/IO43RSB0 A9 IO115RSB1 A45 IO07RSB0 B33 VMV0 A10 VCC A46 VCC B3 GB2/IO43RSB0 A11 GEB1/IO17RSB1 A45 IO07RSB0 B35 GB2/IO39RSB0 A13 GEC2/IO104RSB1 B1 IO68RSB1 B37 IO26RSB0 A14 IO100RSB1 B2 GAC2/IO131RSB1 B38 IO21RSB0 A15 VCC B3 GND B40 IO13RSB0 A16 IO99RSB1 B4 GFC2/IO19RSB1 B43 GAC0/IO4RSB0 A20 IO68SRS1 B6 GND B44 GNDQ A21 IO79RSB1 B7 GFB2/IO119RSB1 </td <td>A4</td> <td>GFC1/IO126RSB1</td> <td>A40</td> <td>IO28RSB0</td> <td>B28</td> <td>GND</td>	A4	GFC1/IO126RSB1	A40	IO28RSB0	B28	GND
A6 VCCPLF A42 I018RSB0 B30 GCC1/I051RSB0 A7 GFA1/I0121RSB1 A43 I014RSB0 B31 GND A8 GFC2/I0118RSB1 A44 I011RSB0 B32 GBB2/I043RSB0 A9 I0115RSB1 A45 I007RSB0 B33 VMV0 A10 VCC A46 VCC B34 GBA0/I039RSB0 A11 GEB1/I0110RSB1 A47 GAC1/I005RSB0 B35 GBC1/I039RSB0 A13 GEC2/I014RSB1 B1 I068RSB1 B37 I026RSB0 A14 I0100RSB1 B2 GAC2/I0131RSB1 B38 I021RSB0 A15 VCC B3 GND B39 GND A16 I099RSB1 B4 GFC0/I012SRS1 B40 I013RSB0 A18 I094RSB1 B6 GND B41 I008RSB1 A20 I068SRS1 B8 I011RSB1 B44 GNDQ A21 I079RSB1 B11 VMV1 C3	A5	GFB0/IO123RSB1	A41	IO22RSB0	B29	GCB0/IO54RSB0
A7 GFA1/I0121RSB1 A43 I014RSB0 B31 GND A8 GFC2/I0118RSB1 A44 I011RSB0 B32 GBB2/I043RSB0 A9 I0115RSB1 A45 I007RSB0 B33 VMV0 A10 VCC A46 VCC B34 GBA//I039RSB0 A11 GEB1//I010RSB1 A47 GAC1//I005RSB0 B35 GBC1//I036RSB0 A12 GEA0/I0107RSB1 A48 GAC2/I011RSB1 B36 GND A13 GEC2//I014RSB1 B1 I068RSB1 B37 I026RSB0 A14 I0100RSB1 B2 GAC2/I013RSB1 B38 I021RSB0 A16 I099RSB1 B4 GFC0//I012RSB1 B39 GND A16 I099RSB1 B5 VC0MPLF B41 I008RSB0 A20 I085RSB1 B8 I0116RSB1 B44 GNDQ A21 I079RSB1 B11 VMV1 C3 VCC A23 GDB2//071RSB1 B11 VMV1	A6	VCCPLF	A42	IO18RSB0	B30	GCC1/IO51RSB0
A8 GFC2/I0118RSB1 A44 I011RSB0 B32 GBB2/I043RSB0 A9 I0115RSB1 A45 I007RSB0 B33 VMV0 A10 VCC A46 VCC B34 GBA///039RSB0 A11 GEB1/I0110RSB1 A47 GAC1/I005RSB0 B35 GBC1/I036RSB0 A12 GEA0/I0107RSB1 A48 GAB//I02RSB0 B36 GND A13 GEC2/I0104RSB1 B1 I068RSB1 B37 I026RSB0 A14 I0100RSB1 B2 GAC2/I0131RSB1 B38 I021RSB0 A15 VCC B3 GND B39 GND A16 I099RSB1 B4 GFC0//0125RSB1 B40 I013RSB0 A18 I094RSB1 B6 GND B42 GND A20 I085RSB1 B8 I0116RSB1 B44 GNDQ A21 I079RSB1 B10 GEB0//0109RSB1 C2 I0132RSB1 A22 VCC B10 GEB0//0109RSB1	A7	GFA1/IO121RSB1	A43	IO14RSB0	B31	GND
A9 I0115RSB1 A45 I007RSB0 B33 VMV0 A10 VCC A46 VCC B34 GBA0/IO39RSB0 A11 GEB1/IO110RSB1 A47 GAC1/IO05RSB0 B35 GBC1/IO36RSB0 A12 GEA0/IO107RSB1 A48 GAB0/IO2RSB0 B36 GND A13 GEC2/IO14RSB1 B1 IO68RSB1 B37 IO26RS80 A14 IO100RSB1 B2 GAC2/IO131RSB1 B38 IO21RS80 A16 IO99RSB1 B4 GFC0/IO125RSB1 B40 IO13RS80 A17 IO96RSB1 B5 VCOMPLF B41 IO08RS80 A18 IO94RSB1 B6 GND B42 GND A20 I085RSB1 B8 IO116RSB1 B44 GNDQ A21 IO79RSB1 B9 GND C1 GAA2/IO67RSB1 A22 VCC B10 GEB0/IO19RSB1 C2 IO132RSB1 A22 VCC B13 IO116RSB1 G4 <td>A8</td> <td>GFC2/IO118RSB1</td> <td>A44</td> <td>IO11RSB0</td> <td>B32</td> <td>GBB2/IO43RSB0</td>	A8	GFC2/IO118RSB1	A44	IO11RSB0	B32	GBB2/IO43RSB0
A10 VCC A46 VCC B34 GBA0/IO39RSB0 A11 GEB1/IO110RSB1 A47 GAC1/IO05RSB0 B35 GBC1/IO36RSB0 A12 GEA0/IO107RSB1 A48 GAB0/IO2RSB0 B36 GND A13 GEC2/IO104RSB1 B1 IO68RSB1 B37 IO26RSB0 A14 IO100RSB1 B2 GAC2/IO131RSB1 B38 IO21RSB0 A16 IO99RSB1 B4 GFC0/IO125RSB1 B40 IO13RSB0 A17 IO96RSB1 B5 VCOMPLF B41 IO08RSB0 A18 IO94RSB1 B6 GND B42 GND A20 IO85RSB1 B7 GFB2/IO119RSB1 B43 GAC0/IO4RSB0 A21 IO79RSB1 B9 GND C1 GAA2/IO67RSB1 A22 VCC B10 GEB0/IO19RSB1 C2 IO132RSB1 A23 GDB2/IO71RSB1 B11 VMV1 C3 VCC A24 TDI B12 GEB2/IO105RSB1	A9	IO115RSB1	A45	IO07RSB0	B33	VMV0
A11 GEB1/I0110RSB1 A47 GAC1/I005RSB0 B35 GBC1/I036RSB0 A12 GEA0/I0107RSB1 A48 GAB0/I002RSB0 B36 GND A13 GEC2/I0104RSB1 B1 I068RSB1 B37 I026RSB0 A14 I0100RSB1 B2 GAC2/I0131RSB1 B38 I021RSB0 A16 I099RSB1 B4 GFC0/I0125RSB1 B39 GND A17 I096RSB1 B5 VCOMPLF B41 I0088RS0 A18 I094RSB1 B6 GND B42 GND A20 I085RSB1 B8 I0116RSB1 B43 GAC0/I04RSB0 A21 I079RSB1 B9 GND C1 GAA2/I067RSB1 A22 VCC B10 GEB0/I0109RSB1 C2 I0132RSB1 A23 GDB2/I071RSB1 B11 VMV1 C3 VCC A24 TDI B12 GEB2/I0105RSB1 C4 GFB1/I0124RSB1 A25 TRST B13 I0101RSB1	A10	VCC	A46	VCC	B34	GBA0/IO39RSB0
A12 GEA0/IO107RSB1 A48 GAB0/IO02RSB0 B36 GND A13 GEC2/IO104RSB1 B1 IO68RSB1 B37 IO26RSB0 A14 IO100RSB1 B2 GAC2/IO131RSB1 B38 IO21RSB0 A15 VCC B3 GND B39 GND A16 IO99RSB1 B4 GFC0/IO125RSB1 B40 IO13RSB0 A17 IO96RSB1 B5 VCOMPLF B41 IO08RSB0 A18 IO94RSB1 B6 GND B42 GND A19 IO91RSB1 B7 GFB2/IO119RSB1 B43 GAC0/IO4RSB0 A20 IO85RSB1 B8 IO116RSB1 B44 GNDQ A21 IO79RSB1 B9 GND C1 GA2/IO67RSB1 A22 VCC B10 GEB2/IO105RSB1 C2 IO132RSB1 A23 GDB2/IO71RSB1 B11 VMV1 C3 VCC A24 TDI B12 GEB2/IO105RSB1 C4 <	A11	GEB1/IO110RSB1	A47	GAC1/IO05RSB0	B35	GBC1/IO36RSB0
A13 GEC2/IO104RSB1 B1 IO68RSB1 B37 IO26RSB0 A14 IO100RSB1 B2 GAC2/IO131RSB1 B38 IO21RSB0 A15 VCC B3 GND B39 GND A16 IO99RSB1 B4 GFC0/IO125RSB1 B40 IO13RSB0 A17 IO96RSB1 B5 VCOMPLF B41 IO08RSB0 A18 IO94RSB1 B6 GND B42 GND A19 IO91RSB1 B7 GFB2/IO119RSB1 B43 GAC0/IO4RSB0 A20 IO85RSB1 B8 IO116RSB1 B44 GNDQ A21 IO79RSB1 B9 GND C1 GAA2/IO67RSB1 A22 VCC B10 GEB0/IO109RSB1 C2 IO132RSB1 A23 GDB2/IO71RSB1 B11 VMV1 C3 VCC A24 TDI B12 GEB2/IO105RSB1 C4 GFB1/IO124RSB1 A26 GDC1/IO61RSB0 B14 GND C6 <	A12	GEA0/IO107RSB1	A48	GAB0/IO02RSB0	B36	GND
A14 IO100RSB1 B2 GAC2/IO131RSB1 B38 IO21RSB0 A15 VCC B3 GND B39 GND A16 IO99RSB1 B4 GFC0/IO125RSB1 B40 IO13RSB0 A17 IO96RSB1 B5 VCOMPLF B41 IO08RSB0 A18 IO94RSB1 B6 GND B42 GND A19 IO91RSB1 B7 GFB2/IO119RSB1 B43 GAC0/IO04RSB0 A20 IO85RSB1 B8 IO116RSB1 B44 GNDQ A21 IO79RSB1 B9 GND C1 GAA2/IO67RSB1 A22 VCC B10 GEB0/IO109RSB1 C2 IO132RSB1 A23 GDB2/IO71RSB1 B11 VMV1 C3 VCC A24 TDI B12 GEB2/IO105RSB1 C4 GFB1/IO124RSB1 A26 GDC1/IO61RSB0 B14 GND C6 GFA2/IO120RSB1 A27 VCC B15 IO98RSB1 C7 I	A13	GEC2/IO104RSB1	B1	IO68RSB1	B37	IO26RSB0
A15 VCC B3 GND B39 GND A16 IO99RSB1 B4 GFC0/IO125RSB1 B40 IO13RSB0 A17 IO96RSB1 B5 VCOMPLF B41 IO08RSB0 A18 IO94RSB1 B6 GND B42 GND A19 IO91RSB1 B7 GFB2/IO119RSB1 B43 GAC0/IO04RSB0 A20 IO85RSB1 B8 IO116RSB1 B44 GNDQ A21 IO79RSB1 B9 GND C1 GAA2/IO67RSB1 A22 VCC B10 GEB0/IO199RSB1 C2 IO132RSB1 A23 GDB2/IO71RSB1 B11 VMV1 C3 VCC A24 TDI B12 GEB2/IO105RSB1 C4 GFB1/IO124RSB1 A25 TRST B13 IO101RSB1 C5 GFA0/IO122RSB1 A26 GDC1/I/061RSB0 B14 GND C6 GFA2/IO120RSB1 A27 VCC B15 IO98RSB1 C7 IO11	A14	IO100RSB1	B2	GAC2/IO131RSB1	B38	IO21RSB0
A16 IO99RSB1 B4 GFC0/IO125RSB1 B40 IO13RSB0 A17 IO96RSB1 B5 VCOMPLF B41 IO08RSB0 A18 IO94RSB1 B6 GND B42 GND A19 IO91RSB1 B7 GFB2/IO119RSB1 B43 GAC0/IO04RSB0 A20 IO85RSB1 B8 IO116RSB1 B44 GNDQ A21 IO79RSB1 B9 GND C1 GAA2/IO67RSB1 A22 VCC B10 GEB0/IO109RSB1 C2 IO132RSB1 A23 GDB2/IO71RSB1 B11 VMV1 C3 VCC A24 TDI B12 GEB2/IO105RSB1 C4 GFB1/IO124RSB1 A25 TRST B13 IO101RSB1 C5 GFA0/IO122RSB1 A26 GDC1/IO61RSB0 B14 GND C6 GFA2/IO120RSB1 A28 IO60RSB0 B16 IO95RSB1 C3 VCCIB1 A30 GCA2/IO57RSB0 B18 IO87RSB1 C1	A15	VCC	B3	GND	B39	GND
A17 IO96RSB1 B5 VCOMPLF B41 IO08RSB0 A18 IO94RSB1 B6 GND B42 GND A19 IO91RSB1 B7 GFB2/IO119RSB1 B43 GAC0/IO04RSB0 A20 IO85RSB1 B8 IO116RSB1 B44 GNDQ A21 IO79RSB1 B9 GND C1 GAA2/IO67RSB1 A22 VCC B10 GEB0/IO109RSB1 C2 IO132RSB1 A23 GDB2/IO71RSB1 B11 VMV1 C3 VCC A24 TDI B12 GEB2/IO105RSB1 C4 GFB1/IO124RSB1 A25 TRST B13 IO101RSB1 C5 GFA0/IO122RSB1 A26 GDC1/IO61RSB0 B14 GND C6 GFA2/IO120RSB1 A27 VCC B16 IO95RSB1 C8 VCCIB1 A29 GCC2/IO59RSB0 B17 GND C9 GEA1/IO108RSB1 A30 GCA0/IO56RSB0 B19 IO81RSB1 C11 <td>A16</td> <td>IO99RSB1</td> <td>B4</td> <td>GFC0/IO125RSB1</td> <td>B40</td> <td>IO13RSB0</td>	A16	IO99RSB1	B4	GFC0/IO125RSB1	B40	IO13RSB0
A18 IO94RSB1 B6 GND B42 GND A19 IO91RSB1 B7 GFB2/IO119RSB1 B43 GAC0/IO04RSB0 A20 IO85RSB1 B8 IO116RSB1 B44 GND A21 IO79RSB1 B9 GND C1 GAA2/IO67RSB1 A22 VCC B10 GEB0/IO199RSB1 C2 IO132RSB1 A23 GDB2/IO71RSB1 B11 VMV1 C3 VCC A24 TDI B12 GEB2/IO105RSB1 C4 GFB1/IO124RSB1 A25 TRST B13 IO101RSB1 C5 GFA0/IO122RSB1 A26 GDC1/IO61RSB0 B14 GND C6 GFA2/IO120RSB1 A27 VCC B15 IO98RSB1 C7 IO117RSB1 A28 IO60RSB0 B16 IO95RSB1 C8 VCCIB1 A30 GCA2/IO57RSB0 B18 IO87RSB1 C10 GNDQ A31 GCA0/IO56RSB0 B19 IO81RSB1 C11	A17	IO96RSB1	B5	VCOMPLF	B41	IO08RSB0
A19 IO91RSB1 B7 GFB2/IO119RSB1 B43 GAC0/IO04RSB0 A20 IO85RSB1 B8 IO116RSB1 B44 GNDQ A21 IO79RSB1 B9 GND C1 GAA2/IO67RSB1 A22 VCC B10 GEB0/IO109RSB1 C2 IO132RSB1 A23 GDB2/IO71RSB1 B11 VMV1 C3 VCC A24 TDI B12 GEB2/IO105RSB1 C4 GFB1/IO124RSB1 A25 TRST B13 IO101RSB1 C5 GFA0/IO122RSB1 A26 GDC1/IO61RSB0 B14 GND C6 GFA2/IO120RSB1 A27 VCC B15 IO98RSB1 C7 IO117RSB1 A28 IO60RSB0 B16 IO95RSB1 C8 VCCIB1 A30 GCA2/IO57RSB0 B18 IO87RSB1 C10 GNDQ A31 GCA0/IO56RSB0 B19 IO81RSB1 C11 GEA2/IO106RSB1 A33 IO49RSB0 B21 GNDQ	A18	IO94RSB1	B6	GND	B42	GND
A20 IO85RSB1 B8 IO116RSB1 B44 GNDQ A21 IO79RSB1 B9 GND C1 GAA2/IO67RSB1 A22 VCC B10 GEB0/IO109RSB1 C2 IO132RSB1 A23 GDB2/IO71RSB1 B11 VMV1 C3 VCC A24 TDI B12 GEB2/IO15RSB1 C4 GFB1/IO124RSB1 A25 TRST B13 IO101RSB1 C5 GFA0/IO122RSB1 A26 GDC1/IO61RSB0 B14 GND C6 GFA2/IO120RSB1 A27 VCC B15 IO98RSB1 C7 IO117RSB1 A28 IO60RSB0 B16 IO95RSB1 C8 VCCIB1 A29 GCC2/IO59RSB0 B17 GND C9 GEA1/IO108RSB1 A31 GCA0/IO56RSB0 B19 IO81RSB1 C10 GNDQ A33 IO49RSB0 B21 GNDQ C12 IO103RSB1 A33 IO44RSB0 B23 TDO C14	A19	IO91RSB1	B7	GFB2/IO119RSB1	B43	GAC0/IO04RSB0
A21 IO79RSB1 B9 GND C1 GAA2/IO67RSB1 A22 VCC B10 GEB0/IO109RSB1 C2 IO132RSB1 A23 GDB2/IO71RSB1 B11 VMV1 C3 VCC A24 TDI B12 GEB2/IO15RSB1 C4 GFB1/IO124RSB1 A25 TRST B13 IO101RSB1 C5 GFA0/IO122RSB1 A26 GDC1/IO61RSB0 B14 GND C6 GFA2/IO120RSB1 A27 VCC B15 IO98RSB1 C7 IO117RSB1 A28 IO60RSB0 B16 IO95RSB1 C8 VCCIB1 A29 GCC2/IO59RSB0 B17 GND C9 GEA1/IO108RSB1 A30 GCA2/IO57RSB0 B19 IO81RSB1 C11 GEA2/IO106RSB1 A32 GCB1/IO53RSB0 B20 GND C12 IO103RSB1 A33 IO49RSB0 B21 GNDQ C13 VCCIB1 A34 VCC B22 TMS C14	A20	IO85RSB1	B8	IO116RSB1	B44	GNDQ
A22 VCC B10 GEB0/IO109RSB1 C2 IO132RSB1 A23 GDB2/IO71RSB1 B11 VMV1 C3 VCC A24 TDI B12 GEB2/IO105RSB1 C4 GFB1/IO124RSB1 A25 TRST B13 IO101RSB1 C5 GFA0/IO122RSB1 A26 GDC1/IO61RSB0 B14 GND C6 GFA2/IO120RSB1 A27 VCC B15 IO98RSB1 C7 IO117RSB1 A28 IO60RSB0 B16 IO95RSB1 C8 VCCIB1 A29 GCC2/IO59RSB0 B17 GND C9 GEA1/IO108RSB1 A30 GCA2/IO57RSB0 B18 IO87RSB1 C10 GNDQ A31 GCA0/IO56RSB0 B19 IO81RSB1 C11 GEA2/IO106RSB1 A33 IO49RSB0 B21 GNDQ C12 IO103RSB1 A33 IO49RSB0 B23 TDO C14 IO97RSB1 A35 IO44RSB0 B24 GDC0/IO62RSB0	A21	IO79RSB1	B9	GND	C1	GAA2/IO67RSB1
A23 GDB2/IO71RSB1 B11 VMV1 C3 VCC A24 TDI B12 GEB2/IO105RSB1 C4 GFB1/IO124RSB1 A25 TRST B13 IO101RSB1 C5 GFA0/IO122RSB1 A26 GDC1/IO61RSB0 B14 GND C6 GFA2/IO120RSB1 A27 VCC B15 IO98RSB1 C7 IO117RSB1 A28 IO60RSB0 B16 IO95RSB1 C8 VCCIB1 A29 GCC2/IO59RSB0 B17 GND C9 GEA1/IO108RSB1 A30 GCA2/IO57RSB0 B19 IO81RSB1 C10 GNDQ A31 GCA0/IO56RSB0 B19 IO81RSB1 C11 GEA2/IO106RSB1 A32 GCB1/IO53RSB0 B20 GND C12 IO103RSB1 A33 IO49RSB0 B21 GNDQ C13 VCCIB1 A34 VCC B22 TMS C14 IO93RSB1 A36 GBA2/IO41RSB0 B24 GDC0/IO62RSB0 <	A22	VCC	B10	GEB0/IO109RSB1	C2	IO132RSB1
A24 TDI B12 GEB2/IO105RSB1 C4 GFB1/IO124RSB1 A25 TRST B13 IO101RSB1 C5 GFA0/IO122RSB1 A26 GDC1/IO61RSB0 B14 GND C6 GFA2/IO120RSB1 A27 VCC B15 IO98RSB1 C7 IO117RSB1 A28 IO60RSB0 B16 IO95RSB1 C8 VCCIB1 A29 GCC2/IO59RSB0 B17 GND C9 GEA1/IO108RSB1 A30 GCA2/IO57RSB0 B18 IO87RSB1 C10 GNDQ A31 GCA0/IO56RSB0 B19 IO81RSB1 C11 GEA2/IO106RSB1 A33 IO49RSB0 B20 GND C12 IO103RSB1 A33 IO49RSB0 B21 GNDQ C13 VCCIB1 A34 VCC B22 TMS C14 IO93RSB1 A36 GBA2/IO41RSB0 B24 GDC0/IO62RSB0 C16 IO89RSB1	A23	GDB2/IO71RSB1	B11	VMV1	C3	VCC
A25 TRST B13 IO101RSB1 C5 GFA0/IO122RSB1 A26 GDC1/IO61RSB0 B14 GND C6 GFA2/IO120RSB1 A27 VCC B15 IO98RSB1 C7 IO117RSB1 A28 IO60RSB0 B16 IO95RSB1 C8 VCCIB1 A29 GCC2/IO59RSB0 B17 GND C9 GEA1/IO108RSB1 A30 GCA2/IO57RSB0 B18 IO87RSB1 C10 GNDQ A31 GCA0/IO56RSB0 B19 IO81RSB1 C11 GEA2/IO106RSB1 A32 GCB1/IO53RSB0 B20 GND C12 IO103RSB1 A33 IO49RSB0 B21 GNDQ C13 VCCIB1 A34 VCC B22 TMS C14 IO97RSB1 A35 IO44RSB0 B24 GDC0/IO62RSB0 C16 IO89RSB1	A24	TDI	B12	GEB2/IO105RSB1	C4	GFB1/IO124RSB1
A26 GDC1/IO61RSB0 B14 GND C6 GFA2/IO120RSB1 A27 VCC B15 IO98RSB1 C7 IO117RSB1 A28 IO60RSB0 B16 IO95RSB1 C8 VCCIB1 A29 GCC2/IO59RSB0 B17 GND C9 GEA1/IO108RSB1 A30 GCA2/IO57RSB0 B18 IO87RSB1 C10 GNDQ A31 GCA0/IO56RSB0 B19 IO81RSB1 C11 GEA2/IO106RSB1 A32 GCB1/IO53RSB0 B20 GND C12 IO103RSB1 A33 IO49RSB0 B21 GNDQ C13 VCCIB1 A34 VCC B22 TMS C14 IO97RSB1 A35 IO44RSB0 B23 TDO C15 IO93RSB1 A36 GBA2/IO41RSB0 B24 GDC0/IO62RSB0 C16 IO89RSB1	A25	TRST	B13	IO101RSB1	C5	GFA0/IO122RSB1
A27 VCC B15 IO98RSB1 C7 IO117RSB1 A28 IO60RSB0 B16 IO95RSB1 C8 VCCIB1 A29 GCC2/IO59RSB0 B17 GND C9 GEA1/IO108RSB1 A30 GCA2/IO57RSB0 B18 IO87RSB1 C10 GNDQ A31 GCA0/IO56RSB0 B19 IO81RSB1 C11 GEA2/IO106RSB1 A32 GCB1/IO53RSB0 B20 GND C12 IO103RSB1 A33 IO49RSB0 B21 GNDQ C14 IO97RSB1 A34 VCC B23 TDO C15 IO93RSB1 A36 GBA2/IO41RSB0 B24 GDC0/IO62RSB0 C16 IO89RSB1	A26	GDC1/IO61RSB0	B14	GND	C6	GFA2/IO120RSB1
A28 IO60RSB0 B16 IO95RSB1 C8 VCCIB1 A29 GCC2/IO59RSB0 B17 GND C9 GEA1/IO108RSB1 A30 GCA2/IO57RSB0 B18 IO87RSB1 C10 GNDQ A31 GCA0/IO56RSB0 B19 IO81RSB1 C11 GEA2/IO106RSB1 A32 GCB1/IO53RSB0 B20 GND C12 IO103RSB1 A33 IO49RSB0 B21 GNDQ C13 VCCIB1 A34 VCC B22 TMS C14 IO97RSB1 A35 IO44RSB0 B24 GDC0/IO62RSB0 C16 IO89RSB1	A27	VCC	B15	IO98RSB1	C7	IO117RSB1
A29 GCC2/IO59RSB0 B17 GND C9 GEA1/IO108RSB1 A30 GCA2/IO57RSB0 B18 IO87RSB1 C10 GNDQ A31 GCA0/IO56RSB0 B19 IO81RSB1 C11 GEA2/IO106RSB1 A32 GCB1/IO53RSB0 B20 GND C12 IO103RSB1 A33 IO49RSB0 B21 GNDQ C13 VCCIB1 A35 IO44RSB0 B23 TDO C15 IO93RSB1 A36 GBA2/IO41RSB0 B24 GDC0/IO62RSB0 C16 IO89RSB1	A28	IO60RSB0	B16	IO95RSB1	C8	VCCIB1
A30 GCA2/IO57RSB0 B18 IO87RSB1 C10 GNDQ A31 GCA0/IO56RSB0 B19 IO81RSB1 C11 GEA2/IO106RSB1 A32 GCB1/IO53RSB0 B20 GND C12 IO103RSB1 A33 IO49RSB0 B21 GNDQ C13 VCCIB1 A34 VCC B22 TMS C14 IO97RSB1 A35 IO44RSB0 B23 TDO C15 IO89RSB1 A36 GBA2/IO41RSB0 B24 GDC0/IO62RSB0 C16 IO89RSB1	A29	GCC2/IO59RSB0	B17	GND	C9	GEA1/IO108RSB1
A31 GCA0/IO56RSB0 B19 IO81RSB1 C11 GEA2/IO106RSB1 A32 GCB1/IO53RSB0 B20 GND C12 IO103RSB1 A33 IO49RSB0 B21 GNDQ C13 VCCIB1 A34 VCC B22 TMS C14 IO97RSB1 A35 IO44RSB0 B23 TDO C15 IO93RSB1 A36 GBA2/IO41RSB0 B24 GDC0/IO62RSB0 C16 IO89RSB1	A30	GCA2/IO57RSB0	B18	IO87RSB1	C10	GNDQ
A32 GCB1/IO53RSB0 B20 GND C12 IO103RSB1 A33 IO49RSB0 B21 GNDQ C13 VCCIB1 A34 VCC B22 TMS C14 IO97RSB1 A35 IO44RSB0 B23 TDO C15 IO93RSB1 A36 GBA2/IO41RSB0 B24 GDC0/IO62RSB0 C16 IO89RSB1	A31	GCA0/IO56RSB0	B19	IO81RSB1	C11	GEA2/IO106RSB1
A33 IO49RSB0 B21 GNDQ C13 VCCIB1 A34 VCC B22 TMS C14 IO97RSB1 A35 IO44RSB0 B23 TDO C15 IO93RSB1 A36 GBA2/IO41RSB0 B24 GDC0/IO62RSB0 C16 IO89RSB1	A32	GCB1/IO53RSB0	B20	GND	C12	IO103RSB1
A34 VCC B22 TMS C14 IO97RSB1 A35 IO44RSB0 B23 TDO C15 IO93RSB1 A36 GBA2/IO41RSB0 B24 GDC0/IO62RSB0 C16 IO89RSB1	A33	IO49RSB0	B21	GNDQ	C13	VCCIB1
A35 IO44RSB0 B23 TDO C15 IO93RSB1 A36 GBA2/IO41RSB0 B24 GDC0/IO62RSB0 C16 IO89RSB1	A34	VCC	B22	TMS	C14	IO97RSB1
A36 GBA2/IO41RSB0 B24 GDC0/IO62RSB0 C16 IO89RSB1	A35	IO44RSB0	B23	TDO	C15	IO93RSB1
	A36	GBA2/IO41RSB0	B24	GDC0/IO62RSB0	C16	IO89RSB1

CS121				
Pin Number	A3P060 Function			
K10	VPUMP			
K11 GDB1/IO47RSB0				
L1 VMV1				
L2	GNDQ			
L3	IO65RSB1			
L4	IO63RSB1			
L5	IO61RSB1			
L6	IO58RSB1			
L7	IO57RSB1			
L8	IO55RSB1			
L9	GNDQ			
L10	GDA0/IO50RSB0			
L11	VMV1			

TQ144				
Pin Number A3P125 Function				
109	GBA1/IO40RSB0			
110	GBA0/IO39RSB0			
111	GBB1/IO38RSB0			
112	GBB0/IO37RSB0			
113	GBC1/IO36RSB0			
114	GBC0/IO35RSB0			
115	IO34RSB0			
116	IO33RSB0			
117	VCCIB0			
118	GND			
119	VCC			
120	IO29RSB0			
121	IO28RSB0			
122	IO27RSB0			
123	IO25RSB0			
124	IO23RSB0			
125	IO21RSB0			
126	IO19RSB0			
127	IO17RSB0			
128	IO16RSB0			
129	IO14RSB0			
130	IO12RSB0			
131	IO10RSB0			
132	IO08RSB0			
133	IO06RSB0			
134	VCCIB0			
135	GND			
136	VCC			
137	GAC1/IO05RSB0			
138	GAC0/IO04RSB0			
139	GAB1/IO03RSB0			
140	GAB0/IO02RSB0			
141	GAA1/IO01RSB0			
142 GAA0/IO00RS				
143	GNDQ			
144	VMV0			

FG144				
Pin Number A3P250 Function				
K1	GEB0/IO99NDB3			
K2	GEA1/IO98PDB3			
K3	GEA0/IO98NDB3			
K4	GEA2/IO97RSB2			
K5	IO90RSB2			
K6	IO84RSB2			
K7	GND			
K8	IO66RSB2			
K9	GDC2/IO63RSB2			
K10	GND			
K11	GDA0/IO60VDB1			
K12	GDB0/IO59VDB1			
L1	GND			
L2	VMV3			
L3	GEB2/IO96RSB2			
L4	IO91RSB2			
L5	VCCIB2			
L6	IO82RSB2			
L7	IO80RSB2			
L8	IO72RSB2			
L9	TMS			
L10	VJTAG			
L11	VMV2			
L12	TRST			
M1	GNDQ			
M2	GEC2/IO95RSB2			
M3	IO92RSB2			
M4	IO89RSB2			
M5	IO87RSB2			
M6	IO85RSB2			
M7	IO78RSB2			
M8	IO76RSB2			
M9	TDI			
M10 VCCIB2				
M11	VPUMP			
M12	GNDQ			

🌜 Microsemi.

Package Pin Assignments

FG484			FG484	FG484	
Pin Number	A3P400 Function	Pin Number	A3P400 Function	Pin Number	A3P400 Function
K19	IO73NDB1	M11	GND	P3	NC
K20	NC	M12	GND	P4	IO142NDB3
K21	NC	M13	GND	P5	IO141NPB3
K22	NC	M14	VCC	P6	IO125RSB2
L1	NC	M15	GCB2/IO71PPB1	P7	IO139RSB3
L2	NC	M16	GCA1/IO69PPB1	P8	VCCIB3
L3	NC	M17	GCC2/IO72PPB1	P9	GND
L4	GFB0/IO146NPB3	M18	NC	P10	VCC
L5	GFA0/IO145NDB3	M19	GCA2/IO70PDB1	P11	VCC
L6	GFB1/IO146PPB3	M20	NC	P12	VCC
L7	VCOMPLF	M21	NC	P13	VCC
L8	GFC0/IO147NPB3	M22	NC	P14	GND
L9	VCC	N1	NC	P15	VCCIB1
L10	GND	N2	NC	P16	GDB0/IO78VPB1
L11	GND	N3	NC	P17	IO76VDB1
L12	GND	N4	GFC2/IO142PDB3	P18	IO76UDB1
L13	GND	N5	IO144NPB3	P19	IO75PDB1
L14	VCC	N6	IO141PPB3	P20	NC
L15	GCC0/IO67NPB1	N7	IO120RSB2	P21	NC
L16	GCB1/IO68PPB1	N8	VCCIB3	P22	NC
L17	GCA0/IO69NPB1	N9	VCC	R1	NC
L18	NC	N10	GND	R2	NC
L19	GCB0/IO68NPB1	N11	GND	R3	VCC
L20	NC	N12	GND	R4	IO140PDB3
L21	NC	N13	GND	R5	IO130RSB2
L22	NC	N14	VCC	R6	IO138NPB3
M1	NC	N15	VCCIB1	R7	GEC0/IO137NPB3
M2	NC	N16	IO71NPB1	R8	VMV3
M3	NC	N17	IO74RSB1	R9	VCCIB2
M4	GFA2/IO144PPB3	N18	IO72NPB1	R10	VCCIB2
M5	GFA1/IO145PDB3	N19	IO70NDB1	R11	IO108RSB2
M6	VCCPLF	N20	NC	R12	IO101RSB2
M7	IO143NDB3	N21	NC	R13	VCCIB2
M8	GFB2/IO143PDB3	N22	NC	R14	VCCIB2
M9	VCC	P1	NC	R15	VMV2
M10	GND	P2	NC	R16	IO83RSB2

FG484		FG484		FG484		
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	
R17	GDB1/IO112PPB1	U9	IO165RSB2	W1	NC	
R18	GDC1/IO111PDB1	U10	IO159RSB2	W2	IO191PDB3	
R19	IO107NDB1	U11	IO151RSB2	W3	NC	
R20	VCC	U12	IO137RSB2	W4	GND	
R21	IO104NDB1	U13	IO134RSB2	W5	IO183RSB2	
R22	IO105PDB1	U14	IO128RSB2	W6	GEB2/IO186RSB2	
T1	IO198PDB3	U15	VMV1	W7	IO172RSB2	
T2	IO198NDB3	U16	ТСК	W8	IO170RSB2	
Т3	NC	U17	VPUMP	W9	IO164RSB2	
T4	IO194PPB3	U18	TRST	W10	IO158RSB2	
T5	IO192PPB3	U19	GDA0/IO113NDB1	W11	IO153RSB2	
T6	GEC1/IO190PPB3	U20	NC	W12	IO142RSB2	
T7	IO192NPB3	U21	IO108NDB1	W13	IO135RSB2	
Т8	GNDQ	U22	IO109PDB1	W14	IO130RSB2	
Т9	GEA2/IO187RSB2	V1	NC	W15	GDC2/IO116RSB2	
T10	IO161RSB2	V2	NC	W16	IO120RSB2	
T11	IO155RSB2	V3	GND	W17	GDA2/IO114RSB2	
T12	IO141RSB2	V4	GEA1/IO188PDB3	W18	TMS	
T13	IO129RSB2	V5	GEA0/IO188NDB3	W19	GND	
T14	IO124RSB2	V6	IO184RSB2	W20	NC	
T15	GNDQ	V7	GEC2/IO185RSB2	W21	NC	
T16	IO110PDB1	V8	IO168RSB2	W22	NC	
T17	VJTAG	V9	IO163RSB2	Y1	VCCIB3	
T18	GDC0/IO111NDB1	V10	IO157RSB2	Y2	IO191NDB3	
T19	GDA1/IO113PDB1	V11	IO149RSB2	Y3	NC	
T20	NC	V12	IO143RSB2	Y4	IO182RSB2	
T21	IO108PDB1	V13	IO138RSB2	Y5	GND	
T22	IO105NDB1	V14	IO131RSB2	Y6	IO177RSB2	
U1	IO195PDB3	V15	IO125RSB2	Y7	IO174RSB2	
U2	IO195NDB3	V16	GDB2/IO115RSB2	Y8	VCC	
U3	IO194NPB3	V17	TDI	Y9	VCC	
U4	GEB1/IO189PDB3	V18	GNDQ	Y10	IO154RSB2	
U5	GEB0/IO189NDB3	V19	TDO	Y11	IO148RSB2	
U6	VMV2	V20	GND	Y12	IO140RSB2	
U7	IO179RSB2	V21	NC	Y13	NC	
U8	IO171RSB2	V22	IO109NDB1	Y14	VCC	

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in the "ProASIC3 Device Status" table on page IV, is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Unmarked (production)

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications Policy

The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information.