

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

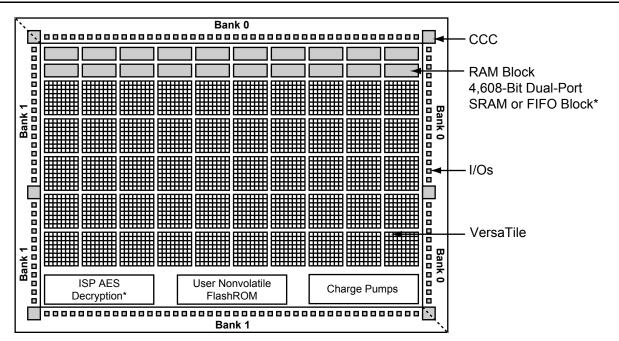
Details

ĿXF

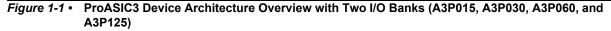
Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	147456
Number of I/O	97
Number of Gates	1000000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	144-LBGA
Supplier Device Package	144-FPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m7a3p1000-2fgg144i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Advanced Flash Technology

The ProASIC3 family offers many benefits, including nonvolatility and reprogrammability through an advanced flashbased, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design techniques are used to implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization without compromising device routability or performance. Logic functions within the device are interconnected through a four-level routing hierarchy.


Advanced Architecture

The proprietary ProASIC3 architecture provides granularity comparable to standard-cell ASICs. The ProASIC3 device consists of five distinct and programmable architectural features (Figure 1-1 and Figure 1-2 on page 1-4):

- FPGA VersaTiles
- Dedicated FlashROM
- Dedicated SRAM/FIFO memory[†]
- Extensive CCCs and PLLs[†]
- Advanced I/O structure

Note: *Not supported by A3P015 and A3P030 devices

† The A3P015 and A3P030 do not support PLL or SRAM.

2 – ProASIC3 DC and Switching Characteristics

General Specifications

Operating Conditions

Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions specified in Table 2-2 on page 2-2 is not implied.

Table 2-1 • Absolute Maximum Ratings	Table 2-1 •	Absolute	Maximum	Ratings
--------------------------------------	-------------	----------	---------	---------

Symbol	Parameter	Limits	Units
VCC	DC core supply voltage	–0.3 to 1.65	V
VJTAG	JTAG DC voltage	-0.3 to 3.75	V
VPUMP	Programming voltage	-0.3 to 3.75	V
VCCPLL	Analog power supply (PLL)	–0.3 to 1.65	V
VCCI	DC I/O output buffer supply voltage	-0.3 to 3.75	V
VMV	DC I/O input buffer supply voltage	–0.3 to 3.75	V
VI	I/O input voltage	–0.3 V to 3.6 V	V
		(when I/O hot insertion mode is enabled)	
		-0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower (when I/O hot-insertion mode is disabled)	
T _{STG} ²	Storage temperature	-65 to +150	°C
T _J ²	Junction temperature	+125	°C

Notes:

1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 2-4 on page 2-3.

2. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information.

3. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-3, and for recommended operating limits, refer to Table 2-2 on page 2-2.

Calculating Power Dissipation

Quiescent Supply Current

Table 2-7 • Quiescent Supply Current Characteristics

	A3P015	A3P030	A3P060	A3P125	A3P250	A3P400	A3P600	A3P1000
Typical (25°C)	2 mA	2 mA	2 mA	2 mA	3 mA	3 mA	5 mA	8 mA
Max. (Commercial)	10 mA	10 mA	10 mA	10 mA	20 mA	20 mA	30 mA	50 mA
Max. (Industrial)	15 mA	15 mA	15 mA	15 mA	30 mA	30 mA	45 mA	75 mA

Note: IDD Includes VCC, VPUMP, VCCI, and VMV currents. Values do not include I/O static contribution, which is shown in Table 2-11 and Table 2-12 on page 2-9.

Power per I/O Pin

Table 2-8 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Advanced I/O Banks

	VMV (V)	Static Power P _{DC2} (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²		
Single-Ended		1			
3.3 V LVTTL / 3.3 V LVCMOS	3.3	-	16.22		
3.3 V LVCMOS Wide Range ³	3.3	-	16.22		
2.5 V LVCMOS	2.5	-	5.12		
1.8 V LVCMOS	1.8	-	2.13		
1.5 V LVCMOS (JESD8-11)	1.5	-	1.45		
3.3 V PCI	3.3	-	18.11		
3.3 V PCI-X	3.3	-	18.11		
Differential					
LVDS	2.5	2.26	1.20		
LVPECL	3.3	5.72	1.87		

Notes:

- 1. PDC2 is the static power (where applicable) measured on VMV.
- 2. PAC9 is the total dynamic power measured on VCC and VMV.
- 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Table 2-9 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Standard Plus I/O Banks

	VMV (V)	Static Power PDC2 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
Single-Ended			
3.3 V LVTTL / 3.3 V LVCMOS	3.3	-	16.23
3.3 V LVCMOS Wide Range ³	3.3	-	16.23

Notes:

- 1. PDC2 is the static power (where applicable) measured on VMV.
- 2. PAC9 is the total dynamic power measured on VCC and VMV.
- 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Table 2-9 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Standard Plus I/O Banks

	VMV (V)	Static Power PDC2 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
2.5 V LVCMOS	2.5	-	5.14
1.8 V LVCMOS	1.8	-	2.13
1.5 V LVCMOS (JESD8-11)	1.5	-	1.48
3.3 V PCI	3.3	-	18.13
3.3 V PCI-X	3.3	_	18.13

Notes:

- 1. PDC2 is the static power (where applicable) measured on VMV.
- 2. PAC9 is the total dynamic power measured on VCC and VMV.
- 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Table 2-10 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Standard I/O Banks

	VMV (V)	Static Power PDC2 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
Single-Ended			
3.3 V LVTTL / 3.3 V LVCMOS	3.3	-	17.24
3.3 V LVCMOS Wide Range ³	3.3	-	17.24
2.5 V LVCMOS	2.5	-	5.19
1.8 V LVCMOS	1.8	-	2.18
1.5 V LVCMOS (JESD8-11)	1.5	-	1.52

Notes:

1. PDC2 is the static power (where applicable) measured on VMV.

2. PAC9 is the total dynamic power measured on VCC and VMV.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Summary of I/O Timing Characteristics – Default I/O Software Settings

Table 2-22 • Summary of AC Measuring Points

Standard	Measuring Trip Point (V _{trip})
3.3 V LVTTL / 3.3 V LVCMOS	1.4 V
3.3 V LVCMOS Wide Range	1.4 V
2.5 V LVCMOS	1.2 V
1.8 V LVCMOS	0.90 V
1.5 V LVCMOS	0.75 V
3.3 V PCI	0.285 * VCCI (RR)
	0.615 * VCCI (FF)
3.3 V PCI-X	0.285 * VCCI (RR)
	0.615 * VCCI (FF)

Table 2-23 • I/O AC Parameter Definitions

Parameter	Parameter Definition
t _{DP}	Data to Pad delay through the Output Buffer
t _{PY}	Pad to Data delay through the Input Buffer
t _{DOUT}	Data to Output Buffer delay through the I/O interface
t _{EOUT}	Enable to Output Buffer Tristate Control delay through the I/O interface
t _{DIN}	Input Buffer to Data delay through the I/O interface
t _{HZ}	Enable to Pad delay through the Output Buffer—High to Z
t _{ZH}	Enable to Pad delay through the Output Buffer—Z to High
t _{LZ}	Enable to Pad delay through the Output Buffer—Low to Z
t _{ZL}	Enable to Pad delay through the Output Buffer—Z to Low
t _{ZHS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to High
t _{ZLS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to Low

Table 2-45 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
	-2	0.49	3.29	0.03	0.75	0.32	3.36	2.80	1.79	2.01	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-46 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	9.46	0.04	1.00	0.43	9.64	8.54	2.07	2.04	ns
	-1	0.56	8.05	0.04	0.85	0.36	8.20	7.27	1.76	1.73	ns
	-2	0.49	7.07	0.03	0.75	0.32	7.20	6.38	1.55	1.52	ns
4 mA	Std.	0.66	9.46	0.04	1.00	0.43	9.64	8.54	2.07	2.04	ns
	-1	0.56	8.05	0.04	0.85	0.36	8.20	7.27	1.76	1.73	ns
	-2	0.49	7.07	0.03	0.75	0.32	7.20	6.38	1.55	1.52	ns
6 mA	Std.	0.66	6.57	0.04	1.00	0.43	6.69	5.98	2.40	2.57	ns
	-1	0.56	5.59	0.04	0.85	0.36	5.69	5.09	2.04	2.19	ns
	-2	0.49	4.91	0.03	0.75	0.32	5.00	4.47	1.79	1.92	ns
8 mA	Std.	0.66	6.57	0.04	1.00	0.43	6.69	5.98	2.40	2.57	ns
	-1	0.56	5.59	0.04	0.85	0.36	5.69	5.09	2.04	2.19	ns
	-2	0.49	4.91	0.03	0.75	0.32	5.00	4.47	1.79	1.92	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

3.3 V LVCMOS Wide Range

Table 2-47 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

3.3 V LVCMOS Wide Range	Equiv. Software Default	v	IL	v	н	VOL	VОН	IOL	ЮН	IOSL	IOSH	IIL ²	IIH ³
Drive Strength	Drive Strength Option ¹	Min V	Max V	Min V	Max V	Max V	Min V	μA	μA	Max mA ⁴	Max mA ⁴	µA⁵	μ Α ⁵
100 µA	2 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	25	27	10	10
100 µA	4 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	25	27	10	10
100 µA	6 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	51	54	10	10
100 µA	8 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	51	54	10	10
100 µA	12 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	103	109	10	10
100 µA	16 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	132	127	10	10
100 µA	24 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	268	181	10	10

Notes:

 The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

4. Currents are measured at 85°C junction temperature.

5. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

6. Software default selection highlighted in gray.

Table 2-48 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks

3.3 V LVCMOS Wide Range	Equiv. Software	V	L	v	ΊH	VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL²	IIH ³
Drive Strength	Default Drive Strength Option ¹	Min V	Max V	Min V	Max V	Max V	Min V	μΑ	μΑ	Max mA ⁴	Max mA ⁴	μ Α ⁵	μA⁵
100 µA	2 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	25	27	10	10
100 µA	4 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	25	27	10	10
100 µA	6 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	51	54	10	10
100 µA	8 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	51	54	10	10
100 µA	12 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	103	109	10	10
100 μA	16 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	103	109	10	10

Notes:

 The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

4. Currents are measured at 85°C junction temperature.

5. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

6. Software default selection highlighted in gray.

Output Enable Register

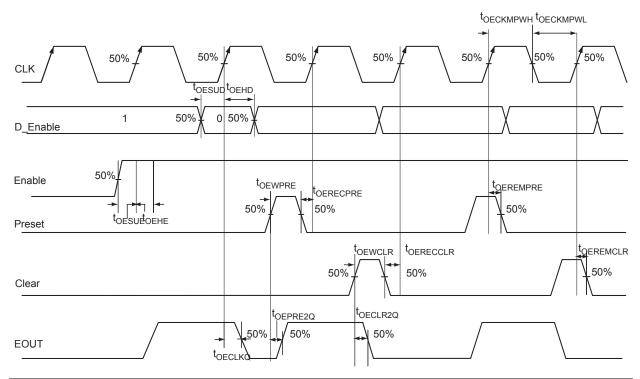
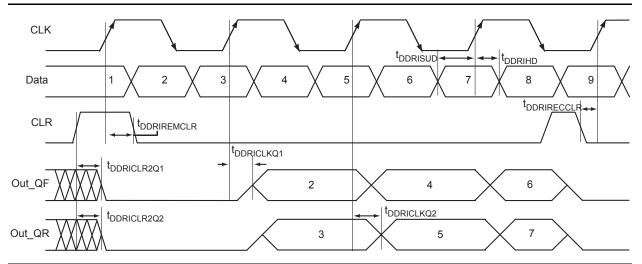



Figure 2-19 • Output Enable Register Timing Diagram

Figure 2-21 • Input DDR Timing Diagram

Timing Characteristics

Table 2-102 • Input DDR Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{DDRICLKQ1}	Clock-to-Out Out_QR for Input DDR	0.27	0.31	0.37	ns
t _{DDRICLKQ2}	Clock-to-Out Out_QF for Input DDR	0.39	0.44	0.52	ns
t _{DDRISUD}	Data Setup for Input DDR (Fall)	0.25	0.28	0.33	ns
	Data Setup for Input DDR (Rise)	0.25	0.28	0.33	ns
t _{DDRIHD}	Data Hold for Input DDR (Fall)	0.00	0.00	0.00	ns
	Data Hold for Input DDR (Rise)	0.00	0.00	0.00	ns
t _{DDRICLR2Q1}	Asynchronous Clear-to-Out Out_QR for Input DDR	0.46	0.53	0.62	ns
t _{DDRICLR2Q2}	Asynchronous Clear-to-Out Out_QF for Input DDR	0.57	0.65	0.76	ns
t _{DDRIREMCLR}	Asynchronous Clear Removal time for Input DDR	0.00	0.00	0.00	ns
t _{DDRIRECCLR}	Asynchronous Clear Recovery time for Input DDR	0.22	0.25	0.30	ns
t _{DDRIWCLR}	Asynchronous Clear Minimum Pulse Width for Input DDR	0.22	0.25	0.30	ns
t _{DDRICKMPWH}	Clock Minimum Pulse Width High for Input DDR	0.36	0.41	0.48	ns
t _{DDRICKMPWL}	Clock Minimum Pulse Width Low for Input DDR	0.32	0.37	0.43	ns
F _{DDRIMAX}	Maximum Frequency for Input DDR	350	309	263	MHz

Note: For specific junction temperature and voltage-supply levels, refer to Table 2-6 on page 2-6 for derating values.

VJTAG

JTAG Supply Voltage

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design.

If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND.

It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

VPUMP Programming Supply Voltage

ProASIC3 devices support single-voltage ISP of the configuration flash and FlashROM. For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in Table 2-2 on page 2-2.

When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

User Pins

I/O

User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected.

During programming, I/Os become tristated and weakly pulled up to V_{CCI} . With V_{CCI} , VMV, and V_{CC} supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

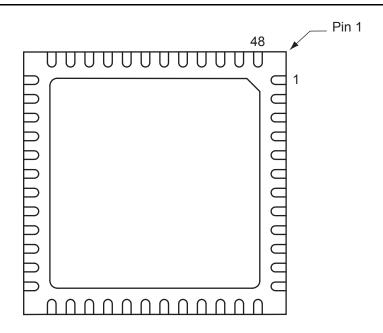
- Output buffer is disabled (with tristate value of high impedance)
- Input buffer is disabled (with tristate value of high impedance)
- Weak pull-up is programmed

GL Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.

See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in IGLOO and ProASIC3 Devices" chapter of the *ProASIC3 FPGA Fabric User's Guide*. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input.

Refer to the I/O Structure section of the handbook for the device you are using for an explanation of the naming of global pins.


FF Flash*Freeze Mode Activation Pin

Flash*Freeze is available on IGLOO, ProASIC3L, and RT ProASIC3 devices. It is not supported on ProASIC3/E devices. The FF pin is a dedicated input pin used to enter and exit Flash*Freeze mode. The FF pin is active-low, has the same characteristics as a single-ended I/O, and must meet the maximum rise and fall times. When Flash*Freeze

4 – Package Pin Assignments

QN48 – Bottom View

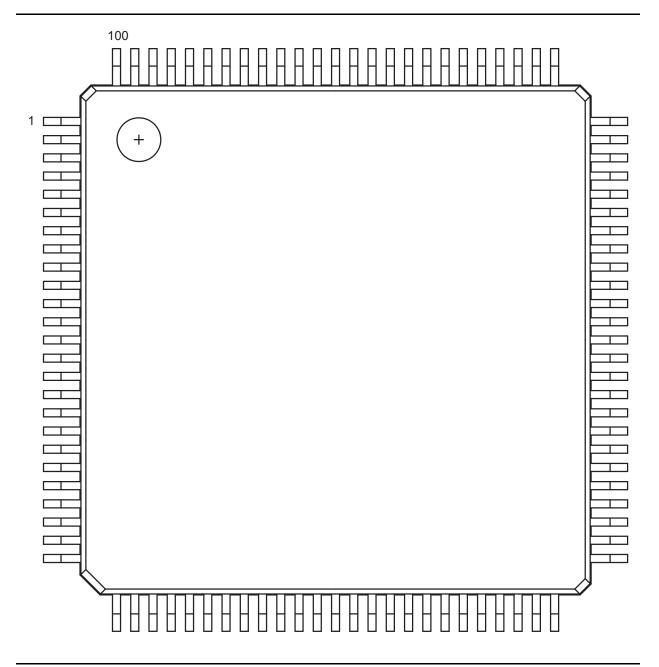
Note: The die attach paddle center of the package is tied to ground (GND).

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

Package Pin Assignments

	2N68		2N68
Pin Number	A3P015 Function	Pin Number	A3P015 Function
1	IO82RSB1	37	TRST
2	IO82R3B1	38	VJTAG
3	IO78RSB1	39	IO40RSB0
-			
4	IO76RSB1	40	IO37RSB0
5	GEC0/IO73RSB1	41	GDB0/IO34RSB0
6	GEA0/IO72RSB1	42	GDA0/IO33RSB0
7	GEB0/IO71RSB1	43	GDC0/IO32RSB0
8	VCC	44	VCCIB0
9	GND	45	GND
10	VCCIB1	46	VCC
11	IO68RSB1	47	IO31RSB0
12	IO67RSB1	48	IO29RSB0
13	IO66RSB1	49	IO28RSB0
14	IO65RSB1	50	IO27RSB0
15	IO64RSB1	51	IO25RSB0
16	IO63RSB1	52	IO24RSB0
17	IO62RSB1	53	IO22RSB0
18	IO60RSB1	54	IO21RSB0
19	IO58RSB1	55	IO19RSB0
20	IO56RSB1	56	IO17RSB0
21	IO54RSB1	57	IO15RSB0
22	IO52RSB1	58	IO14RSB0
23	IO51RSB1	59	VCCIB0
24	VCC	60	GND
25	GND	61	VCC
26	VCCIB1	62	IO12RSB0
27	IO50RSB1	63	IO10RSB0
28	IO48RSB1	64	IO08RSB0
29	IO46RSB1	65	IO06RSB0
30	IO44RSB1	66	IO04RSB0
31	IO42RSB1	67	IO02RSB0
32	ТСК	68	IO00RSB0
33	TDI		
34	TMS		
35	VPUMP		


TDO

36

🌜 Microsemi.

Package Pin Assignments

VQ100 – Top View

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

Package Pin Assignments

Т	Q144	Т	Q144	TQ144	
Pin Number	A3P060 Function	Pin Number	A3P060 Function	Pin Number	A3P060 Function
1	GAA2/IO51RSB1	37	NC	73	VPUMP
2	IO52RSB1	38	GEA2/IO71RSB1	74	NC
3	GAB2/IO53RSB1	39	GEB2/IO70RSB1	75	TDO
4	IO95RSB1	40	GEC2/IO69RSB1	76	TRST
5	GAC2/IO94RSB1	41	IO68RSB1	77	VJTAG
6	IO93RSB1	42	IO67RSB1	78	GDA0/IO50RSB0
7	IO92RSB1	43	IO66RSB1	79	GDB0/IO48RSB0
8	IO91RSB1	44	IO65RSB1	80	GDB1/IO47RSB0
9	VCC	45	VCC	81	VCCIB0
10	GND	46	GND	82	GND
11	VCCIB1	47	VCCIB1	83	IO44RSB0
12	IO90RSB1	48	NC	84	GCC2/IO43RSB0
13	GFC1/IO89RSB1	49	IO64RSB1	85	GCB2/IO42RSB0
14	GFC0/IO88RSB1	50	NC	86	GCA2/IO41RSB0
15	GFB1/IO87RSB1	51	IO63RSB1	87	GCA0/IO40RSB0
16	GFB0/IO86RSB1	52	NC	88	GCA1/IO39RSB0
17	VCOMPLF	53	IO62RSB1	89	GCB0/IO38RSB0
18	GFA0/IO85RSB1	54	NC	90	GCB1/IO37RSB0
19	VCCPLF	55	IO61RSB1	91	GCC0/IO36RSB0
20	GFA1/IO84RSB1	56	NC	92	GCC1/IO35RSB0
21	GFA2/IO83RSB1	57	NC	93	IO34RSB0
22	GFB2/IO82RSB1	58	IO60RSB1	94	IO33RSB0
23	GFC2/IO81RSB1	59	IO59RSB1	95	NC
24	IO80RSB1	60	IO58RSB1	96	NC
25	IO79RSB1	61	IO57RSB1	97	NC
26	IO78RSB1	62	NC	98	VCCIB0
27	GND	63	GND	99	GND
28	VCCIB1	64	NC	100	VCC
29	GEC1/IO77RSB1	65	GDC2/IO56RSB1	101	IO30RSB0
30	GEC0/IO76RSB1	66	GDB2/IO55RSB1	102	GBC2/IO29RSB0
31	GEB1/IO75RSB1	67	GDA2/IO54RSB1	103	IO28RSB0
32	GEB0/IO74RSB1	68	GNDQ	104	GBB2/IO27RSB0
33	GEA1/IO73RSB1	69	ТСК	105	IO26RSB0
34	GEA0/IO72RSB1	70	TDI	106	GBA2/IO25RSB0
35	VMV1	71	TMS	107	VMV0
36	GNDQ	72	VMV1	108	GNDQ

	PQ208		PQ208		PQ208
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function
1	GND	37	IO199PDB3	73	IO162RSB2
2	GAA2/IO225PDB3	38	IO199NDB3	74	IO160RSB2
3	IO225NDB3	39	IO197PSB3	75	IO158RSB2
4	GAB2/IO224PDB3	40	VCCIB3	76	IO156RSB2
5	IO224NDB3	41	GND	77	IO154RSB2
6	GAC2/IO223PDB3	42	IO191PDB3	78	IO152RSB2
7	IO223NDB3	43	IO191NDB3	79	IO150RSB2
8	IO222PDB3	44	GEC1/IO190PDB3	80	IO148RSB2
9	IO222NDB3	45	GEC0/IO190NDB3	81	GND
10	IO220PDB3	46	GEB1/IO189PDB3	82	IO143RSB2
11	IO220NDB3	47	GEB0/IO189NDB3	83	IO141RSB2
12	IO218PDB3	48	GEA1/IO188PDB3	84	IO139RSB2
13	IO218NDB3	49	GEA0/IO188NDB3	85	IO137RSB2
14	IO216PDB3	50	VMV3	86	IO135RSB2
15	IO216NDB3	51	GNDQ	87	IO133RSB2
16	VCC	52	GND	88	VCC
17	GND	53	VMV2	89	VCCIB2
18	VCCIB3	54	GEA2/IO187RSB2	90	IO128RSB2
19	IO212PDB3	55	GEB2/IO186RSB2	91	IO126RSB2
20	IO212NDB3	56	GEC2/IO185RSB2	92	IO124RSB2
21	GFC1/IO209PDB3	57	IO184RSB2	93	IO122RSB2
22	GFC0/IO209NDB3	58	IO183RSB2	94	IO120RSB2
23	GFB1/IO208PDB3	59	IO182RSB2	95	IO118RSB2
24	GFB0/IO208NDB3	60	IO181RSB2	96	GDC2/IO116RSB2
25	VCOMPLF	61	IO180RSB2	97	GND
26	GFA0/IO207NPB3	62	VCCIB2	98	GDB2/IO115RSB2
27	VCCPLF	63	IO178RSB2	99	GDA2/IO114RSB2
28	GFA1/IO207PPB3	64	IO176RSB2	100	GNDQ
29	GND	65	GND	101	ТСК
30	GFA2/IO206PDB3	66	IO174RSB2	102	TDI
31	IO206NDB3	67	IO172RSB2	103	TMS
32	GFB2/IO205PDB3	68	IO170RSB2	104	VMV2
33	IO205NDB3	69	IO168RSB2	105	GND
34	GFC2/IO204PDB3	70	IO166RSB2	106	VPUMP
35	IO204NDB3	71	VCC	107	GNDQ
36	VCC	72	VCCIB2	108	TDO

🌜 Microsemi.

Package Pin Assignments

	FG484		FG484	FG484	
Pin Number	A3P400 Function	Pin Number	A3P400 Function	Pin Number	A3P400 Function
K19	IO73NDB1	M11	GND	P3	NC
K20	NC	M12	GND	P4	IO142NDB3
K21	NC	M13	GND	P5	IO141NPB3
K22	NC	M14	VCC	P6	IO125RSB2
L1	NC	M15	GCB2/IO71PPB1	P7	IO139RSB3
L2	NC	M16	GCA1/IO69PPB1	P8	VCCIB3
L3	NC	M17	GCC2/IO72PPB1	P9	GND
L4	GFB0/IO146NPB3	M18	NC	P10	VCC
L5	GFA0/IO145NDB3	M19	GCA2/IO70PDB1	P11	VCC
L6	GFB1/IO146PPB3	M20	NC	P12	VCC
L7	VCOMPLF	M21	NC	P13	VCC
L8	GFC0/IO147NPB3	M22	NC	P14	GND
L9	VCC	N1	NC	P15	VCCIB1
L10	GND	N2	NC	P16	GDB0/IO78VPB1
L11	GND	N3	NC	P17	IO76VDB1
L12	GND	N4	GFC2/IO142PDB3	P18	IO76UDB1
L13	GND	N5	IO144NPB3	P19	IO75PDB1
L14	VCC	N6	IO141PPB3	P20	NC
L15	GCC0/IO67NPB1	N7	IO120RSB2	P21	NC
L16	GCB1/IO68PPB1	N8	VCCIB3	P22	NC
L17	GCA0/IO69NPB1	N9	VCC	R1	NC
L18	NC	N10	GND	R2	NC
L19	GCB0/IO68NPB1	N11	GND	R3	VCC
L20	NC	N12	GND	R4	IO140PDB3
L21	NC	N13	GND	R5	IO130RSB2
L22	NC	N14	VCC	R6	IO138NPB3
M1	NC	N15	VCCIB1	R7	GEC0/IO137NPB3
M2	NC	N16	IO71NPB1	R8	VMV3
M3	NC	N17	IO74RSB1	R9	VCCIB2
M4	GFA2/IO144PPB3	N18	IO72NPB1	R10	VCCIB2
M5	GFA1/IO145PDB3	N19	IO70NDB1	R11	IO108RSB2
M6	VCCPLF	N20	NC	R12	IO101RSB2
M7	IO143NDB3	N21	NC	R13	VCCIB2
M8	GFB2/IO143PDB3	N22	NC	R14	VCCIB2
M9	VCC	P1	NC	R15	VMV2
M10	GND	P2	NC	R16	IO83RSB2

	FG484		FG484		FG484
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function
R17	GDB1/IO112PPB1	U9	IO165RSB2	W1	NC
R18	GDC1/IO111PDB1	U10	IO159RSB2	W2	IO191PDB3
R19	IO107NDB1	U11	IO151RSB2	W3	NC
R20	VCC	U12	IO137RSB2	W4	GND
R21	IO104NDB1	U13	IO134RSB2	W5	IO183RSB2
R22	IO105PDB1	U14	IO128RSB2	W6	GEB2/IO186RSB2
T1	IO198PDB3	U15	VMV1	W7	IO172RSB2
T2	IO198NDB3	U16	тск	W8	IO170RSB2
Т3	NC	U17	VPUMP	W9	IO164RSB2
T4	IO194PPB3	U18	TRST	W10	IO158RSB2
T5	IO192PPB3	U19	GDA0/IO113NDB1	W11	IO153RSB2
T6	GEC1/IO190PPB3	U20	NC	W12	IO142RSB2
T7	IO192NPB3	U21	IO108NDB1	W13	IO135RSB2
Т8	GNDQ	U22	IO109PDB1	W14	IO130RSB2
Т9	GEA2/IO187RSB2	V1	NC	W15	GDC2/IO116RSB2
T10	IO161RSB2	V2	NC	W16	IO120RSB2
T11	IO155RSB2	V3	GND	W17	GDA2/IO114RSB2
T12	IO141RSB2	V4	GEA1/IO188PDB3	W18	TMS
T13	IO129RSB2	V5	GEA0/IO188NDB3	W19	GND
T14	IO124RSB2	V6	IO184RSB2	W20	NC
T15	GNDQ	V7	GEC2/IO185RSB2	W21	NC
T16	IO110PDB1	V8	IO168RSB2	W22	NC
T17	VJTAG	V9	IO163RSB2	Y1	VCCIB3
T18	GDC0/IO111NDB1	V10	IO157RSB2	Y2	IO191NDB3
T19	GDA1/IO113PDB1	V11	IO149RSB2	Y3	NC
T20	NC	V12	IO143RSB2	Y4	IO182RSB2
T21	IO108PDB1	V13	IO138RSB2	Y5	GND
T22	IO105NDB1	V14	IO131RSB2	Y6	IO177RSB2
U1	IO195PDB3	V15	IO125RSB2	Y7	IO174RSB2
U2	IO195NDB3	V16	GDB2/IO115RSB2	Y8	VCC
U3	IO194NPB3	V17	TDI	Y9	VCC
U4	GEB1/IO189PDB3	V18	GNDQ	Y10	IO154RSB2
U5	GEB0/IO189NDB3	V19	TDO	Y11	IO148RSB2
U6	VMV2	V20	GND	Y12	IO140RSB2
U7	IO179RSB2	V21	NC	Y13	NC
U8	IO171RSB2	V22	IO109NDB1	Y14	VCC

5 – Datasheet Information

List of Changes

The following table lists critical changes that were made in each version of the ProASIC3 datasheet.

Revision	Changes	Page			
Revision 18 (March 2016)	Updated 3.3 V DC supply voltage's maximum Commercial and Industrial values from 3.3 V to 3.6 V in Table 2-2 (SAR 72693).	2-2			
	Added reference of Package Mechanical Drawings document in all package pin assignment notes (76833).	NA			
Revision 17	Removed PQFP embedded heat spreader info. from Table 2-5 (SAR 52320).	2-6			
(June 2015)	Updated "VCCIBx I/O Supply Voltage" (SAR 43323).	3-1			
Revision 16 (December 2014)	Updated "ProASIC3 Ordering Information". Interchanged the positions of Y- Security Feature and I- Application (Temperature Range) (SAR 61079). Added Note "Only devices with package size greater than or equal to 5x5 are supported". Updated Table Note (2) in Table 2-3 • Flash Programming Limits – Retention, Storage and Operating Temperature so that the Table Note is not applicable for				
	Added values for Drive strength 2 mA in Table 2-41 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew, Table 2-42 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew, Table 2-43 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew, and Table 2-44 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew (SAR 57184).				
	Added Figure 2-1 • High-Temperature Data Retention (HTR) (SAR 45466).	2-3			
	Updates made to maintain the style and consistency of the document.	NA			
Revision 15 (July 2014)	Added corner pad table note (3) to "QN132 – Bottom View" (SAR 47442).	4-6			
	Ambient temperature removed in Table 2-2, table notes and "ProASIC3 Ordering Information" figure were modified (SAR 48343).	2-2 1-IV			
	Other updates were made to maintain the style and consistency of the datasheet.	NA			
Revision 14 (April 2014)	Note added for the discontinuance of QN132 package to the following tables and section: "ProASIC3 Devices", "I/Os Per Package 1", "ProASIC3 FPGAs Package Sizes Dimensions" and "QN132 – Bottom View" section (SAR 55118).	I, III, 4-6			

Datasheet Information

Revision	Changes	Page				
v2.0 (April 2007)	In the "Packaging Tables", Ambient was deleted.	ii				
	The timing characteristics tables were updated.	N/A				
	The "PLL Macro" section was updated to add information on the VCO and PLL outputs during power-up.	2-15				
	The "PLL Macro" section was updated to include power-up information.	2-15				
	Table 2-11 • ProASIC3 CCC/PLL Specification was updated.	2-29				
	Figure 2-19 • Peak-to-Peak Jitter Definition is new.	2-18				
	The "SRAM and FIFO" section was updated with operation and timing requirement information.	2-21				
	The "RESET" section was updated with read and write information.	2-25				
	The "RESET" section was updated with read and write information.	2-25				
	The "Introduction" in the "Advanced I/Os" section was updated to include information on input and output buffers being disabled.	2-28				
	PCI-X 3.3 V was added to Table 2-11 • VCCI Voltages and Compatible Standards.	2-29				
	In the Table 2-15 • Levels of Hot-Swap Support, the ProASIC3 compliance descriptions were updated for levels 3 and 4.	2-34				
	Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices was updated.					
	Notes 3, 4, and 5 were added to Table 2-17 \cdot Comparison Table for 5 V–Compliant Receiver Scheme. 5 x 52.72 was changed to 52.7 and the Maximum current was updated from 4 x 52.7 to 5 x 52.7.					
	The "VCCPLF PLL Supply Voltage" section was updated.	2-50				
	The "VPUMP Programming Supply Voltage" section was updated.	2-50				
	The "GL Globals" section was updated to include information about direct input into quadrant clocks.	2-51				
	V _{JTAG} was deleted from the "TCK Test Clock" section.	2-51				
	In Table 2-22 • Recommended Tie-Off Values for the TCK and TRST Pins, TSK was changed to TCK in note 2. Note 3 was also updated.	2-51				
	Ambient was deleted from Table 3-2 • Recommended Operating Conditions. VPUMP programming mode was changed from "3.0 to 3.6" to "3.15 to 3.45".	3-2				
	Note 3 is new in Table 3-4 • Overshoot and Undershoot Limits (as measured on quiet I/Os)1.	3-2				
	In EQ 3-2, 150 was changed to 110 and the result changed from 3.9 to 1.951.	3-5				
	Table 3-6 • Temperature and Voltage Derating Factors for Timing Delays was updated.	3-6				
	Table 3-5 • Package Thermal Resistivities was updated.	3-5				
	Table 3-14 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings (Advanced) and Table 3-17 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions (Standard Plus) were updated.	3-17 to 3- 17				

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2016 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi Corporation (MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense and security, aerospace, and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet Solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has approximately 4,800 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.