E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	
Number of Logic Elements/Cells	-
Total RAM Bits	147456
Number of I/O	154
Number of Gates	1000000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m7a3p1000-2pq208

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 – ProASIC3 Device Family Overview

General Description

ProASIC3, the third-generation family of Microsemi flash FPGAs, offers performance, density, and features beyond those of the ProASIC^{PLUS®} family. Nonvolatile flash technology gives ProASIC3 devices the advantage of being a secure, low power, single-chip solution that is Instant On. ProASIC3 is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

ProASIC3 devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on an integrated phase-locked loop (PLL). The A3P015 and A3P030 devices have no PLL or RAM support. ProASIC3 devices have up to 1 million system gates, supported with up to 144 kbits of true dual-port SRAM and up to 300 user I/Os.

ProASIC3 devices support the ARM Cortex-M1 processor. The ARM-enabled devices have Microsemi ordering numbers that begin with M1A3P (Cortex-M1) and do not support AES decryption.

Flash Advantages

Reduced Cost of Ownership

Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAMbased FPGAs, flash-based ProASIC3 devices allow all functionality to be Instant On; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property (IP) cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The ProASIC3 family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the ProASIC3 family a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/ communications, computing, and avionics markets.

Security

The nonvolatile, flash-based ProASIC3 devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. ProASIC3 devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.

ProASIC3 devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of protection in the FPGA industry for intellectual property and configuration data. In addition, all FlashROM data in ProASIC3 devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. The AES standard was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. ProASIC3 devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. ProASIC3 devices with AES-based security provide a high level of protection for remote field updates over public networks such as the Internet, and are designed to ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves.

ARM-enabled ProASIC3 devices do not support user-controlled AES security mechanisms. Since the ARM core must be protected at all times, AES encryption is always on for the core logic, so bitstreams are always encrypted. There is no user access to encryption for the FlashROM programming data.

Security, built into the FPGA fabric, is an inherent component of the ProASIC3 family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. The ProASIC3 family, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks.

Table 2-9 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Standard Plus I/O Banks

	VMV (V)	Static Power PDC2 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
2.5 V LVCMOS	2.5	-	5.14
1.8 V LVCMOS	1.8	-	2.13
1.5 V LVCMOS (JESD8-11)	1.5	-	1.48
3.3 V PCI	3.3	-	18.13
3.3 V PCI-X	3.3	_	18.13

Notes:

- 1. PDC2 is the static power (where applicable) measured on VMV.
- 2. PAC9 is the total dynamic power measured on VCC and VMV.
- 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Table 2-10 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Standard I/O Banks

	VMV (V)	Static Power PDC2 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
Single-Ended			
3.3 V LVTTL / 3.3 V LVCMOS	3.3	-	17.24
3.3 V LVCMOS Wide Range ³	3.3	-	17.24
2.5 V LVCMOS	2.5	-	5.19
1.8 V LVCMOS	1.8	-	2.18
1.5 V LVCMOS (JESD8-11)	1.5	-	1.52

Notes:

1. PDC2 is the static power (where applicable) measured on VMV.

2. PAC9 is the total dynamic power measured on VCC and VMV.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Table 2-11 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings¹ Applicable to Advanced I/O Banks

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC3 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	35	3.3	-	468.67
3.3 V LVCMOS Wide Range ⁴	35	3.3	-	468.67
2.5 V LVCMOS	35	2.5	-	267.48
1.8 V LVCMOS	35	1.8	-	149.46
1.5 V LVCMOS (JESD8-11)	35	1.5	-	103.12
3.3 V PCI	10	3.3	-	201.02
3.3 V PCI-X	10	3.3	-	201.02
Differential				•
LVDS	_	2.5	7.74	88.92
LVPECL	_	3.3	19.54	166.52

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. PDC3 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCC and VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Table 2-12 • Summary of I/O Output Buffer Power (Per Pin) – Default I/O Software Settings¹ Applicable to Standard Plus I/O Banks

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC3 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	35	3.3	-	452.67
3.3 V LVCMOS Wide Range ⁴	35	3.3	-	452.67
2.5 V LVCMOS	35	2.5	-	258.32
1.8 V LVCMOS	35	1.8	-	133.59
1.5 V LVCMOS (JESD8-11)	35	1.5	-	92.84
3.3 V PCI	10	3.3	-	184.92
3.3 V PCI-X	10	3.3	-	184.92

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. P_{DC3} is the static power (where applicable) measured on VMV.

3. P_{AC10} is the total dynamic power measured on VCC and VMV.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Overview of I/O Performance

Summary of I/O DC Input and Output Levels – Default I/O Software Settings

Table 2-18 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings Applicable to Advanced I/O Banks

		Equiv.			VIL	VIH		VOL	VOH				
I/O Standard	Drive Strength	Software Default Drive Strength Option ²		Min V	Max V	Min V	Max V	Max V	Min V	IOL ¹ mA	IOH ¹ mA		
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	-0.3	0.8	2	3.6	0.4	2.4	12	12		
3.3 V LVCMOS Wide Range ³	100 µA	12 mA	High	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	0.1	0.1		
2.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.7	1.7	2.7	0.7	1.7	12	12		
1.8 V LVCMOS	12 mA	12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI – 0.45	12	12		
1.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	1.6	0.25 * VCCI	0.75 * VCCI	12	12		
3.3 V PCI		Per PCI specifications											
3.3 V PCI-X	Per PCI-X specifications												

Notes:

1. Currents are measured at 85°C junction temperature.

2. 3.3 V LVCMOS wide range is applicable to 100 μA drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for Normal Ranges ONLY.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

Table 2-43 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.66	7.20	0.04	1.00	0.43	7.34	6.29	2.27	2.34	9.57	8.52	ns
	-1	0.56	6.13	0.04	0.85	0.36	6.24	5.35	1.93	1.99	8.14	7.25	ns
	-2	0.49	5.38	0.03	0.75	0.32	5.48	4.69	1.70	1.75	7.15	6.36	ns
4 mA	Std.	0.66	7.20	0.04	1.00	0.43	7.34	6.29	2.27	2.34	9.57	8.52	ns
	-1	0.56	6.13	0.04	0.85	0.36	6.24	5.35	1.93	1.99	8.14	7.25	ns
	-2	0.49	5.38	0.03	0.75	0.32	5.48	4.69	1.70	1.75	7.15	6.36	ns
6 mA	Std.	0.66	4.50	0.04	1.00	0.43	4.58	3.82	2.58	2.88	6.82	6.05	ns
	-1	0.56	3.83	0.04	0.85	0.36	3.90	3.25	2.19	2.45	5.80	5.15	ns
	-2	0.49	3.36	0.03	0.75	0.32	3.42	2.85	1.92	2.15	5.09	4.52	ns
8 mA	Std.	0.66	4.50	0.04	1.00	0.43	4.58	3.82	2.58	2.88	6.82	6.05	ns
	-1	0.56	3.83	0.04	0.85	0.36	3.90	3.25	2.19	2.45	5.80	5.15	ns
	-2	0.49	3.36	0.03	0.75	0.32	3.42	2.85	1.92	2.15	5.09	4.52	ns
12 mA	Std.	0.66	3.16	0.04	1.00	0.43	3.22	2.58	2.79	3.22	5.45	4.82	ns
	-1	0.56	2.69	0.04	0.85	0.36	2.74	2.20	2.37	2.74	4.64	4.10	ns
	-2	0.49	2.36	0.03	0.75	0.32	2.40	1.93	2.08	2.41	4.07	3.60	ns
16 mA	Std.	0.66	3.16	0.04	1.00	0.43	3.22	2.58	2.79	3.22	5.45	4.82	ns
	-1	0.56	2.69	0.04	0.85	0.36	2.74	2.20	2.37	2.74	4.64	4.10	ns
	-2	0.49	2.36	0.03	0.75	0.32	2.40	1.93	2.08	2.41	4.07	3.60	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

	Applica	ble to St	andard	Plus I/	J Bank	S							
Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.66	9.68	0.04	1.00	0.43	9.86	8.42	2.28	2.21	12.09	10.66	ns
	-1	0.56	8.23	0.04	0.85	0.36	8.39	7.17	1.94	1.88	10.29	9.07	ns
	-2	0.49	7.23	0.03	0.75	0.32	7.36	6.29	1.70	1.65	9.03	7.96	ns
4 mA	Std.	0.66	9.68	0.04	1.00	0.43	9.86	8.42	2.28	2.21	12.09	10.66	ns
	-1	0.56	8.23	0.04	0.85	0.36	8.39	7.17	1.94	1.88	10.29	9.07	ns
	-2	0.49	7.23	0.03	0.75	0.32	7.36	6.29	1.70	1.65	9.03	7.96	ns
6 mA	Std.	0.66	6.70	0.04	1.00	0.43	6.82	5.89	2.58	2.74	9.06	8.12	ns
	-1	0.56	5.70	0.04	0.85	0.36	5.80	5.01	2.20	2.33	7.71	6.91	ns
	-2	0.49	5.00	0.03	0.75	0.32	5.10	4.40	1.93	2.05	6.76	6.06	ns
8 mA	Std.	0.66	6.70	0.04	1.00	0.43	6.82	5.89	2.58	2.74	9.06	8.12	ns
	-1	0.56	5.70	0.04	0.85	0.36	5.80	5.01	2.20	2.33	7.71	6.91	ns
	-2	0.49	5.00	0.03	0.75	0.32	5.10	4.40	1.93	2.05	6.76	6.06	ns
12 mA	Std.	0.66	5.05	0.04	1.00	0.43	5.14	4.51	2.79	3.08	7.38	6.75	ns
	-1	0.56	4.29	0.04	0.85	0.36	4.37	3.84	2.38	2.62	6.28	5.74	ns
	-2	0.49	3.77	0.03	0.75	0.32	3.84	3.37	2.09	2.30	5.51	5.04	ns
16 mA	Std.	0.66	5.05	0.04	1.00	0.43	5.14	4.51	2.79	3.08	7.38	6.75	ns
	-1	0.56	4.29	0.04	0.85	0.36	4.37	3.84	2.38	2.62	6.28	5.74	ns
	-2	0.49	3.77	0.03	0.75	0.32	3.84	3.37	2.09	2.30	5.51	5.04	ns

Table 2-44 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus I/O Banks

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-45 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	7.07	0.04	1.00	0.43	7.20	6.23	2.07	2.15	ns
	-1	0.56	6.01	0.04	0.85	0.36	6.12	5.30	1.76	1.83	ns
	-2	0.49	5.28	0.03	0.75	0.32	5.37	4.65	1.55	1.60	ns
4 mA	Std.	0.66	7.07	0.04	1.00	0.43	7.20	6.23	2.07	2.15	ns
	–1	0.56	6.01	0.04	0.85	0.36	6.12	5.30	1.76	1.83	ns
	-2	0.49	5.28	0.03	0.75	0.32	5.37	4.65	1.55	1.60	ns
6 mA	Std.	0.66	4.41	0.04	1.00	0.43	4.49	3.75	2.39	2.69	ns
	–1	0.56	3.75	0.04	0.85	0.36	3.82	3.19	2.04	2.29	ns
	-2	0.49	3.29	0.03	0.75	0.32	3.36	2.80	1.79	2.01	ns
8 mA	Std.	0.66	4.41	0.04	1.00	0.43	4.49	3.75	2.39	2.69	ns
	-1	0.56	3.75	0.04	0.85	0.36	3.82	3.19	2.04	2.29	ns

2.5 V LVCMOS

Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 2.5 V applications.

2.5 V LVCMOS	VIL		V	ΊH	VOL	VOH	IOL	IOH	IOSL	IOSH	IIL1	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.7	1.7	2.7	0.7	1.7	2	2	18	16	10	10
4 mA	-0.3	0.7	1.7	2.7	0.7	1.7	4	4	18	16	10	10
6 mA	-0.3	0.7	1.7	2.7	0.7	1.7	6	6	37	32	10	10
8 mA	-0.3	0.7	1.7	2.7	0.7	1.7	8	8	37	32	10	10
12 mA	-0.3	0.7	1.7	2.7	0.7	1.7	12	12	74	65	10	10
16 mA	-0.3	0.7	1.7	2.7	0.7	1.7	16	16	87	83	10	10
24 mA	-0.3	0.7	1.7	2.7	0.7	1.7	24	24	124	169	10	10

Table 2-56 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Table 2-57 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks

2.5 V LVCMOS	VIL		VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.7	1.7	2.7	0.7	1.7	2	2	18	16	10	10
4 mA	-0.3	0.7	1.7	2.7	0.7	1.7	4	4	18	16	10	10
6 mA	-0.3	0.7	1.7	2.7	0.7	1.7	6	6	37	32	10	10
8 mA	-0.3	0.7	1.7	2.7	0.7	1.7	8	8	37	32	10	10
12 mA	-0.3	0.7	1.7	2.7	0.7	1.7	12	12	74	65	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

1.8 V LVCMOS

Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer.

1.8 V LVCMOS		VIL VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL ¹	IIH ²	
Drive Strength	Min V	Max V	Min V	Max V	Max V	Min V	mA	mA	Max mA ³	Max mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI-0.45	2	2	11	9	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI-0.45	4	4	22	17	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI - 0.45	6	6	44	35	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI-0.45	8	8	51	45	10	10
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI-0.45	12	12	74	91	10	10
16 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI-0.45	16	16	74	91	10	10

Table 2-66 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Table 2-67 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O I/O Banks

1.8 V LVCMOS		VIL	VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min V	Max V	Min V	Max V	Max V	Min V	mA	mA	Max mA ³	Max mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	2	2	11	9	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	4	4	22	17	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	6	6	44	35	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI - 0.45	8	8	44	35	10	10

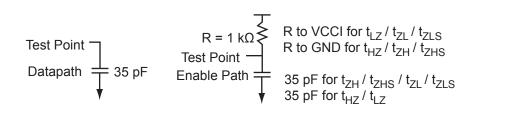
Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN <V CCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.


Table 2-68 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks

1.8 V LVCMOS		VIL	VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	2	2	9	11	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	4	4	17	22	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.
- 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Figure 2-9 • AC Loading

Table 2-69 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)		
0	1.8	0.9	35		

Note: *Measuring point = Vtrip_See Table 2-22 on page 2-22 for a complete table of trip points.

DC Parameter	Description	Min.	Тур.	Max.	Units
VCCI	Supply Voltage	2.375	2.5	2.625	V
VOL	Output Low Voltage	0.9	1.075	1.25	V
VOH	Output High Voltage	1.25	1.425	1.6	V
IOL ¹	Output Lower Current	0.65	0.91	1.16	mA
IOH ¹	Output High Current	0.65	0.91	1.16	mA
VI	Input Voltage	0		2.925	V
IIH ^{2,3}	Input High Leakage Current			10	μA
IIL ^{2,4}	Input Low Leakage Current			10	μA
VODIFF	Differential Output Voltage	250	350	450	mV
VOCM	Output Common Mode Voltage	1.125	1.25	1.375	V
VICM	Input Common Mode Voltage	0.05	1.25	2.35	V
VIDIFF	Input Differential Voltage	100	350		mV

Table 2-90 • LVDS Minimum and Maximum DC Input and Output Levels

Notes:

1. IOL/IOH defined by VODIFF/(Resistor Network)

2. Currents are measured at 85°C junction temperature.

- 3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN <VCCI. Input current is larger when operating outside recommended ranges.
- 4. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN <VIL.

Table 2-91 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)		
1.075	1.325	Cross point		

Note: *Measuring point = $V_{trip.}$ See Table 2-22 on page 2-22 for a complete table of trip points.

Timing Characteristics

Table 2-92 • LVDS

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.66	1.83	0.04	1.60	ns
-1	0.56	1.56	0.04	1.36	ns
-2	0.49	1.37	0.03	1.20	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

DDR Module Specifications

Input DDR Module

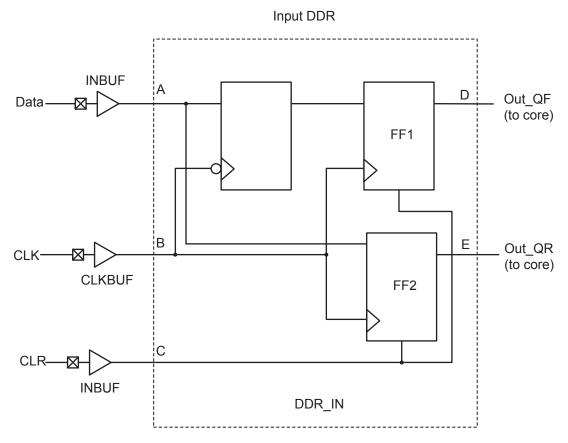
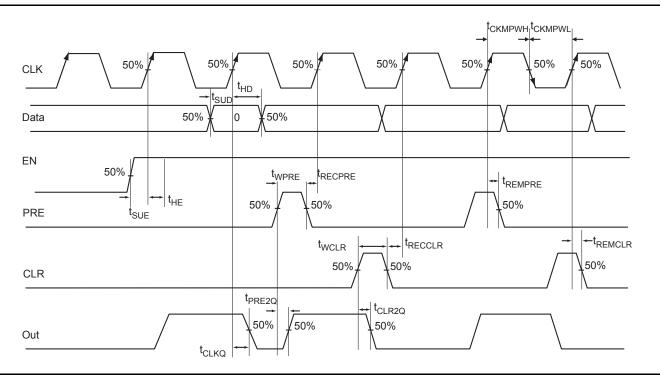



Figure 2-20 • Input DDR Timing Model

Parameter Name	Parameter Definition	Measuring Nodes (from, to)
t _{DDRICLKQ1}	Clock-to-Out Out_QR	B, D
t _{DDRICLKQ2}	Clock-to-Out Out_QF	B, E
t _{DDRISUD}	Data Setup Time of DDR input	A, B
t _{DDRIHD}	Data Hold Time of DDR input	A, B
t _{DDRICLR2Q1}	Clear-to-Out Out_QR	C, D
t _{DDRICLR2Q2}	Clear-to-Out Out_QF	C, E
t _{DDRIREMCLR}	Clear Removal	С, В
t _{DDRIRECCLR}	Clear Recovery	C, B

Figure 2-27 • Timing Model and Waveforms

Timing Characteristics

Table 2-106 • Register Delays

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{CLKQ}	Clock-to-Q of the Core Register	0.55	0.63	0.74	ns
t _{SUD}	Data Setup Time for the Core Register	0.43	0.49	0.57	ns
t _{HD}	Data Hold Time for the Core Register	0.00	0.00	0.00	ns
t _{SUE}	Enable Setup Time for the Core Register	0.45	0.52	0.61	ns
t _{HE}	Enable Hold Time for the Core Register	0.00	0.00	0.00	ns
t _{CLR2Q}	Asynchronous Clear-to-Q of the Core Register	0.40	0.45	0.53	ns
t _{PRE2Q}	Asynchronous Preset-to-Q of the Core Register	0.40	0.45	0.53	ns
t _{REMCLR}	Asynchronous Clear Removal Time for the Core Register	0.00	0.00	0.00	ns
t _{RECCLR}	Asynchronous Clear Recovery Time for the Core Register	0.22	0.25	0.30	ns
t _{REMPRE}	Asynchronous Preset Removal Time for the Core Register	0.00	0.00	0.00	ns
t _{RECPRE}	Asynchronous Preset Recovery Time for the Core Register	0.22	0.25	0.30	ns
t _{WCLR}	Asynchronous Clear Minimum Pulse Width for the Core Register	0.22	0.25	0.30	ns
t _{WPRE}	Asynchronous Preset Minimum Pulse Width for the Core Register	0.22	0.25	0.30	ns
t _{CKMPWH}	Clock Minimum Pulse Width High for the Core Register	0.32	0.37	0.43	ns
t _{CKMPWL}	Clock Minimum Pulse Width Low for the Core Register	0.36	0.41	0.48	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

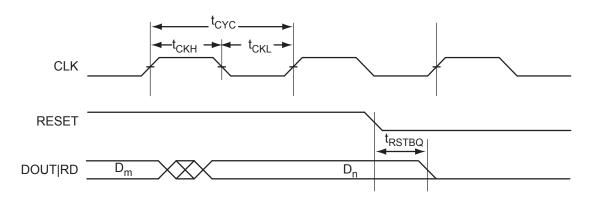


Figure 2-35 • RAM Reset. Applicable to Both RAM4K9 and RAM512x18.

PQ208			PQ208	PQ208			
Pin Number	A3P250 Function	Pin Number	A3P250 Function	Pin Number	A3P250 Function		
1	GND	37	IO104PDB3	73	IO83RSB2		
2	GAA2/IO118UDB3	38	IO104NDB3	74	IO82RSB2		
3	IO118VDB3	39	IO103PSB3	75	IO81RSB2		
4	GAB2/IO117UDB3	40	VCCIB3	76	IO80RSB2		
5	IO117VDB3	41	GND	77	IO79RSB2		
6	GAC2/IO116UDB3	42	IO101PDB3	78	IO78RSB2		
7	IO116VDB3	43	IO101NDB3	79	IO77RSB2		
8	IO115UDB3	44	GEC1/IO100PDB3	80	IO76RSB2		
9	IO115VDB3	45	GEC0/IO100NDB3	81	GND		
10	IO114UDB3	46	GEB1/IO99PDB3	82	IO75RSB2		
11	IO114VDB3	47	GEB0/IO99NDB3	83	IO74RSB2		
12	IO113PDB3	48	GEA1/IO98PDB3	84	IO73RSB2		
13	IO113NDB3	49	GEA0/IO98NDB3	85	IO72RSB2		
14	IO112PDB3	50	VMV3	86	IO71RSB2		
15	IO112NDB3	51	GNDQ	87	IO70RSB2		
16	VCC	52	GND	88	VCC		
17	GND	53	NC	89	VCCIB2		
18	VCCIB3	54	NC	90	IO69RSB2		
19	IO111PDB3	55	GEA2/IO97RSB2	91	IO68RSB2		
20	IO111NDB3	56	GEB2/IO96RSB2	92	IO67RSB2		
21	GFC1/IO110PDB3	57	GEC2/IO95RSB2	93	IO66RSB2		
22	GFC0/IO110NDB3	58	IO94RSB2	94	IO65RSB2		
23	GFB1/IO109PDB3	59	IO93RSB2	95	IO64RSB2		
24	GFB0/IO109NDB3	60	IO92RSB2	96	GDC2/IO63RSB2		
25	VCOMPLF	61	IO91RSB2	97	GND		
26	GFA0/IO108NPB3	62	VCCIB2	98	GDB2/IO62RSB2		
27	VCCPLF	63	IO90RSB2	99	GDA2/IO61RSB2		
28	GFA1/IO108PPB3	64	IO89RSB2	100	GNDQ		
29	GND	65	GND	101	ТСК		
30	GFA2/IO107PDB3	66	IO88RSB2	102	TDI		
31	IO107NDB3	67	IO87RSB2	103	TMS		
32	GFB2/IO106PDB3	68	IO86RSB2	104	VMV2		
33	IO106NDB3	69	IO85RSB2	105	GND		
34	GFC2/IO105PDB3	70	IO84RSB2	106	VPUMP		
35	IO105NDB3	71	VCC	107	NC		
36	NC	72	VCCIB2	108	TDO		

F	FG144					
Pin Number	A3P060 Function					
K1	GEB0/IO74RSB1					
K2	GEA1/IO73RSB1					
K3	GEA0/IO72RSB1					
K4	GEA2/IO71RSB1					
K5	IO65RSB1					
K6	IO64RSB1					
K7	GND					
K8	IO57RSB1					
K9	GDC2/IO56RSB1					
K10	GND					
K11	GDA0/IO50RSB0					
K12	GDB0/IO48RSB0					
L1	GND					
L2	VMV1					
L3	GEB2/IO70RSB1					
L4	IO67RSB1					
L5	VCCIB1					
L6	IO62RSB1					
L7	IO59RSB1					
L8	IO58RSB1					
L9	TMS					
L10	VJTAG					
L11	VMV1					
L12	TRST					
M1	GNDQ					
M2	GEC2/IO69RSB1					
M3	IO68RSB1					
M4	IO66RSB1					
M5	IO63RSB1					
M6	IO61RSB1					
M7	IO60RSB1					
M8	NC					
M9	TDI					
M10	VCCIB1					
M11	VPUMP					
M12	GNDQ					

Package Pin Assignments

FG256			FG256	FG256			
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function		
A1	GND	C7	IO25RSB0	E13	GBC2/IO80PDB1		
A2	GAA0/IO00RSB0	C8	IO36RSB0	E14	IO83PPB1		
A3	GAA1/IO01RSB0	C9	IO42RSB0	E15	IO86PPB1		
A4	GAB0/IO02RSB0	C10	IO49RSB0	E16	IO87PDB1		
A5	IO16RSB0	C11	IO56RSB0	F1	IO217NDB3		
A6	IO22RSB0	C12	GBC0/IO72RSB0	F2	IO218NDB3		
A7	IO28RSB0	C13	IO62RSB0	F3	IO216PDB3		
A8	IO35RSB0	C14	VMV0	F4	IO216NDB3		
A9	IO45RSB0	C15	IO78NDB1	F5	VCCIB3		
A10	IO50RSB0	C16	IO81NDB1	F6	GND		
A11	IO55RSB0	D1	IO222NDB3	F7	VCC		
A12	IO61RSB0	D2	IO222PDB3	F8	VCC		
A13	GBB1/IO75RSB0	D3	GAC2/IO223PDB3	F9	VCC		
A14	GBA0/IO76RSB0	D4	IO223NDB3	F10	VCC		
A15	GBA1/IO77RSB0	D5	GNDQ	F11	GND		
A16	GND	D6	IO23RSB0	F12	VCCIB1		
B1	GAB2/IO224PDB3	D7	IO29RSB0	F13	IO83NPB1		
B2	GAA2/IO225PDB3	D8	IO33RSB0	F14	IO86NPB1		
B3	GNDQ	D9	IO46RSB0	F15	IO90PPB1		
B4	GAB1/IO03RSB0	D10	IO52RSB0	F16	IO87NDB1		
B5	IO17RSB0	D11	IO60RSB0	G1	IO210PSB3		
B6	IO21RSB0	D12	GNDQ	G2	IO213NDB3		
B7	IO27RSB0	D13	IO80NDB1	G3	IO213PDB3		
B8	IO34RSB0	D14	GBB2/IO79PDB1	G4	GFC1/IO209PPB3		
B9	IO44RSB0	D15	IO79NDB1	G5	VCCIB3		
B10	IO51RSB0	D16	IO82NSB1	G6	VCC		
B11	IO57RSB0	E1	IO217PDB3	G7	GND		
B12	GBC1/IO73RSB0	E2	IO218PDB3	G8	GND		
B13	GBB0/IO74RSB0	E3	IO221NDB3	G9	GND		
B14	IO71RSB0	E4	IO221PDB3	G10	GND		
B15	GBA2/IO78PDB1	E5	VMV0	G11	VCC		
B16	IO81PDB1	E6	VCCIB0	G12	VCCIB1		
C1	IO224NDB3	E7	VCCIB0	G13	GCC1/IO91PPB1		
C2	IO225NDB3	E8	IO38RSB0	G14	IO90NPB1		
C3	VMV3	E9	IO47RSB0	G15	IO88PDB1		
C4	IO11RSB0	E10	VCCIB0	G16	IO88NDB1		
C5	GAC0/IO04RSB0	E11	VCCIB0	H1	GFB0/IO208NPB3		
C6	GAC1/IO05RSB0	E12	VMV1	H2	GFA0/IO207NDB3		

	FG484	FG484		FG484	
Pin Number	A3P600 Function	Pin Number	A3P600 Function	Pin Number	A3P600 Function
A1	GND	B15	NC	D7	GAB0/IO02RSB0
A2	GND	B16	IO47RSB0	D8	IO11RSB0
A3	VCCIB0	B17	IO49RSB0	D9	IO16RSB0
A4	NC	B18	NC	D10	IO18RSB0
A5	NC	B19	NC	D11	IO28RSB0
A6	IO09RSB0	B20	NC	D12	IO34RSB0
A7	IO15RSB0	B21	VCCIB1	D13	IO37RSB0
A8	NC	B22	GND	D14	IO41RSB0
A9	NC	C1	VCCIB3	D15	IO43RSB0
A10	IO22RSB0	C2	NC	D16	GBB1/IO57RSB0
A11	IO23RSB0	C3	NC	D17	GBA0/IO58RSB0
A12	IO29RSB0	C4	NC	D18	GBA1/IO59RSB0
A13	IO35RSB0	C5	GND	D19	GND
A14	NC	C6	NC	D20	NC
A15	NC	C7	NC	D21	NC
A16	IO46RSB0	C8	VCC	D22	NC
A17	IO48RSB0	C9	VCC	E1	NC
A18	NC	C10	NC	E2	NC
A19	NC	C11	NC	E3	GND
A20	VCCIB0	C12	NC	E4	GAB2/IO173PDB3
A21	GND	C13	NC	E5	GAA2/IO174PDB3
A22	GND	C14	VCC	E6	GNDQ
B1	GND	C15	VCC	E7	GAB1/IO03RSB0
B2	VCCIB3	C16	NC	E8	IO13RSB0
B3	NC	C17	NC	E9	IO14RSB0
B4	NC	C18	GND	E10	IO21RSB0
B5	NC	C19	NC	E11	IO27RSB0
B6	IO08RSB0	C20	NC	E12	IO32RSB0
B7	IO12RSB0	C21	NC	E13	IO38RSB0
B8	NC	C22	VCCIB1	E14	IO42RSB0
B9	NC	D1	NC	E15	GBC1/IO55RSB0
B10	IO17RSB0	D2	NC	E16	GBB0/IO56RSB0
B11	NC	D3	NC	E17	IO52RSB0
B12	NC	D4	GND	E18	GBA2/IO60PDB1
B13	IO36RSB0	D5	GAA0/IO00RSB0	E19	IO60NDB1
B14	NC	D6	GAA1/IO01RSB0	E20	GND

Datasheet Information

Revision	Changes	Page
Revision 11 (March 2012)	Note indicating that A3P015 is not recommended for new designs has been added. The "Devices Not Recommended For New Designs" section is new (SAR 36760).	I to IV
	The following sentence was removed from the Advanced Architecture sect "In addition, extensive on-chip programming circuitry allows for rapid, sing voltage (3.3 V) programming of IGLOO devices via an IEEE 1532 JT interface" (SAR 34687).	NA
	The reference to guidelines for global spines and VersaTile rows, given in the "Global Clock Contribution—PCLOCK" section, was corrected to the "Spine Architecture" section of the Global Resources chapter in the <i>ProASIC3 FPGA Fabric User's Guide</i> (SAR 34734).	2-12
	Figure 2-4 • Input Buffer Timing Model and Delays (Example) has been modi for the DIN waveform; the Rise and Fall time label has been changed to the (35430).	2-16
	The AC Loading figures in the "Single-Ended I/O Characteristics" section were updated to match tables in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section (SAR 34883).	2-32
	Added values for minimum pulse width and removed the FRMAX row from Table 2-107 through Table 2-114 in the "Global Tree Timing Characteristics" section. Use the software to determine the FRMAX for the device you are using (SARs 37279, 29269).	2-85

Revision	Changes	Page
Revision 9 (Oct 2009) Product Brief v1.3	the WOR Dee Deelers 41 table Table 4 Dee A0100 ED0As Deelers 0	
	"ProASIC3 Ordering Information" was revised to include the fact that some RoHS compliant packages are halogen-free.	IV
Packaging v1.5	The "CS121 – Bottom View" figure and pin table for A3P060 are new.	4-15
Revision 8 (Aug 2009) Product Brief v1.2	All references to M7 devices (CoreMP7) and speed grade –F were removed from this document.	N/A
	Table 1-1 I/O Standards supported is new.	1-7
	The I/Os with Advanced I/O Standards section was revised to add definitions of hot-swap and cold-sparing.	1-7
DC and Switching Characteristics v1.4	$3.3~\rm V$ LVCMOS and $1.2~\rm V$ LVCMOS Wide Range support was added to the datasheet. This affects all tables that contained $3.3~\rm V$ LVCMOS and $1.2~\rm V$ LVCMOS data.	N/A
	$\rm I_{\rm IL}$ and $\rm I_{\rm IH}$ input leakage current information was added to all "Minimum and Maximum DC Input and Output Levels" tables.	N/A
	-F was removed from the datasheet. The speed grade is no longer supported.	N/A
	The notes in Table 2-2 • Recommended Operating Conditions 1 were updated.	2-2
	Table 2-4 • Overshoot and Undershoot Limits 1 was updated.	2-3
	Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays was updated.	2-6
	In Table 2-116 • RAM4K9, the following specifications were removed: t _{WRO} t _{CCKH}	2-96
	In Table 2-117 • RAM512X18, the following specifications were removed: t _{WRO} t _{CCKH}	2-97
	In the title of Table 2-74 • 1.8 V LVCMOS High Slew, VCCI had a typo. It was changed from 3.0 V to 1.7 V.	2-58
Revision 7 (Feb 2009) Product Brief v1.1	The "Advanced I/O" section was revised to add a bullet regarding wide range power supply voltage support.	I
	The table under "Features and Benefits" section, was updated to include a value for typical equivalent macrocells for A3P250.	I
	The QN48 package was added to the following tables: the table under "Features and Benefits" section, "I/Os Per Package 1" "ProASIC3 FPGAs Package Sizes Dimensions", and "Temperature Grade Offerings".	N/A
	The number of singled-ended I/Os for QN68 was added to the "I/Os Per Package 1" table.	
	The Wide Range I/O Support section is new.	1-7
Revision 6 (Dec 2008)	The "QN48 – Bottom View" section is new.	4-1
Packaging v1.4	The "QN68" pin table for A3P030 is new.	4-5

Datasheet Information

Revision	Changes	Page
Advance v0.6	The "RESET" section was updated.	2-25
(continued)	The "WCLK and RCLK" section was updated.	
	The "RESET" section was updated.	2-25
	The "RESET" section was updated.	2-27
	The "Introduction" of the "Advanced I/Os" section was updated.	2-28
	The "I/O Banks" section is new. This section explains the following types of I/Os: Advanced Standard+ Standard Table 2-12 • Automotive ProASIC3 Bank Types Definition and Differences is	2-29
	new. This table describes the standards listed above.	0.00
	PCI-X 3.3 V was added to the Compatible Standards for 3.3 V in Table 2- 11 • VCCI Voltages and Compatible Standards	2-29
	Table 2-13 • ProASIC3 I/O Features was updated.	2-30
	The "Double Data Rate (DDR) Support" section was updated to include information concerning implementation of the feature.	2-32
	The "Electrostatic Discharge (ESD) Protection" section was updated to include testing information.	2-35
	Level 3 and 4 descriptions were updated in Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices.	2-64
	The notes in Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices were updated.	2-64
	The "Simultaneous Switching Outputs (SSOs) and Printed Circuit Board Layout" section is new.	2-41
	A footnote was added to Table 2-14 • Maximum I/O Frequency for Single-Ended and Differential I/Os in All Banks in Automotive ProASIC3 Devices (maximum drive strength and high slew selected).	2-30
Table 2-18 • Automotive	Table 2-18 • Automotive ProASIC3 I/O Attributes vs. I/O Standard Applications	2-45
	Table 2-50 • ProASIC3 Output Drive (OUT_DRIVE) for Standard I/O Bank Type (A3P030 device)	2-83
	Table 2-51 • ProASIC3 Output Drive for Standard+ I/O Bank Type was updated.	2-84
	Table 2-54 • ProASIC3 Output Drive for Advanced I/O Bank Type was updated.	2-84
	The "x" was updated in the "User I/O Naming Convention" section.	2-48
	The "VCC Core Supply Voltage" pin description was updated.	2-50
	The "VMVx I/O Supply Voltage (quiet)" pin description was updated to include information concerning leaving the pin unconnected.	2-50
	The "VJTAG JTAG Supply Voltage" pin description was updated.	2-50
	The "VPUMP Programming Supply Voltage" pin description was updated to include information on what happens when the pin is tied to ground.	2-50
	The "I/O User Input/Output" pin description was updated to include information on what happens when the pin is unused.	2-50
	The "JTAG Pins" section was updated to include information on what happens when the pin is unused.	2-51