

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	·
Number of Logic Elements/Cells	
Total RAM Bits	147456
Number of I/O	97
Number of Gates	1000000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	144-LBGA
Supplier Device Package	144-FPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m7a3p1000-fg144i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

User Nonvolatile FlashROM

ProASIC3 devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications:

- Internet protocol addressing (wireless or fixed)
- System calibration settings
- Device serialization and/or inventory control
- Subscription-based business models (for example, set-top boxes)
- · Secure key storage for secure communications algorithms
- Asset management/tracking
- Date stamping
- Version management

The FlashROM is written using the standard ProASIC3 IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks (except in the A3P015 and A3P030 devices), as in security keys stored in the FlashROM for a user design.

The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array.

The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte.

The ProASIC3 development software solutions, Libero[®] System-on-Chip (SoC) and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents.

SRAM and FIFO

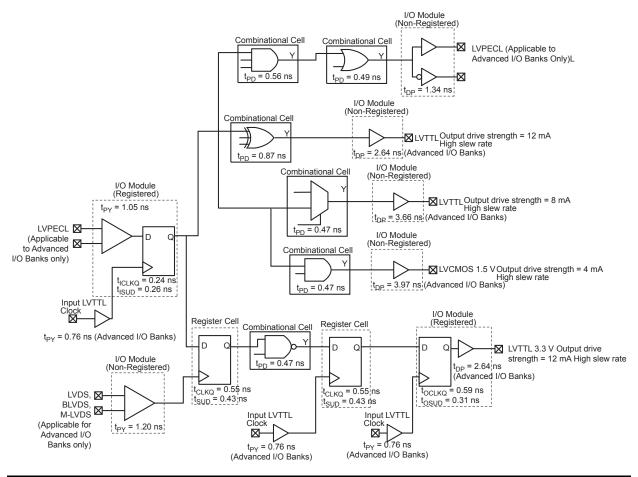
ProASIC3 devices (except the A3P015 and A3P030 devices) have embedded SRAM blocks along their north and south sides. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro (except in A3P015 and A3P030 devices).

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations.

PLL and CCC

ProASIC3 devices provide designers with very flexible clock conditioning capabilities. Each member of the ProASIC3 family contains six CCCs. One CCC (center west side) has a PLL. The A3P015 and A3P030 devices do not have a PLL.

The six CCC blocks are located at the four corners and the centers of the east and west sides.


All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay operations as well as clock spine access.

The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs located near the CCC that have dedicated connections to the CCC block.

User I/O Characteristics

Timing Model

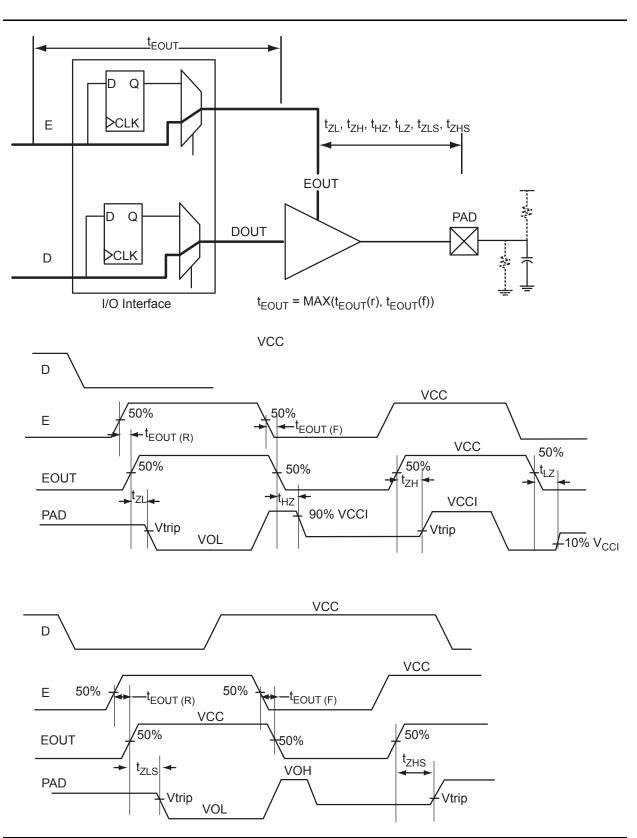


Figure 2-6 • Tristate Output Buffer Timing Model and Delays (Example)

3.3 V LVCMOS Wide Range

Table 2-47 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

3.3 V LVCMOS Wide Range	Equiv. Software Default	v	IL	v	ІН	VOL	voн	IOL	ЮН	IOSL	IOSH	IIL ²	IIH ³
Drive Strength	Drive Strength Option ¹	Min V	Max V	Min V	Max V	Max V	Min V	μA	μA	Max mA ⁴	Max mA ⁴	µA⁵	μA ⁵
100 µA	2 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	25	27	10	10
100 µA	4 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	25	27	10	10
100 µA	6 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	51	54	10	10
100 µA	8 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	51	54	10	10
100 µA	12 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	103	109	10	10
100 µA	16 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	132	127	10	10
100 µA	24 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	268	181	10	10

Notes:

 The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

4. Currents are measured at 85°C junction temperature.

5. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

6. Software default selection highlighted in gray.

Table 2-48 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks

3.3 V LVCMOS Wide Range	Equiv. Software	V	L	v	ΊH	VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL²	IIH ³
Drive Strength	Default Drive Strength Option ¹	Min V	Max V	Min V	Max V	Max V	Min V	μA	μA	Max mA ⁴	Max mA ⁴	μA ⁵	μ Α ⁵
100 µA	2 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	25	27	10	10
100 µA	4 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	25	27	10	10
100 µA	6 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	51	54	10	10
100 µA	8 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	51	54	10	10
100 µA	12 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	103	109	10	10
100 μA	16 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	103	109	10	10

Notes:

 The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

4. Currents are measured at 85°C junction temperature.

5. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

6. Software default selection highlighted in gray.

Table 2-83 • 1.5 V LVCMOS Low Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V Applicable to Standard Plus I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.66	12.08	0.04	1.42	0.43	12.01	12.08	2.72	2.43	14.24	14.31	ns
	-1	0.56	10.27	0.04	1.21	0.36	10.21	10.27	2.31	2.06	12.12	12.18	ns
	-2	0.49	9.02	0.03	1.06	0.32	8.97	9.02	2.03	1.81	10.64	10.69	ns
4 mA	Std.	0.66	9.28	0.04	1.42	0.43	9.45	8.91	3.04	3.00	11.69	11.15	ns
	-1	0.56	7.89	0.04	1.21	0.36	8.04	7.58	2.58	2.55	9.94	9.49	ns
	-2	0.49	6.93	0.03	1.06	0.32	7.06	6.66	2.27	2.24	8.73	8.33	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

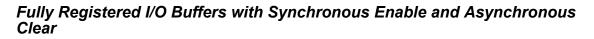
Table 2-84 • 1.5 V LVCMOS High Slew Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	7.65	0.04	1.42	0.43	6.31	7.65	2.45	2.45	ns
	-1	0.56	6.50	0.04	1.21	0.36	5.37	6.50	2.08	2.08	ns
	-2	0.49	5.71	0.03	1.06	0.32	4.71	5.71	1.83	1.83	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.


Table 2-85 • 1.5 V LVCMOS Low Slew Commercial-Case Conditions

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	12.33	0.04	1.42	0.43	11.79	12.33	2.45	2.32	ns
	-1	0.56	10.49	0.04	1.21	0.36	10.03	10.49	2.08	1.98	ns
	-2	0.49	9.21	0.03	1.06	0.32	8.81	9.21	1.83	1.73	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

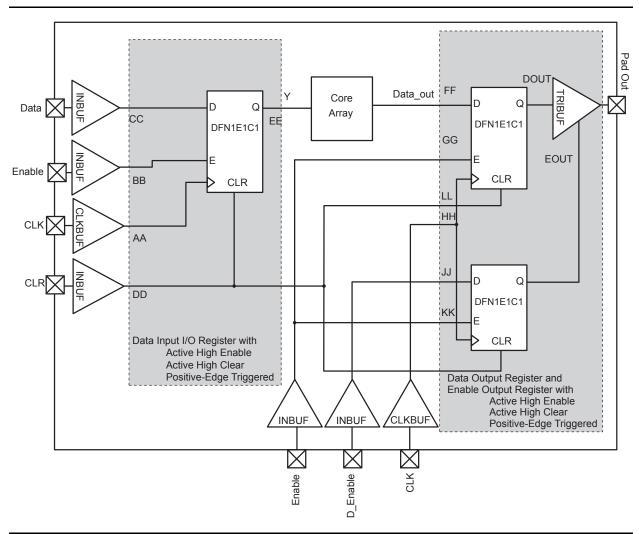


Figure 2-16 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

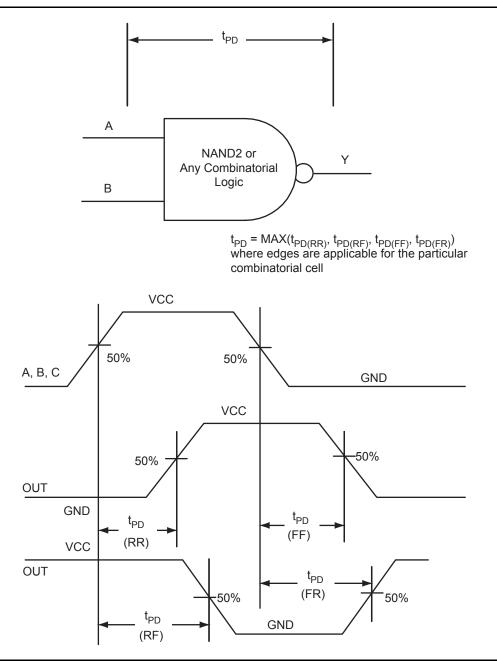


Figure 2-25 • Timing Model and Waveforms

Table 2-109 • A3P060 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		-	-2		-1	S	td.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.71	0.93	0.81	1.05	0.95	1.24	ns
t _{RCKH}	Input High Delay for Global Clock	0.70	0.96	0.80	1.09	0.94	1.28	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns

Microse

Power Matters.

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-110 • A3P125 Global Resource

```
Commercial-Case Conditions: T<sub>J</sub> = 70°C, VCC = 1.425 V
```

		-	-2		-1	S	td.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.77	0.99	0.87	1.12	1.03	1.32	ns
t _{RCKH}	Input High Delay for Global Clock	0.76	1.02	0.87	1.16	1.02	1.37	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-111 • A3P250 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		-	-2		-1	S	td.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.80	1.01	0.91	1.15	1.07	1.36	ns
t _{RCKH}	Input High Delay for Global Clock	0.78	1.04	0.89	1.18	1.04	1.39	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-112 • A3P400 Global Resource

```
Commercial-Case Conditions: T<sub>J</sub> = 70°C, VCC = 1.425 V
```

		-	-2		-1	S	td.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.87	1.09	0.99	1.24	1.17	1.46	ns
t _{RCKH}	Input High Delay for Global Clock	0.86	1.11	0.98	1.27	1.15	1.49	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Timing Characteristics

Table 2-118 • FIFO (for all dies except A3P250)Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ENS}	REN, WEN Setup Time	1.34	1.52	1.79	ns
t _{ENH}	REN, WEN Hold Time	0.00	0.00	0.00	ns
t _{BKS}	BLK Setup Time	0.19	0.22	0.26	ns
t _{BKH}	BLK Hold Time	0.00	0.00	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.18	0.21	0.25	ns
t _{DH}	Input Data (WD) Hold Time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	2.17	2.47	2.90	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	0.94	1.07	1.26	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	1.72	1.96	2.30	ns
t _{WCKFF}	WCLK High to Full Flag Valid	1.63	1.86	2.18	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	6.19	7.05	8.29	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	1.69	1.93	2.27	ns
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	6.13	6.98	8.20	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	0.92	1.05	1.23	ns
	RESET Low to Data Out Low on RD (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET Removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET Recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.21	0.24	0.29	ns
t _{CYC}	Clock Cycle Time	3.23	3.68	4.32	ns
F _{MAX}	Maximum Frequency for FIFO	310	272	231	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

3 – Pin Descriptions

Supply Pins

Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always be connected to GND on the board.

VCC

GND

Core Supply Voltage

Supply voltage to the FPGA core, nominally 1.5 V. VCC is required for powering the JTAG state machine in addition to VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the device.

VCCIBx I/O Supply Voltage

Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to eight I/O banks on low power flash devices plus a dedicated VJTAG bank. Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. In general, unused I/O banks should have their corresponding VCCIX pins tied to GND. If an output pad is terminated to ground through any resistor and if the corresponding VCCIX is left floating, then the leakage current to ground is ~ 0uA. However, if an output pad is terminated to ground is ~ 3 uA. For unused banks the aforementioned behavior is to be taken into account while deciding if it's better to float VCCIX of unused bank or tie it to GND.

VMVx I/O Supply Voltage (quiet)

Quiet supply voltage to the input buffers of each I/O bank. *x* is the bank number. Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks. This minimizes the noise transfer within the package and improves input signal integrity. Each bank must have at least one VMV connection, and no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be connected to the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1, etc.).

VCCPLA/B/C/D/E/F PLL Supply Voltage

Supply voltage to analog PLL, nominally 1.5 V.

When the PLLs are not used, the Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple VCC noise from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning Circuits in IGLOO and ProASIC3 Devices" chapter of the *ProASIC3 FPGA Fabric User's Guide* for a complete board solution for the PLL analog power supply and ground.

There is one VCCPLF pin on ProASIC3 devices.

VCOMPLA/B/C/D/E/F PLL Ground

Ground to analog PLL power supplies. When the PLLs are not used, the Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground.

There is one VCOMPLF pin on ProASIC3 devices.

In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements.

Special Function Pins

NC

No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

DC Do Not Connect

This pin should not be connected to any signals on the PCB. These pins should be left unconnected.

Related Documents

User's Guides

ProASIC FPGA Fabric User's Guide http://www.microsemi.com/soc/documents/PA3_UG.pdf

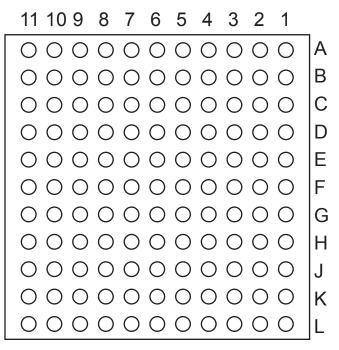
Packaging

The following documents provide packaging information and device selection for low power flash devices.

Product Catalog

http://www.microsemi.com/soc/documents/ProdCat_PIB.pdf

Lists devices currently recommended for new designs and the packages available for each member of the family. Use this document or the datasheet tables to determine the best package for your design, and which package drawing to use.


Package Mechanical Drawings

http://www.microsemi.com/soc/documents/PckgMechDrwngs.pdf

This document contains the package mechanical drawings for all packages currently or previously supplied by Actel. Use the bookmarks to navigate to the package mechanical drawings.

Additional packaging materials are at http://www.microsemi.com/products/solutions/package/docs.aspx.

CS121 – Bottom View

Note: The die attach paddle center of the package is tied to ground (GND).

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

Package Pin Assignments

	VQ100	,	VQ100	,	VQ100
Pin Number	A3P250 Function	Pin Number	A3P250 Function	Pin Number	A3P250 Function
1	GND	37	VCC	73	GBA2/IO41PDB1
2	GAA2/IO118UDB3	38	GND	74	VMV1
3	IO118VDB3	39	VCCIB2	75	GNDQ
4	GAB2/IO117UDB3	40	IO77RSB2	76	GBA1/IO40RSB0
5	IO117VDB3	41	IO74RSB2	77	GBA0/IO39RSB0
6	GAC2/IO116UDB3	42	IO71RSB2	78	GBB1/IO38RSB0
7	IO116VDB3	43	GDC2/IO63RSB2	79	GBB0/IO37RSB0
8	IO112PSB3	44	GDB2/IO62RSB2	80	GBC1/IO36RSB0
9	GND	45	GDA2/IO61RSB2	81	GBC0/IO35RSB0
10	GFB1/IO109PDB3	46	GNDQ	82	IO29RSB0
11	GFB0/IO109NDB3	47	ТСК	83	IO27RSB0
12	VCOMPLF	48	TDI	84	IO25RSB0
13	GFA0/IO108NPB3	49	TMS	85	IO23RSB0
14	VCCPLF	50	VMV2	86	IO21RSB0
15	GFA1/IO108PPB3	51	GND	87	VCCIB0
16	GFA2/IO107PSB3	52	VPUMP	88	GND
17	VCC	53	NC	89	VCC
18	VCCIB3	54	TDO	90	IO15RSB0
19	GFC2/IO105PSB3	55	TRST	91	IO13RSB0
20	GEC1/IO100PDB3	56	VJTAG	92	IO11RSB0
21	GEC0/IO100NDB3	57	GDA1/IO60USB1	93	GAC1/IO05RSB0
22	GEA1/IO98PDB3	58	GDC0/IO58VDB1	94	GAC0/IO04RSB0
23	GEA0/IO98NDB3	59	GDC1/IO58UDB1	95	GAB1/IO03RSB0
24	VMV3	60	IO52NDB1	96	GAB0/IO02RSB0
25	GNDQ	61	GCB2/IO52PDB1	97	GAA1/IO01RSB0
26	GEA2/IO97RSB2	62	GCA1/IO50PDB1	98	GAA0/IO00RSB0
27	GEB2/IO96RSB2	63	GCA0/IO50NDB1	99	GNDQ
28	GEC2/IO95RSB2	64	GCC0/IO48NDB1	100	VMV0
29	IO93RSB2	65	GCC1/IO48PDB1		
30	IO92RSB2	66	VCCIB1		
31	IO91RSB2	67	GND		
32	IO90RSB2	68	VCC		
33	IO88RSB2	69	IO43NDB1		
34	IO86RSB2	70	GBC2/IO43PDB1		
35	IO85RSB2	71	GBB2/IO42PSB1		
36	IO84RSB2	72	IO41NDB1		

	PQ208	PQ208		PQ208	
Pin Number	A3P250 Function	Pin Number	A3P250 Function	Pin Number	A3P250 Function
1	GND	37	IO104PDB3	73	IO83RSB2
2	GAA2/IO118UDB3	38	IO104NDB3	74	IO82RSB2
3	IO118VDB3	39	IO103PSB3	75	IO81RSB2
4	GAB2/IO117UDB3	40	VCCIB3	76	IO80RSB2
5	IO117VDB3	41	GND	77	IO79RSB2
6	GAC2/IO116UDB3	42	IO101PDB3	78	IO78RSB2
7	IO116VDB3	43	IO101NDB3	79	IO77RSB2
8	IO115UDB3	44	GEC1/IO100PDB3	80	IO76RSB2
9	IO115VDB3	45	GEC0/IO100NDB3	81	GND
10	IO114UDB3	46	GEB1/IO99PDB3	82	IO75RSB2
11	IO114VDB3	47	GEB0/IO99NDB3	83	IO74RSB2
12	IO113PDB3	48	GEA1/IO98PDB3	84	IO73RSB2
13	IO113NDB3	49	GEA0/IO98NDB3	85	IO72RSB2
14	IO112PDB3	50	VMV3	86	IO71RSB2
15	IO112NDB3	51	GNDQ	87	IO70RSB2
16	VCC	52	GND	88	VCC
17	GND	53	NC	89	VCCIB2
18	VCCIB3	54	NC	90	IO69RSB2
19	IO111PDB3	55	GEA2/IO97RSB2	91	IO68RSB2
20	IO111NDB3	56	GEB2/IO96RSB2	92	IO67RSB2
21	GFC1/IO110PDB3	57	GEC2/IO95RSB2	93	IO66RSB2
22	GFC0/IO110NDB3	58	IO94RSB2	94	IO65RSB2
23	GFB1/IO109PDB3	59	IO93RSB2	95	IO64RSB2
24	GFB0/IO109NDB3	60	IO92RSB2	96	GDC2/IO63RSB2
25	VCOMPLF	61	IO91RSB2	97	GND
26	GFA0/IO108NPB3	62	VCCIB2	98	GDB2/IO62RSB2
27	VCCPLF	63	IO90RSB2	99	GDA2/IO61RSB2
28	GFA1/IO108PPB3	64	IO89RSB2	100	GNDQ
29	GND	65	GND	101	ТСК
30	GFA2/IO107PDB3	66	IO88RSB2	102	TDI
31	IO107NDB3	67	IO87RSB2	103	TMS
32	GFB2/IO106PDB3	68	IO86RSB2	104	VMV2
33	IO106NDB3	69	IO85RSB2	105	GND
34	GFC2/IO105PDB3	70	IO84RSB2	106	VPUMP
35	IO105NDB3	71	VCC	107	NC
36	NC	72	VCCIB2	108	TDO

P	Q208	PQ208		PQ208	
Pin Number	A3P400 Function	Pin Number	A3P400 Function	Pin Number	A3P400 Function
1	GND	37	IO141PSB3	73	IO112RSB2
2	GAA2/IO155UDB3	38	IO140PDB3	74	IO111RSB2
3	IO155VDB3	39	IO140NDB3	75	IO110RSB2
4	GAB2/IO154UDB3	40	VCCIB3	76	IO109RSB2
5	IO154VDB3	41	GND	77	IO108RSB2
6	GAC2/IO153UDB3	42	IO138PDB3	78	IO107RSB2
7	IO153VDB3	43	IO138NDB3	79	IO106RSB2
8	IO152UDB3	44	GEC1/IO137PDB3	80	IO104RSB2
9	IO152VDB3	45	GEC0/IO137NDB3	81	GND
10	IO151UDB3	46	GEB1/IO136PDB3	82	IO102RSB2
11	IO151VDB3	47	GEB0/IO136NDB3	83	IO101RSB2
12	IO150PDB3	48	GEA1/IO135PDB3	84	IO100RSB2
13	IO150NDB3	49	GEA0/IO135NDB3	85	IO99RSB2
14	IO149PDB3	50	VMV3	86	IO98RSB2
15	IO149NDB3	51	GNDQ	87	IO97RSB2
16	VCC	52	GND	88	VCC
17	GND	53	VMV2	89	VCCIB2
18	VCCIB3	54	NC	90	IO94RSB2
19	IO148PDB3	55	GEA2/IO134RSB2	91	IO92RSB2
20	IO148NDB3	56	GEB2/IO133RSB2	92	IO90RSB2
21	GFC1/IO147PDB3	57	GEC2/IO132RSB2	93	IO88RSB2
22	GFC0/IO147NDB3	58	IO131RSB2	94	IO86RSB2
23	GFB1/IO146PDB3	59	IO130RSB2	95	IO84RSB2
24	GFB0/IO146NDB3	60	IO129RSB2	96	GDC2/IO82RSB2
25	VCOMPLF	61	IO128RSB2	97	GND
26	GFA0/IO145NPB3	62	VCCIB2	98	GDB2/IO81RSB2
27	VCCPLF	63	IO125RSB2	99	GDA2/IO80RSB2
28	GFA1/IO145PPB3	64	IO123RSB2	100	GNDQ
29	GND	65	GND	101	ТСК
30	GFA2/IO144PDB3	66	IO121RSB2	102	TDI
31	IO144NDB3	67	IO119RSB2	103	TMS
32	GFB2/IO143PDB3	68	IO117RSB2	104	VMV2
33	IO143NDB3	69	IO115RSB2	105	GND
34	GFC2/IO142PDB3	70	IO113RSB2	106	VPUMP
35	IO142NDB3	71	VCC	107	NC
36	NC	72	VCCIB2	108	TDO

🌜 Microsemi.

Package Pin Assignments

F	G144	F	G144	FG144	
Pin Number	A3P060 Function	Pin Number	A3P060 Function	Pin Number	A3P060 Function
A1	GNDQ	D1	IO91RSB1	G1	GFA1/IO84RSB1
A2	VMV0	D2	IO92RSB1	G2	GND
A3	GAB0/IO04RSB0	D3	IO93RSB1	G3	VCCPLF
A4	GAB1/IO05RSB0	D4	GAA2/IO51RSB1	G4	GFA0/IO85RSB1
A5	IO08RSB0	D5	GAC0/IO06RSB0	G5	GND
A6	GND	D6	GAC1/IO07RSB0	G6	GND
A7	IO11RSB0	D7	GBC0/IO19RSB0	G7	GND
A8	VCC	D8	GBC1/IO20RSB0	G8	GDC1/IO45RSB0
A9	IO16RSB0	D9	GBB2/IO27RSB0	G9	IO32RSB0
A10	GBA0/IO23RSB0	D10	IO18RSB0	G10	GCC2/IO43RSB0
A11	GBA1/IO24RSB0	D11	IO28RSB0	G11	IO31RSB0
A12	GNDQ	D12	GCB1/IO37RSB0	G12	GCB2/IO42RSB0
B1	GAB2/IO53RSB1	E1	VCC	H1	VCC
B2	GND	E2	GFC0/IO88RSB1	H2	GFB2/IO82RSB1
B3	GAA0/IO02RSB0	E3	GFC1/IO89RSB1	H3	GFC2/IO81RSB1
B4	GAA1/IO03RSB0	E4	VCCIB1	H4	GEC1/IO77RSB1
B5	IO00RSB0	E5	IO52RSB1	H5	VCC
B6	IO10RSB0	E6	VCCIB0	H6	IO34RSB0
B7	IO12RSB0	E7	VCCIB0	H7	IO44RSB0
B8	IO14RSB0	E8	GCC1/IO35RSB0	H8	GDB2/IO55RSB1
B9	GBB0/IO21RSB0	E9	VCCIB0	H9	GDC0/IO46RSB0
B10	GBB1/IO22RSB0	E10	VCC	H10	VCCIB0
B11	GND	E11	GCA0/IO40RSB0	H11	IO33RSB0
B12	VMV0	E12	IO30RSB0	H12	VCC
C1	IO95RSB1	F1	GFB0/IO86RSB1	J1	GEB1/IO75RSB1
C2	GFA2/IO83RSB1	F2	VCOMPLF	J2	IO78RSB1
C3	GAC2/IO94RSB1	F3	GFB1/IO87RSB1	J3	VCCIB1
C4	VCC	F4	IO90RSB1	J4	GEC0/IO76RSB1
C5	IO01RSB0	F5	GND	J5	IO79RSB1
C6	IO09RSB0	F6	GND	J6	IO80RSB1
C7	IO13RSB0	F7	GND	J7	VCC
C8	IO15RSB0	F8	GCC0/IO36RSB0	J8	ТСК
C9	IO17RSB0	F9	GCB0/IO38RSB0	J9	GDA2/IO54RSB1
C10	GBA2/IO25RSB0	F10	GND	J10	TDO
C11	IO26RSB0	F11	GCA1/IO39RSB0	J11	GDA1/IO49RSB0
C12	GBC2/IO29RSB0	F12	GCA2/IO41RSB0	J12	GDB1/IO47RSB0

	FG256		FG256	FG256	
Pin Number	A3P250 Function	Pin Number	A3P250 Function	Pin Number	A3P250 Function
A1	GND	C5	GAC0/IO04RSB0	E9	IO24RSB0
A2	GAA0/IO00RSB0	C6	GAC1/IO05RSB0	E10	VCCIB0
A3	GAA1/IO01RSB0	C7	IO13RSB0	E11	VCCIB0
A4	GAB0/IO02RSB0	C8	IO17RSB0	E12	VMV1
A5	IO07RSB0	C9	IO22RSB0	E13	GBC2/IO43PDB1
A6	IO10RSB0	C10	IO27RSB0	E14	IO46RSB1
A7	IO11RSB0	C11	IO31RSB0	E15	NC
A8	IO15RSB0	C12	GBC0/IO35RSB0	E16	IO45PDB1
A9	IO20RSB0	C13	IO34RSB0	F1	IO113NDB3
A10	IO25RSB0	C14	NC	F2	IO112PPB3
A11	IO29RSB0	C15	IO42NPB1	F3	NC
A12	IO33RSB0	C16	IO44PDB1	F4	IO115VDB3
A13	GBB1/IO38RSB0	D1	IO114VDB3	F5	VCCIB3
A14	GBA0/IO39RSB0	D2	IO114UDB3	F6	GND
A15	GBA1/IO40RSB0	D3	GAC2/IO116UDB3	F7	VCC
A16	GND	D4	NC	F8	VCC
B1	GAB2/IO117UDB3	D5	GNDQ	F9	VCC
B2	GAA2/IO118UDB3	D6	IO08RSB0	F10	VCC
B3	NC	D7	IO14RSB0	F11	GND
B4	GAB1/IO03RSB0	D8	IO18RSB0	F12	VCCIB1
B5	IO06RSB0	D9	IO23RSB0	F13	IO43NDB1
B6	IO09RSB0	D10	IO28RSB0	F14	NC
B7	IO12RSB0	D11	IO32RSB0	F15	IO47PPB1
B8	IO16RSB0	D12	GNDQ	F16	IO45NDB1
B9	IO21RSB0	D13	NC	G1	IO111NDB3
B10	IO26RSB0	D14	GBB2/IO42PPB1	G2	IO111PDB3
B11	IO30RSB0	D15	NC	G3	IO112NPB3
B12	GBC1/IO36RSB0	D16	IO44NDB1	G4	GFC1/IO110PPB3
B13	GBB0/IO37RSB0	E1	IO113PDB3	G5	VCCIB3
B14	NC	E2	NC	G6	VCC
B15	GBA2/IO41PDB1	E3	IO116VDB3	G7	GND
B16	IO41NDB1	E4	IO115UDB3	G8	GND
C1	IO117VDB3	E5	VMV0	G9	GND
C2	IO118VDB3	E6	VCCIB0	G10	GND
C3	NC	E7	VCCIB0	G11	VCC
C4	NC	E8	IO19RSB0	G12	VCCIB1

Revision	Changes	Page
Revision 9 (Oct 2009) Product Brief v1.3	The CS121 package was added to table under "Features and Benefits" section, the "I/Os Per Package 1" table, Table 1 • ProASIC3 FPGAs Package Sizes Dimensions, "ProASIC3 Ordering Information", and the "Temperature Grade Offerings" table.	I – IV
	"ProASIC3 Ordering Information" was revised to include the fact that some RoHS compliant packages are halogen-free.	IV
Packaging v1.5	The "CS121 – Bottom View" figure and pin table for A3P060 are new.	4-15
Revision 8 (Aug 2009) Product Brief v1.2	All references to M7 devices (CoreMP7) and speed grade –F were removed from this document.	
	Table 1-1 I/O Standards supported is new.	1-7
	The I/Os with Advanced I/O Standards section was revised to add definitions of hot-swap and cold-sparing.	1-7
DC and Switching Characteristics v1.4	$3.3~\rm V$ LVCMOS and $1.2~\rm V$ LVCMOS Wide Range support was added to the datasheet. This affects all tables that contained $3.3~\rm V$ LVCMOS and $1.2~\rm V$ LVCMOS data.	N/A
	$\rm I_{\rm IL}$ and $\rm I_{\rm IH}$ input leakage current information was added to all "Minimum and Maximum DC Input and Output Levels" tables.	N/A
	-F was removed from the datasheet. The speed grade is no longer supported.	N/A
	The notes in Table 2-2 • Recommended Operating Conditions 1 were updated.	2-2
	Table 2-4 • Overshoot and Undershoot Limits 1 was updated.	2-3
	Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays was updated.	2-6
	In Table 2-116 • RAM4K9, the following specifications were removed: t _{WRO} t _{CCKH}	2-96
	In Table 2-117 • RAM512X18, the following specifications were removed: t _{WRO} t _{CCKH}	2-97
	In the title of Table 2-74 • 1.8 V LVCMOS High Slew, VCCI had a typo. It was changed from 3.0 V to 1.7 V.	2-58
Revision 7 (Feb 2009) Product Brief v1.1	The "Advanced I/O" section was revised to add a bullet regarding wide range power supply voltage support.	I
	The table under "Features and Benefits" section, was updated to include a value for typical equivalent macrocells for A3P250.	I
	The QN48 package was added to the following tables: the table under "Features and Benefits" section, "I/Os Per Package 1" "ProASIC3 FPGAs Package Sizes Dimensions", and "Temperature Grade Offerings".	N/A
	The number of singled-ended I/Os for QN68 was added to the "I/Os Per Package 1" table.	
	The Wide Range I/O Support section is new.	1-7
Revision 6 (Dec 2008)	The "QN48 – Bottom View" section is new.	4-1
Packaging v1.4	The "QN68" pin table for A3P030 is new.	4-5

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in the "ProASIC3 Device Status" table on page IV, is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Unmarked (production)

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications Policy

The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information.