

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI, UART/USART, USB
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	19
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	40-VFQFN Exposed Pad
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st72f60k1u1tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

			Level		Port / control					Main		
Pin n°	Pin name	Pin name $\frac{2}{2}$ \pm $\frac{1}{2}$ Input Output		tput	function (after	Alternate function						
			dul	Out	float	ndw	int	OD	РР	reset)		
1	V _{DD}	S								Power sup (4 V - 5.5)	ply voltage V)	
2	OSCOUT	0								Oscillator	output	
3	OSCIN	I								Oscillator	input	
4	V _{SS}	S								Digital gro	und	
5	PC1/TDO	I/O		СТ		х			х	Port C1	SCI Transmit Data Output	
6	PC0/RDI	I/O	СТ			х			х	Port C0	SCI Receive Data Input	
7	RESET	I/O				х		х		Reset		
8	PB6/IT7	I/O	СТ	10 mA	х		х		х	Port B6		
9	V _{PP} /TEST	S								Programming supply		
10	PB3	I/O	СТ	10 mA	х				х	Port B3		
11	PB2	I/O	СТ	10 mA	х				х	Port B2		
12	PB1/USBOE	I/O	СТ	10 mA	х				х	Port B1	USB Output Enable	
13	PB0	I/O	СТ	10 mA	х				х	Port B0		
14	PA7/OCMP2/IT4	I/O		СТ		х	х		х	Port A7	Timer Output Compare 2	
15	PA5/ICAP2/IT2	I/O		СТ		х	х		х	Port A5	Timer Input Capture 2	
16	PA4/ICAP1/IT1	I/O		СТ		х	х		х	Port A4	Timer Input Capture 1	
17	PA3/EXTCLK	I/O		СТ		х			х	Port A3	Timer External Clock	
18	PA2/ICCCLK	I/O	CT	25 mA	х			Т		Port A2	ICC Clock	
19	PA1/ICCDATA	I/O	СТ	25 mA	х			Т		Port A1	ICC Data	
20	PA0/MCO	I/O		СТ			х		х	Port A0	Main Clock Output	
21	V _{SSA}	S								Analog gro	bund	
22	USBDP	I/O								USB bidire	ectional data (data +)	
23	USBDM	I/O								USB bidire	ectional data (data -)	
24	USBVCC	0								USB power supply		

Table 3. Device pin description (SO24)

Address	Block	Register label	Register name	Reset status	Remarks
0011h		TCR2	Timer Control Register 2	00h	R/W
0012h		TCR1	Timer Control Register 1	00h	R/W
0013h		TCSR	Timer Control/Status Register	00h	R/W
0014h		TIC1HR	Timer Input Capture High Register 1	xxh	Read only
0015h		TIC1LR	Timer Input Capture Low Register 1	xxh	Read only
0016h		TOC1HR	Timer Output Compare High Register 1	80h	R/W
0017h		TOC1LR	Timer Output Compare Low Register 1	00h	R/W
0018h	TIM	TCHR	Timer Counter High Register	FFh	Read only
0019h		TCLR	Timer Counter Low Register	FCh	R/W
001Ah		TACHR	Timer Alternate Counter High Register	FFh	Read only
001Bh		TACLR	Timer Alternate Counter Low Register	FCh	R/W
001Ch		TIC2HR	Timer Input Capture High Register 2	xxh	Read only
001Dh		TIC2LR	Timer Input Capture Low Register 2	xxh	Read only
001Eh		TOC2HR	Timer Output Compare High Register 2	80h	R/W
001Fh		TOC2LR	Timer Output Compare Low Register 2	00h	R/W
0020h		SCISR	SCI Status Register	C0h	Read only
0021h		SCIDR	SCI Data Register	xxh	R/W
0022h	SCI	SCIBRR	SCI Baud Rate Register	00h	R/W
0023h		SCICR1	SCI Control Register 1	x000 0000b	R/W
0024h		SCICR2	SCI Control Register 2	00h	R/W
0025h		USBPIDR	USB PID Register	x0h	Read only
0026h		USBDMAR	USB DMA address Register	xxh	R/W
0027h		USBIDR	USB Interrupt/DMA Register	x0h	R/W
0028h		USBISTR	USB Interrupt Status Register	00h	R/W
0029h		USBIMR	USB Interrupt Mask Register	00h	R/W
002Ah		USBCTLR	USB Control Register	06h	R/W
002Bh	USB	USBDADDR	USB Device Address Register	00h	R/W
002Ch		USBEP0RA	USB Endpoint 0 Register A	0000 xxxxb	R/W
002Dh		USBEP0RB	USB Endpoint 0 Register B	80h	R/W
002Eh		USBEP1RA	USB Endpoint 1 Register A	0000 xxxxb	R/W
002Fh		USBEP1RB	USB Endpoint 1 Register B	0000 xxxxb	R/W
0030h		USBEP2RA	USB Endpoint 2 Register A	0000 xxxxb	R/W
0031h		USBEP2RB	USB Endpoint 2 Register B	0000 xxxxb	R/W
0032h 0036h			Reserved (5 Bytes)		
0037h	Flash	FCSR	Flash Control /Status Register	00h	R/W
0038h to 003Fh	Reserved (8 bytes)				

Table 5. Hardware register memory map (continued)

5 Flash program memory

5.1 Introduction

The ST7 dual voltage High Density Flash (HDFlash) is a non-volatile memory that can be electrically erased as a single block or by individual sectors and programmed on a byte-by-byte basis using an external V_{PP} supply.

The HDFlash devices can be programmed and erased off-board (plugged in a programming tool) or on-board using ICP (in-circuit programming) or IAP (in-application programming).

The array matrix organization allows each sector to be erased and reprogrammed without affecting other sectors.

5.2 Main features

- 3 Flash programming modes:
 - Insertion in a programming tool. In this mode, all sectors including option bytes can be programmed or erased.
 - ICP (in-circuit programming). In this mode, all sectors including option bytes can be programmed or erased without removing the device from the application board.
 - IAP (in-application programming). In this mode, all sectors, except Sector 0, can be programmed or erased without removing the device from the application board and while the application is running.
- ICT (in-circuit testing) for downloading and executing user application test patterns in RAM
- Readout protection
- Register Access Security System (RASS) to prevent accidental programming or erasing

5.3 Structure

The Flash memory is organized in sectors and can be used for both code and data storage.

Depending on the overall Flash memory size in the microcontroller device, there are up to three user sectors (see *Table 6*). Each of these sectors can be erased independently to avoid unnecessary erasing of the whole Flash memory when only a partial erasing is required.

The first two sectors have a fixed size of 4 Kbytes (see *Figure 5*). They are mapped in the upper part of the ST7 addressing space so the reset and interrupt vectors are located in Sector 0 (F000h-FFFFh).

 Table 6.
 Sectors available in Flash devices

Flash size (bytes)	Available sectors
4K	Sector 0
8К	Sectors 0, 1
>8K	Sectors 0, 1, 2

5.4 ICC interface

ICC needs a minimum of 4 and up to 6 pins to be connected to the programming tool (see *Figure 6*). These pins are:

- RESET: device reset
- V_{SS}: device power supply ground
- ICCCLK: ICC output serial clock pin
- ICCDATA: ICC input/output serial data pin
- ICCSEL/V_{PP}: programming voltage
- OSC1 (or OSCIN): main clock input for external source (optional)
- V_{DD}: application board power supply (see *Figure 6*, Note 3).

Figure 6. Typical ICC interface

- If the ICCCLK or ICCDATA pins are only used as outputs in the application, no signal isolation is necessary. As soon as the programming tool is plugged to the board, even if an ICC session is not in progress, the ICCCLK and ICCDATA pins are not available for the application. If they are used as inputs by the application, isolation such as a serial resistor has to be implemented in case another device forces the signal. Refer to the Programming Tool documentation for recommended resistor values.
- 2. During the ICC session, the programming tool must control the RESET pin. This can lead to conflicts between the programming tool and the application reset circuit if it drives more than 5mA at high level (PUSH-pull output or pull-up resistor <1K). A schottky diode can be used to isolate the application reset circuit in this case. When using a classical RC network with R>1K or a reset management IC with open drain output and pull-up resistor >1K, no additional components are needed. In all cases the user must ensure that no external reset is generated by the application during the ICC session.
- 3. The use of Pin 7 of the ICC connector depends on the programming tool architecture. This pin must be connected when using most ST programming tools (it is used to monitor the application power supply). Please refer to the programming tool manual.
- 4. Pin 9 has to be connected to the OSC1 (OSCIN) pin of the ST7 when the clock is not available in the application or if the selected clock option is not programmed in the option byte. ST7 devices with multi-oscillator capability need to have OSC2 grounded in this case.

6 Central processing unit (CPU)

6.1 Introduction

This CPU has a full 8-bit architecture and contains six internal registers allowing efficient 8bit data manipulation.

6.2 Main features

- 63 basic instructions
- Fast 8-bit by 8-bit multiply
- 17 main addressing modes
- Two 8-bit index registers
- 16-bit stack pointer
- Low power modes
- Maskable hardware interrupts
- Non-maskable software interrupt

6.3 CPU registers

The six CPU registers shown in *Figure 7* are not present in the memory mapping and are accessed by specific instructions.

Figure 7. CPU registers

6.3.1 Accumulator (A)

The Accumulator is an 8-bit general purpose register used to hold operands and the results of the arithmetic and logic calculations and to manipulate data.

6.3.2 Index registers (X and Y)

In indexed addressing modes, these 8-bit registers are used to create effective addresses or as temporary storage areas for data manipulation. (The Cross-Assembler generates a precede instruction (PRE) to indicate that the following instruction refers to the Y register.)

The Y register is not affected by the interrupt automatic procedures (not pushed to and popped from the stack).

6.3.3 Program counter (PC)

The program counter is a 16-bit register containing the address of the next instruction to be executed by the CPU. It is made of two 8-bit registers PCL (Program Counter Low which is the LSB) and PCH (Program Counter High which is the MSB).

6.3.4 Condition code register (CC)

The 8-bit Condition Code register contains the interrupt mask and four flags representative of the result of the instruction just executed. This register can also be handled by the PUSH and POP instructions. These bits can be individually tested and/or controlled by specific instructions.

Table 8.CC register description

Blt	Name	Function
4	н	 Half carry This bit is set by hardware when a carry occurs between bits 3 and 4 of the ALU during an ADD or ADC instructions. It is reset by hardware during the same instructions. 0: No half carry has occurred. 1: A half carry has occurred. This bit is tested using the JRH or JRNH instruction. The H bit is useful in BCD arithmetic subroutines.

12.4 16-bit timer

12.4.1 Introduction

The timer consists of a 16-bit free-running counter driven by a programmable prescaler.

It may be used for a variety of purposes, including pulse length measurement of up to two input signals (input capture) or generation of up to two output waveforms (output compare and PWM).

Pulse lengths and waveform periods can be modulated from a few microseconds to several milliseconds using the timer prescaler and the CPU clock prescaler.

Some ST7 devices have two on-chip 16-bit timers. They are completely independent, and do not share any resources. They are synchronized after a MCU reset as long as the timer clock frequencies are not modified.

This description covers one or two 16-bit timers. In ST7 devices with two timers, register names are prefixed with TA (Timer A) or TB (Timer B).

12.4.2 Main features

- Programmable prescaler: f_{CPU} divided by 2, 4 or 8
- Overflow status flag and maskable interrupt
- External clock input (must be at least four times slower than the CPU clock speed) with the choice of active edge
- 1 or 2 output compare functions each with:
 - 2 dedicated 16-bit registers
 - 2 dedicated programmable signals
 - 2 dedicated status flags
 - 1 dedicated maskable interrupt
- 1 or 2 input capture functions each with:
 - 2 dedicated 16-bit registers
 - 2 dedicated active edge selection signals
 - 2 dedicated status flags
 - 1 dedicated maskable interrupt
- Pulse width modulation mode (PWM)
- One pulse mode
- Reduced power mode
- 5 alternate functions on I/O ports (ICAP1, ICAP2, OCMP1, OCMP2, EXTCLK)^(a)

The timer block diagram is shown in Figure 24.

a. Some timer pins may not be available (not bonded) in some ST7 devices. Refer to *Section 3: Pin description*. When reading an input signal on a non-bonded pin, the value will always be '1'.

External clock

The external clock (where available) is selected if CC0 = 1 and CC1 = 1 in the CR2 register.

The status of the EXEDG bit in the CR2 register determines the type of level transition on the external clock pin EXTCLK that will trigger the free running counter.

The counter is synchronized with the falling edge of the internal CPU clock.

A minimum of four falling edges of the CPU clock must occur between two consecutive active edges of the external clock; thus the external clock frequency must be less than a quarter of the CPU clock frequency.

CPU clock	
Internal reset	
Timer clock	
Counter register	\ FFFD\ FFFE\ FFFF\ 0000 \ 0001 \ 0002 \ 0003 \
Timer Overflow Flag (TOF)	

Figure 27. Counter timing diagram, internal clock divided by 4

Figure 28. Counter timing diagram, internal clock divided by 8

Note:

The MCU is in reset state when the internal reset signal is high, when it is low the MCU is running.

Bit	Name	Function
4	FOLV2	 Forced Output compare 2 This bit is set and cleared by software. 0: No effect on the OCMP2 pin. 1: Forces the OLVL2 bit to be copied to the OCMP2 pin, if the OC2E bit is set and even if there is no successful comparison.
3	FOLV1	 Forced Output compare 1 This bit is set and cleared by software. 0: No effect on the OCMP1 pin. 1: Forces OLVL1 to be copied to the OCMP1 pin, if the OC1E bit is set and even if there is no successful comparison.
2	OLVL2	Output Level 2 This bit is copied to the OCMP2 pin whenever a successful comparison occurs with the OC2R register and OCxE is set in the CR2 register. This value is copied to the OCMP1 pin in One Pulse mode and Pulse Width modulation mode.
1	IEDG1	 Input Edge 1 This bit determines which type of level transition on the ICAP1 pin will trigger the capture. 0: A falling edge triggers the capture. 1: A rising edge triggers the capture.
0	OLVL1	Output Level 1 The OLVL1 bit is copied to the OCMP1 pin whenever a successful comparison occurs with the OC1R register and the OC1E bit is set in the CR2 register.

Table 31. CR1 register description (continued)

Control Register 2 (CR2)

Table 32.CR2 register description

Bit	Name	Function
7	OCIE	Output Compare 1 Pin Enable This bit is used only to output the signal from the timer on the OCMP1 pin (OLV1 in Output Compare mode, both OLV1 and OLV2 in PWM and One-Pulse mode). Whatever the value of the OC1E bit, the Output Compare 1 function of the timer remains active. 0: OCMP1 pin alternate function disabled (I/O pin free for general-purpose I/O). 1: OCMP1 pin alternate function enabled.
6	OC2E	Output Compare 2 Pin Enable This bit is used only to output the signal from the timer on the OCMP2 pin (OLV2 in Output Compare mode). Whatever the value of the OC2E bit, the Output Compare 2 function of the timer remains active. 0: OCMP2 pin alternate function disabled (I/O pin free for general-purpose I/O). 1: OCMP2 pin alternate function enabled.

Input capture 1 low register (IC1LR)

This is an 8-bit register that contains the low part of the counter value (transferred by the input capture 1 event).

Output compare 1 high register (OC1HR)

This is an 8-bit register that contains the high part of the value to be compared to the CHR register.

Output compare 1 low register (OC1LR)

This is an 8-bit register that contains the low part of the value to be compared to the CLR register.

Output compare 2 high register (OC2HR)

This is an 8-bit register that contains the high part of the value to be compared to the CHR register.

Noise error

Oversampling techniques are used for data recovery by discriminating between valid incoming data and noise. Normal data bits are considered valid if three consecutive samples (8th, 9th, 10th) have the same bit value, otherwise the NF flag is set. In the case of start bit detection, the NF flag is set on the basis of an algorithm combining both valid edge detection and three samples (8th, 9th, 10th). Therefore, to prevent the NF flag getting set during start bit reception, there should be a valid edge detection as well as three valid samples.

When noise is detected in a frame:

- The NF flag is set at the rising edge of the RDRF bit.
- Data is transferred from the Shift register to the SCIDR register.
- No interrupt is generated. However this bit rises at the same time as the RDRF bit which itself generates an interrupt.

The NF flag is reset by a SCISR register read operation followed by a SCIDR register read operation.

During reception, if a false start bit is detected (e.g. 8th, 9th, 10th samples are 011,101,110), the frame is discarded and the receiving sequence is not started for this frame. There is no RDRF bit set for this frame and the NF flag is set internally (not accessible to the user). This NF flag is accessible along with the RDRF bit when a next valid frame is received.

Note: If the application Start Bit is not long enough to match the above requirements, then the NF Flag may get set due to the short Start Bit. In this case, the NF flag may be ignored by the application software when the first valid byte is received.

See also *Noise error causes*.

Framing Error

A framing error is detected when:

- The stop bit is not recognized on reception at the expected time, following either a desynchronization or excessive noise.
- A break is received.

When the framing error is detected:

- The FE bit is set by hardware
- Data is transferred from the Shift register to the SCIDR register.
- No interrupt is generated. However this bit rises at the same time as the RDRF bit which itself generates an interrupt.

The FE bit is reset by a SCISR register read operation followed by a SCIDR register read operation.

Baud rate generation

The baud rate for the receiver and transmitter (Rx and Tx) are set independently and calculated as follows:

 $Tx = \frac{f_{CPU}}{(16 \cdot PR) \cdot TR} \qquad Rx = \frac{f_{CPU}}{(16 \cdot PR) \cdot RR}$

with:

PR = 1, 3, 4 or 13 (see SCP[1:0] bits)

TR = 1, 2, 4, 8, 16, 32, 64,128

(see SCT[2:0] bits)

RR = 1, 2, 4, 8, 16, 32, 64,128

(see SCR[2:0] bits)

All these bits are in the SCIBRR register.

Example: If f_{CPU} is 8 MHz (normal mode) and if PR=13 and TR=RR=1, the transmit and receive baud rates are 38400 baud.

Note: The baud rate registers MUST NOT be changed while the transmitter or the receiver is enabled.

Receiver muting and wake-up feature

In multiprocessor configurations it is often desirable that only the intended message recipient should actively receive the full message contents, thus reducing redundant SCI service overhead for all non addressed receivers.

The non addressed devices may be placed in sleep mode by means of the muting function.

Setting the RWU bit by software puts the SCI in sleep mode:

All the reception status bits can not be set.

All the receive interrupts are inhibited.

A muted receiver may be awakened by one of the following two ways:

- by Idle Line detection if the WAKE bit is reset,
- by Address Mark detection if the WAKE bit is set.

Receiver wakes-up by Idle Line detection when the Receive line has recognised an Idle Frame. Then the RWU bit is reset by hardware but the IDLE bit is not set.

Receiver wakes-up by Address Mark detection when it received a "1" as the most significant bit of a word, thus indicating that the message is an address. The reception of this particular word wakes up the receiver, resets the RWU bit and sets the RDRF bit, which allows the receiver to receive this word normally and to use it as an address word.

Caution: In Mute mode, do not write to the SCICR2 register. If the SCI is in Mute mode during the read operation (RWU=1) and a address mark wake up event occurs (RWU is reset) before the write operation, the RWU bit will be set again by this write operation. Consequently the address byte is lost and the SCI is not woken up from Mute mode.

When a CTR interrupt occurs (see register ISTR) the software should read the EP bits to identify the endpoint which has sent or received a packet.

Bits 3:0 = **CNT[3:0]** Byte count (read only).

This field shows how many data bytes have been received during the last data reception.

Note: Not valid for data transmission.

Figure 42. DMA buffers

14.4.3 PID register (PIDR)

PIDR					Reset	value: xxxx	0000 (x0h)
7	6	5	4	3	2	1	0
TP3	TP2	0	0	0	RX_ SEZ	RXD	0
R	R	R	R	R	R	R	R

Bits 7:6 = **TP[3:2]** *Token PID bits 3 & 2*.

USB token PIDs are encoded in four bits. **TP[3:2]** correspond to the variable token PID bits 3 & 2.

Note: PID bits 1 & 0 have a fixed value of 01.

When a CTR interrupt occurs (see register ISTR) the software should read the TP3 and TP2 bits to retrieve the PID name of the token received. The USB standard defines TP bits as:

Table 43. TP bits

TP3	TP2	PID name
0	0	OUT
1	0	IN
1	1	SETUP

Bits 5:3 Reserved. Forced by hardware to 0.

Note:

Note:

14.4.5

0: No error detected 1: Timeout, CRC, bit stuffing or nonstandard framing error detected Bit 3 = **IOVR** Interrupt overrun. This bit is set when hardware tries to set ERR, or SOF before they have been cleared by software. 0: No overrun detected 1: Overrun detected Bit 2 = **ESUSP** End suspend mode. This bit is set by hardware when, during suspend mode, activity is detected that wakes the USB interface up from suspend mode. This interrupt is serviced by a specific vector, in order to wake up the ST7 from HALT mode. 0: No End Suspend detected 1: End Suspend detected Bit 1 = **RESET** USB reset. This bit is set by hardware when the USB reset sequence is detected on the bus. 0: No USB reset signal detected 1: USB reset signal detected The DADDR, EP0RA, EP0RB, EP1RA, EP1RB, EP2RA and EP2RB registers are reset by a USB reset. Bit 0 = SOF Start of frame. This bit is set by hardware when a low-speed SOF indication (keep-alive strobe) is seen on the USB bus. It is also issued at the end of a resume sequence. 0: No SOF signal detected 1: SOF signal detected To avoid spurious clearing of some bits, it is recommended to clear them using a load instruction where all bits which must not be altered are set, and all bits to be cleared are reset. Avoid read-modify-write instructions like AND, XOR.. Interrupt mask register (IMR) IMR Reset value: 0000 0000 (00h)

							· · ·
7	6	5	4	3	2	1	0
SUSPM	DOVRM	CTRM	ERRM	IOVRM	ESUSPM	RESETM	SOFM
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bits 7:0 = These bits are mask bits for all interrupt condition bits included in the ISTR. Whenever one of the IMR bits is set, if the corresponding ISTR bit is set, and the I bit in the CC register is cleared, an interrupt request is generated. For an explanation of each bit, please refer to the corresponding bit description in ISTR.

15 Instruction set

15.1 ST7 addressing modes

The ST7 Core features 17 different addressing modes which can be classified in 7 main groups:

Addressing mode	Example
Inherent	nop
Immediate	ld A,#\$55
Direct	ld A,\$55
Indexed	ld A,(\$55,X)
Indirect	ld A,([\$55],X)
Relative	jrne loop
Bit operation	bset byte,#5

Table 47.Addressing mode groups

The ST7 Instruction set is designed to minimize the number of bytes required per instruction: To do so, most of the addressing modes may be subdivided in two sub-modes called long and short:

- Long addressing mode is more powerful because it can use the full 64 Kbyte address space, however it uses more bytes and more CPU cycles.
- Short addressing mode is less powerful because it can generally only access page zero (0000h - 00FFh range), but the instruction size is more compact, and faster. All memory to memory instructions use short addressing modes only (CLR, CPL, NEG, BSET, BRES, BTJT, BTJF, INC, DEC, RLC, RRC, SLL, SRL, SRA, SWAP)

The ST7 Assembler optimizes the use of long and short addressing modes.

Mode			Syntax	Destination/ source	Pointer address	Pointer size	Length (bytes)	
Inherent			nop				+ 0	
Immediate			ld A,#\$55				+ 1	
Short	Direct		ld A,\$10	00FF			+ 1	
Long	Direct		ld A,\$1000	0000FFFF			+ 2	
No Offset	Direct	Indexed	ld A,(X)	00FF			+ 0 (with X register) + 1 (with Y register)	
Short	Direct	Indexed	ld A,(\$10,X)	001FE			+ 1	
Long	Direct	Indexed	ld A,(\$1000,X)	0000FFFF			+ 2	
Short	Indirect		ld A,[\$10]	00FF	00FF	byte	+ 2	
Long	Indirect		ld A,[\$10.w]	0000FFFF	00FF	word	+ 2	

Table 48. ST7 addressing mode overview

Figure 44. Pin input voltage

16.8.2 Output driving current

Subject to general operating condition for V_{DD} , f_{CPU} , and T_A unless otherwise specified.

Table 71. Output current characteristics

Symbol	Parameter		Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output low level voltage for a standard I/O pin when up to 8 pins are sunk at the same time, Port A0, Port A(3:7), Port C(0:2)		I _{IO} =+1.6 mA		0.4	
	Output low level voltage for a high sink I/O pin when up to 4 pins are sunk at the same time, Port B(0:7)		I _{IO} =+10 mA		1.3	V
	Output low level voltage for a very high sink I/O pin when up to 2 pins are sunk at the same time, Port A1, Port A2		I _{IO} =+25 mA		1.5	
V _{OH} ⁽²⁾	Output high level voltage for an I/O pin when up to 8 pins are sourced at same time		I _{IO} =-10 mA	V _{DD} -1.3		
			I _{IO} =-1.6 mA	V _{DD} -0.8		

The I_{IO} current sunk must always respect the absolute maximum rating specified in Section 16.2 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. The I_{IO} current sourced must always respect the absolute maximum rating specified in Section 16.2 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD} . True open drain I/O pins does not have V_{OH} .

Figure 55. V_{OL} high sink V_{DD} =5 V

Figure 56. V_{OL} very high sink V_{DD}=5 V Figure 57. V_{OL} high sink vs. V_{DD}

16.9 Control pin characteristics

16.9.1 Asynchronous RESET pin

Subject to general operating conditions for V_{DD} , f_{CPU} , and T_A unless otherwise specified.

 Table 72.
 RESET pin characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit	
V _{IH}	Input high level voltage			$0.7 \mathrm{xV}_{\mathrm{DD}}$		V _{DD}	V	
V _{IL}	Input low voltage			V _{SS}		$0.3 \mathrm{xV}_{\mathrm{DD}}$	V	
V _{hys}	Schmitt trigger voltage hysteresis ⁽¹⁾				400		mV	
V _{OL}	Output low level voltage ⁽²⁾	V _{DD} =5V	I _{IO} =5 mA			0.8	V	
			I _{IO} =7.5 mA			1.3	v	
R _{ON}	Weak pull-up equivalent resistor (3)	$V_{IN} = V_{SS}$	V _{DD} =5 V	50	80	100	kΩ	
t _{w(RSTL)out}	Generated reset pulse duration	External pin or internal reset sources			6 30		1/f _{SFOSC} μs	
t _{h(RSTL)in}	External reset pulse hold time (4)			5			μS	

1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.

2. The I_{IO} current sunk must always respect the absolute maximum rating specified in *Section 16.2* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS} .

3. The R_{ON} pull-up equivalent resistor is based on a resistive transistor. This data is based on characterization results, not tested in production.

 To guarantee the reset of the device, a minimum pulse has to be applied to RESET pin. All short pulses applied on RESET pin with a duration below t_{h(RSTL)in} can be ignored.

RESET pin protection when LVD is disabled

When the LVD is disabled, it is recommended to protect the **RESET** pin as shown in *Figure 65* and follow these guidelines:

- 1. The reset network protects the device against parasitic resets.
- 2. The output of the external reset circuit must have an open-drain output to drive the ST7 reset pad. Otherwise the device can be damaged when the ST7 generates an internal reset (LVD or watchdog).
- Whatever the reset source is (internal or external), the user must ensure that the level on the RESET pin can go below the V_{IL} max. level specified in Section 16.9.1. Otherwise the reset will not be taken into account internally.
- 4. Because the reset circuit is designed to allow the internal RESET to be output in the RESET pin, the user must ensure that the current sunk on the RESET pin (by an external pull-up for example) is less than the absolute maximum value specified for I_{INJ(RESET)} in *Section 16.2 on page 111*.

Figure 65. RESET pin protection when LVD is disabled

16.9.2 USB - universal bus interface

Operating conditions $T_A = 0$ to +70 °C, $V_{DD} = 4.0$ to 5.25 V unless otherwise specified.

Symbol	Parameter	Conditions ⁽¹⁾	Min.	Max.	Unit
V _{DI}	Differential Input Sensitivity	I(D+, D-)	0.2		
V _{CM}	Differential Common Mode Range	Includes VDI range	0.8	2.5	
V _{SE}	Single Ended Receiver Threshold	2.0	V		
V _{OL}	Static Output Low	RL ⁽²⁾ of 1.5 Kohms to 3.6v		0.3	v
V _{OH}	Static Output High	RL ⁽²⁾ of 15 Kohms to V _{SS}	2.8	3.6	
USBV	USBVCC: voltage level (3)	V _{DD} =5 V	3.00	3.60	

Table 73.USB DC electrical characteristics

1. All the voltages are measured from the local ground potential.

2. RL is the load connected on the USB drivers.

3. To improve EMC performance (noise immunity), it is recommended to connect a 100nF capacitor to the USBVCC pin.

The exact sequence is:

- Disable interrupts
- Reset and Set TE (IDLE request)
- Set and Reset SBK (Break Request)
- Re-enable interrupts

