

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	HC08
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	LED, LVD, POR, PWM
Number of I/O	14
Program Memory Size	1.5KB (1.5K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.3V
Data Converters	A/D 12x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-DIP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcr908jk1ecpe

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Chapters

2.7 Flash Control Register

The Flash Control Register controls Flash program and erase operations.

Figure 2-4. Flash Control Register (FLCR)

HVEN — High Voltage Enable Bit

This read/write bit enables high voltage from the charge pump to the memory for either program or erase operation. It can only be set if either PGM=1 or ERASE=1 and the proper sequence for program or erase is followed.

1 = High voltage enabled to array and charge pump on

0 = High voltage disabled to array and charge pump off

MASS — Mass Erase Control Bit

This read/write bit configures the memory for mass erase operation or page erase operation when the ERASE bit is set.

1 = Mass erase operation selected

0 = Page erase operation selected

ERASE — Erase Control Bit

This read/write bit configures the memory for erase operation. This bit and the PGM bit should not be set to 1 at the same time.

1 = Erase operation selected

0 = Erase operation not selected

PGM — Program Control Bit

This read/write bit configures the memory for program operation. This bit and the ERASE bit should not be set to 1 at the same time.

1 = Program operation selected

0 = Program operation not selected

Chapter 4 Central Processor Unit (CPU)

4.1 Introduction

The M68HC08 CPU (central processor unit) is an enhanced and fully object-code-compatible version of the M68HC05 CPU. The *CPU08 Reference Manual* (document order number CPU08RM/AD) contains a description of the CPU instruction set, addressing modes, and architecture.

4.2 Features

Features of the CPU include:

- Object code fully upward-compatible with M68HC05 Family
- 16-bit stack pointer with stack manipulation instructions
- 16-bit index register with x-register manipulation instructions
- 8-MHz CPU internal bus frequency
- 64-Kbyte program/data memory space
- 16 addressing modes
- Memory-to-memory data moves without using accumulator
- Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions
- Enhanced binary-coded decimal (BCD) data handling
- Modular architecture with expandable internal bus definition for extension of addressing range beyond 64 Kbytes
- Low-power stop and wait modes

4.3 CPU Registers

Figure 4-1 shows the five CPU registers. CPU registers are not part of the memory map.

Source	Source Operation Description			Effect on CCR			ect CCR		ess	qe	and	S
Form			v	н	1	N	z	С	Addr	Dco	Dera	ycle
JMP opr JMP opr JMP opr,X JMP opr,X JMP ,X	Jump	PC ← Jump Address			_	_	_	_	DIR EXT IX2 IX1 IX	BC CC DC EC FC	dd hh II ee ff ff	23432
JSR opr JSR opr JSR opr,X JSR opr,X JSR ,X	Jump to Subroutine	$\begin{array}{c} PC \leftarrow (PC) + n (n = 1, 2, \mathrm{or} 3) \\ Push (PCL); SP \leftarrow (SP) - 1 \\ Push (PCH); SP \leftarrow (SP) - 1 \\ PC \leftarrow Unconditional Address \end{array} - \\ \end{array}$		_	_	_	_	-	DIR EXT IX2 IX1 IX	BD CD DD ED FD	dd hh II ee ff ff	45654
LDA #opr LDA opr LDA opr, LDA opr,X LDA opr,X LDA ,X LDA opr,SP LDA opr,SP	Load A from M	A ← (M)	0	_	_	ţ	ţ	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	A6 B6 C6 D6 E6 F6 9EE6 9ED6	ii dd hh II ee ff ff ee ff	23443245
LDHX # <i>opr</i> LDHX <i>opr</i>	Load H:X from M	$H:X \leftarrow (M:M+1)$	0	_	-	ţ	ţ	-	IMM DIR	45 55	ii jj dd	3 4
LDX #opr LDX opr LDX opr,X LDX opr,X LDX opr,X LDX ,X LDX opr,SP LDX opr,SP	Load X from M	X ← (M)	0	_	_	ţ	ţ	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	AE BE CE DE EE 9EEE 9EDE	ii dd hh II ee ff ff ff ee ff	23443245
LSL opr LSLA LSLX LSL opr,X LSL ,X LSL ,Opr,SP	Logical Shift Left (Same as ASL)	C - 0 b7 b0	ţ	_	_	ţ	ţ	ţ	DIR INH INH IX1 IX SP1	38 48 58 68 78 9E68	dd ff ff	4 1 4 3 5
LSR opr LSRA LSRX LSR opr,X LSR ,X LSR opr,SP	Logical Shift Right	$0 \longrightarrow \boxed[b7]{b0} \hline[b7]{b0}$	ţ	_	-	0	ţ	ţ	DIR INH INH IX1 IX SP1	34 44 54 64 74 9E64	dd ff ff	4 1 4 3 5
MOV opr,opr MOV opr,X+ MOV #opr,opr MOV X+,opr	Move	(M) _{Destination} ← (M) _{Source} H:X ← (H:X) + 1 (IX+D, DIX+)	0	_	_	t	ţ	_	DD DIX+ IMD IX+D	4E 5E 6E 7E	dd dd dd ii dd dd	5 4 4 4
MUL	Unsigned multiply	$X:A \leftarrow (X) \times (A)$	-	0	-	-	-	0	INH	42		5
NEG opr NEGA NEGX NEG opr,X NEG ,X NEG opr,SP	Negate (Two's Complement)	$\begin{array}{l} M \leftarrow -(M) = \$00 - (M) \\ A \leftarrow -(A) = \$00 - (A) \\ X \leftarrow -(X) = \$00 - (X) \\ M \leftarrow -(M) = \$00 - (M) \\ M \leftarrow -(M) = \$00 - (M) \end{array}$		-	-	ţ	ţ	ţ	DIR INH INH IX1 IX SP1	30 40 50 60 70 9E60	dd ff ff	4 1 4 3 5
NOP	No Operation	None	-	-	-	-	-	-	INH	9D		1
NSA	Nibble Swap A	A ← (A[3:0]:A[7:4])	-	-	-	-	-	-	INH	62		3
ORA #opr ORA opr ORA opr ORA opr,X ORA opr,X ORA ,X ORA opr,SP ORA opr,SP	Inclusive OR A and M	$A \leftarrow (A) \mid (M)$	0	_	_	ţ	ţ	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	AA BA CA DA EA FA 9EEA 9EDA	ii dd hh II ee ff ff ee ff	23443245
PSHA	Push A onto Stack	Push (A); SP \leftarrow (SP) – 1	-	-	-	-	-	-	INH	87		2
PSHH	Push H onto Stack	Push (H); SP \leftarrow (SP) – 1	-	-	-	-	-	-	INH	8B	<u> </u>	2
PSHX	Push X onto Stack	Push (X); SP \leftarrow (SP) – 1	-	-	-	-	-	-	INH	89		2

MC68HC908JL3E Family Data Sheet, Rev. 4

Chapter 5 System Integration Module (SIM)

5.1 Introduction

This section describes the system integration module (SIM), which supports up to 24 external and/or internal interrupts. Together with the CPU, the SIM controls all MCU activities. A block diagram of the SIM is shown in Figure 5-1. Figure 5-2 is a summary of the SIM I/O registers. The SIM is a system state controller that coordinates CPU and exception timing. The SIM is responsible for:

- · Bus clock generation and control for CPU and peripherals
 - Stop/wait/reset/break entry and recovery
 - Internal clock control
 - Master reset control, including power-on reset (POR) and COP timeout
- Interrupt control:
 - Acknowledge timing
 - Arbitration control timing
 - Vector address generation
- CPU enable/disable timing
- Modular architecture expandable to 128 interrupt sources

Table 5-1 shows the internal signal names used in this section.

Signal Name	Description
2OSCOUT	Buffered clock from the X-tal oscillator circuit or the RC oscillator circuit.
OSCOUT	The 2OSCOUT frequency divided by two. This signal is again divided by two in the SIM to generate the internal bus clocks. (Bus clock = $2OSCOUT \div 4$)
IAB	Internal address bus
IDB	Internal data bus
PORRST	Signal from the power-on reset module to the SIM
IRST	Internal reset signal
R/W	Read/write signal

Table 5-1. Signal Name Conventions

System Integration Module (SIM)

Interrupts are latched, and arbitration is performed in the SIM at the start of interrupt processing. The arbitration result is a constant that the CPU uses to determine which vector to fetch. Once an interrupt is latched by the SIM, no other interrupt can take precedence, regardless of priority, until the latched interrupt is serviced (or the I bit is cleared).

Figure 5-8. Interrupt Processing

MC68HC908JL3E Family Data Sheet, Rev. 4

System Integration Module (SIM)

5.7.2 Reset Status Register (RSR)

The SRSR register contains flags that show the source of the last reset. The status register will automatically clear after reading SRSR. A power-on reset sets the POR bit and clears all other bits in the register. All other reset sources set the individual flag bits but do not clear the register. More than one reset source can be flagged at any time depending on the conditions at the time of the internal or external reset. For example, the POR and LVI bit can both be set if the power supply has a slow rise time.

Figure 5-21. Reset Status Register (RSR)

POR — Power-On Reset Bit

- 1 = Last reset caused by POR circuit
- 0 = Read of SRSR

PIN — External Reset Bit

- 1 = Last reset caused by external reset pin (RST)
- 0 = POR or read of SRSR

COP — Computer Operating Properly Reset Bit

- 1 = Last reset caused by COP counter
- 0 = POR or read of SRSR

ILOP — Illegal Opcode Reset Bit

- 1 = Last reset caused by an illegal opcode
- 0 = POR or read of SRSR

ILAD — Illegal Address Reset Bit (opcode fetches only)

- 1 = Last reset caused by an opcode fetch from an illegal address
- 0 = POR or read of SRSR

MODRST — Monitor Mode Entry Module Reset bit

- 1 = Last reset caused by monitor mode entry when vector locations FFFE and FFFF are FFF after POR while $\overline{IRQ} = V_{DD}$
- 0 = POR or read of SRSR

LVI — Low Voltage Inhibit Reset bit

- 1 = Last reset caused by LVI circuit
- 0 = POR or read of SRSR

6.4 I/O Signals

The following paragraphs describe the oscillator I/O signals.

6.4.1 Crystal Amplifier Input Pin (OSC1)

OSC1 pin is an input to the crystal oscillator amplifier or the input to the RC oscillator circuit.

6.4.2 Crystal Amplifier Output Pin (OSC2/PTA6/RCCLK)

For the X-tal oscillator device, OSC2 pin is the output of the crystal oscillator inverting amplifier.

For the RC oscillator device, OSC2 pin can be configured as a general purpose I/O pin PTA6, or the output of the internal RC oscillator clock, RCCLK.

Device	Oscillator	OSC2 pin function
MC68HC908JL3E/JK3E/JK1E	X-tal	Inverting OSC1
MC68HRC908JL3E/JK3E/JK1E	RC	Controlled by PTA6EN bit in PTAPUER (\$0D) PTA6EN = 0: RCCLK output PTA6EN = 1: PTA6 I/O

6.4.3 Oscillator Enable Signal (SIMOSCEN)

The SIMOSCEN signal comes from the system integration module (SIM) and enables/disables the X-tal oscillator circuit or the RC-oscillator.

6.4.4 X-tal Oscillator Clock (XTALCLK)

XTALCLK is the X-tal oscillator output signal. It runs at the full speed of the crystal (f_{XCLK}) and comes directly from the crystal oscillator circuit. Figure 6-1 shows only the logical relation of XTALCLK to OSC1 and OSC2 and may not represent the actual circuitry. The duty cycle of XTALCLK is unknown and may depend on the crystal and other external factors. Also, the frequency and amplitude of XTALCLK can be unstable at start-up.

6.4.5 RC Oscillator Clock (RCCLK)

RCCLK is the RC oscillator output signal. Its frequency is directly proportional to the time constant of the external R and C. Figure 6-2 shows only the logical relation of RCCLK to OSC1 and may not represent the actual circuitry.

6.4.6 Oscillator Out 2 (2OSCOUT)

2OSCOUT is same as the input clock (XTALCLK or RCCLK). This signal is driven to the SIM module and is used to determine the COP cycles.

6.4.7 Oscillator Out (OSCOUT)

The frequency of this signal is equal to half of the 2OSCOUT, this signal is driven to the SIM for generation of the bus clocks used by the CPU and other modules on the MCU. OSCOUT will be divided again in the SIM and results in the internal bus frequency being one fourth of the XTALCLK or RCCLK frequency.

Monitor ROM (MON)

Entering monitor mode with V_{TST} on \overline{IRQ} , the COP is disabled as long as V_{TST} is applied to either the \overline{IRQ} or the \overline{RST} . (See Chapter 5 System Integration Module (SIM) for more information on modes of operation.)

If entering monitor mode without high voltage on \overline{IRQ} and reset vector being blank (\$FFFE and \$FFFF) (Table 7-1 condition set 3, where applied voltage is V_{DD}), then all port B pin requirements and conditions, including the PTB3 frequency divisor selection, are not in effect. This is to reduce circuit requirements when performing in-circuit programming.

Entering monitor mode with the reset vector being blank, the COP is always disabled regardless of the state of IRQ or the RST.

Figure 7-2. shows a simplified diagram of the monitor mode entry when the reset vector is blank and $\overline{IRQ} = V_{DD}$. An OSC1 frequency of 9.8304MHz is required for a baud rate of 9600.

Figure 7-2. Low-Voltage Monitor Mode Entry Flowchart

Enter monitor mode with the pin configuration shown above by pulling \overline{RST} low and then high. The rising edge of \overline{RST} latches monitor mode. Once monitor mode is latched, the values on the specified pins can change.

Once out of reset, the MCU waits for the host to send eight security bytes. (See 7.4 Security.) After the security bytes, the MCU sends a break signal (10 consecutive logic zeros) to the host, indicating that it is ready to receive a command. The break signal also provides a timing reference to allow the host to determine the necessary baud rate.

In monitor mode, the MCU uses different vectors for reset, SWI, and break interrupt. The alternate vectors are in the \$FE page instead of the \$FF page and allow code execution from the internal monitor firmware instead of user code.

Timer Interface Module (TIM)

8.4 Functional Description

Figure 8-1 shows the structure of the TIM. The central component of the TIM is the 16-bit TIM counter that can operate as a free-running counter or a modulo up-counter. The TIM counter provides the timing reference for the input capture and output compare functions. The TIM counter modulo registers, TMODH:TMODL, control the modulo value of the TIM counter. Software can read the TIM counter value at any time without affecting the counting sequence.

The two TIM channels are programmable independently as input capture or output compare channels.

Figure 8-1. TIM Block Diagram

Input/Output (I/O) Ports

10.4 Port D

Port D is an 8-bit special function port that shares two of its pins with timer interface module, (see Chapter 8 Timer Interface Module (TIM)) and shares four of its pins with analog-to-digital converter module (see Chapter 9 Analog-to-Digital Converter (ADC)). PTD6 and PTD7 each has high current drive (25mA sink) and programmable pull-up. PTD2, PTD3, PTD6 and PTD7 each has LED driving (sink) capability.

NOTE PTD0–PTD1 are available on MC68H(R)C908JL3E only.

10.4.1 Port D Data Register (PTD)

The port D data register contains a data latch for each of the eight port D pins.

Address:	\$0003							
	Bit 7	6	5	4	3	2	1	Bit 0
Read:	PTD7	PTD6	PTD5	PTD4	PTD3	PTD2	PTD1	PTD0
Write:								
Reset:				Unaffecte	d by reset			
Additional Eurotions:	LED	LED			LED	LED		
Auditional Functions.	(Sink)	(Sink)			(Sink)	(Sink)		
					ADC8	ADC9	ADC10	ADC11
			TCH1	TCH0				
	25mA sink (Slow Edge)	25mA sink (Slow Edge)						
	5k pull-up	5k pull-up						

= Unimplemented

Figure 10-9. Port D Data Register (PTD)

PTD[7:0] — Port D Data Bits

These read/write bits are software programmable. Data direction of each port D pin is under the control of the corresponding bit in data direction register D. Reset has no effect on port D data.

ADC[11:8] — ADC channels 11 to 8

ADC[11:8] are pins used for the input channels to the analog-to-digital converter module. The channel select bits, ADCH[4:0], in the ADC status and control register define which port pin will be used as an ADC input and overrides any control from the port I/O logic. See Chapter 9 Analog-to-Digital Converter (ADC).

TCH[1:0] — Timer Channel I/O

The TCH1 and TCH0 pins are the TIM input capture/output compare pins. The edge/level select bits, ELSxB:ELSxA, determine whether the PTD4/TCH0 and PTD5/TCH1 pins are timer channel I/O pins or general-purpose I/O pins. See Chapter 8 Timer Interface Module (TIM).

Input/Output (I/O) Ports

DDRD Bit	PTD Bit	I/O Pin Mode	Accesses to DDRD	Accesse	s to PTD
Dit			Read/Write	Read	Write
0	X ⁽¹⁾	Input, Hi-Z ⁽²⁾	DDRD[7:0]	Pin	PTD[7:0] ⁽³⁾
1	Х	Output	DDRD[7:0]	Pin	PTD[7:0]

Table 10-4	I. Port D Pin	Functions
------------	---------------	-----------

1. X = don't care.

2. Hi-Z = high impedance.

3. Writing affects data register, but does not affect the input.

10.4.3 Port D Control Register (PDCR)

The port D control register enables/disables the pull-up resistor and slow-edge high current capability of pins PTD6 and PTD7.

Figure 10-12. Port D Control Register (PDCR)

SLOWDx — Slow Edge Enable

The SLOWD6 and SLOWD7 bits enable the Slow-edge, open-drain, high current output (25mA sink) of port pins PTD6 and PTD7 respectively. DDRDx bit is not affected by SLOWDx.

- 1 = Slow edge enabled; pin is open-drain output
- 0 = Slow edge disabled; pin is push-pull

PTDPUx — Pull-up Enable

The PTDPU6 and PTDPU7 bits enable the $5k\Omega$ pull-up on PTD6 and PTD7 respectively, regardless the status of DDRDx bit.

- 1 = Enable 5k Ω pull-up
- $0 = \text{Disable } 5\text{k}\Omega \text{ pull-up}$

Keyboard Interrupt Module (KBI)

Computer Operating Properly (COP)

The COP counter is a free-running 6-bit counter preceded by the 12-bit system integration module (SIM) counter. If not cleared by software, the COP counter overflows and generates an asynchronous reset after 262,128 or 8176 2OSCOUT cycles; depending on the state of the COP rate select bit, COPRS, in configuration register 1. With a 262,128 2OSCOUT cycle overflow option, a 8MHz crystal gives a COP timeout period of 32.766 ms. Writing any value to location \$FFFF before an overflow occurs prevents a COP reset by clearing the COP counter and stages 12 through 5 of the SIM counter.

NOTE

Service the COP immediately after reset and before entering or after exiting stop mode to guarantee the maximum time before the first COP counter overflow.

A COP reset pulls the $\overline{\text{RST}}$ pin low for 32 × 20SCOUT cycles and sets the COP bit in the reset status register (RSR). (See 5.7.2 Reset Status Register (RSR).).

NOTE

Place COP clearing instructions in the main program and not in an interrupt subroutine. Such an interrupt subroutine could keep the COP from generating a reset even while the main program is not working properly.

13.3 I/O Signals

The following paragraphs describe the signals shown in Figure 13-1.

13.3.1 2OSCOUT

2OSCOUT is the oscillator output signal. 2OSCOUT frequency is equal to the crystal frequency or the RC-oscillator frequency.

13.3.2 COPCTL Write

Writing any value to the COP control register (COPCTL) (see 13.4 COP Control Register) clears the COP counter and clears bits 12 through 5 of the SIM counter. Reading the COP control register returns the low byte of the reset vector.

13.3.3 Power-On Reset

The power-on reset (POR) circuit in the SIM clears the SIM counter 4096×20 SCOUT cycles after power-up.

13.3.4 Internal Reset

An internal reset clears the SIM counter and the COP counter.

13.3.5 Reset Vector Fetch

A reset vector fetch occurs when the vector address appears on the data bus. A reset vector fetch clears the SIM counter.

13.3.6 COPD (COP Disable)

The COPD signal reflects the state of the COP disable bit (COPD) in the configuration register (CONFIG). (See Chapter 3 Configuration Registers (CONFIG).)

Break Module Registers

15.4 Break Module Registers

These registers control and monitor operation of the break module:

- Break status and control register (BRKSCR)
- Break address register high (BRKH)
- Break address register low (BRKL)
- Break status register (BSR)
- Break flag control register (BFCR)

15.4.1 Break Status and Control Register (BRKSCR)

The break status and control register contains break module enable and status bits.

Figure 15-3. Break Status and Control Register (BRKSCR)

BRKE — Break Enable Bit

This read/write bit enables breaks on break address register matches. Clear BRKE by writing a zero to bit 7. Reset clears the BRKE bit.

- 1 = Breaks enabled on 16-bit address match
- 0 = Breaks disabled

BRKA — Break Active Bit

This read/write status and control bit is set when a break address match occurs. Writing a one to BRKA generates a break interrupt. Clear BRKA by writing a zero to it before exiting the break routine. Reset clears the BRKA bit.

1 = Break address match

0 = No break address match

Electrical Specifications

Figure 16-6. Typical Wait Mode I_{DD} (MC68HRC908JL3E/JK3E/JK1E), with All Modules Turned Off (25 $^{\circ}$ C)

16.12 ADC Characteristics

Characteristic	Symbol	Min	Max	Unit	Comments
Supply voltage	V _{DDAD}	2.7 (V _{DD} min)	5.5 (V _{DD} max)	V	
Input voltages	V _{ADIN}	V _{SS}	V _{DD}	V	
Resolution	B _{AD}	8	8	Bits	
Absolute accuracy	A _{AD}	±0.5	± 1.5	LSB	Includes quantization
ADC internal clock	f _{ADIC}	0.5	1.048	MHz	t _{AIC} = 1/f _{ADIC} , tested only at 1 MHz
Conversion range	R _{AD}	V _{SS}	V _{DD}	V	
Power-up time	t _{ADPU}	16		t _{AIC} cycles	
Conversion time	t _{ADC}	14	15	t _{AIC} cycles	
Sample time ⁽¹⁾	t _{ADS}	5	_	t _{AIC} cycles	
Zero input reading ⁽²⁾	Z _{ADI}	00	01	Hex	$V_{IN} = V_{SS}$
Full-scale reading ⁽³⁾	F _{ADI}	FE	FF	Hex	$V_{IN} = V_{DD}$
Input capacitance	C _{ADI}	—	(20) 8	pF	Not tested
Input leakage ⁽³⁾ Port B/port D	—	_	± 1	μA	

Table 16-10. ADC Characteristics

1. Source impedances greater than 10 k Ω adversely affect internal RC charging time during input sampling.

2. Zero-input/full-scale reading requires sufficient decoupling measures for accurate conversions.

3. The external system error caused by input leakage current is approximately equal to the product of R source and input current.

Mechanical Specifications

A.6 MC Order Numbers

Table A-7 shows the ordering numbers for the low-voltage devices.

Table A-7. MC68HLC908JL3E/JK3E/JK1E Order Numbers

MC Order Number	Oscillator Type	Flash Memory	Package
MC68HLC98JL3EIFA	Crystal oscillator	4096 Bytes	48-pin LQFP
MC68HLC98JL3EIP MC68HLC98JL3EIDW	Crystal oscillator	4096 Bytes	28-pin package
MC68HLC98JK3EIP MC68HLC98JK3EIDW	LC98JK3EIP LC98JK3EIDW Crystal oscillator 4096 Bytes		20.nin nackada
MC68HLC98JK1EIP MC68HLC98JK1EIDW	Crystal oscillator	1536 Bytes	20-piii packaye

Notes:

I = 0 °C to +85 °C

P = Plastic dual in-line package (PDIP) DW = Small outline integrated circuit package (SOIC) FA = Low-Profile Quad Flat Pack (LQFP)

MC68HC908KL3E

MC68HC908KK3E

Figure C-3. 20-Pin PDIP/SOIC Pin Assignment