E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	ARM7®
Core Size	16/32-Bit
Speed	60MHz
Connectivity	CANbus, I ² C, Microwire, SPI, SSI, SSP, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	46
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc2129fbd64-01-15

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Single-chip 16/32-bit microcontrollers

- 64/128/256 kB on-chip flash program memory. 128-bit wide interface/accelerator enables high speed 60 MHz operation.
- In-System Programming (ISP) and In-Application Programming (IAP) via on-chip bootloader software. Flash programming takes 1 ms per 512 B line. Single sector or full chip erase takes 400 ms.
- EmbeddedICE-RT interface enables breakpoints and watch points. Interrupt service routines can continue to execute while the foreground task is debugged with the on-chip RealMonitor software.
- Embedded Trace Macrocell (ETM) enables non-intrusive high speed real-time tracing of instruction execution.
- Two interconnected CAN interfaces (one for LPC2109) with advanced acceptance filters.
- Four-channel 10-bit A/D converter with conversion time as low as 2.44 μs.
- Multiple serial interfaces including two UARTs (16C550), Fast I²C-bus (400 kbit/s) and two SPIs.
- 60 MHz maximum CPU clock available from programmable on-chip Phase-Locked Loop with settling time of 100 μs.
- Vectored Interrupt Controller with configurable priorities and vector addresses.
- Two 32-bit timers (with four capture and four compare channels), PWM unit (six outputs), Real-Time Clock (RTC) and watchdog.
- Up to forty-six 5 V tolerant general purpose I/O pins. Up to nine edge or level sensitive external interrupt pins available.
- On-chip crystal oscillator with an operating range of 1 MHz to 30 MHz.
- Two low power modes, Idle and Power-down.
- Processor wake-up from Power-down mode via external interrupt.
- Individual enable/disable of peripheral functions for power optimization.
- Dual power supply:
 - CPU operating voltage range of 1.65 V to 1.95 V (1.8 V \pm 0.15 V).
 - \blacklozenge I/O power supply range of 3.0 V to 3.6 V (3.3 V \pm 10 %) with 5 V tolerant I/O pads.

3. Ordering information

Table 1. Ordering information

Type number	Package				
	Name	Description	Version		
LPC2109FBD64/01	LQFP64	plastic low profile quad flat package; 64 leads; body $10 \times 10 \times 1.4$ mm	SOT314-2		
LPC2119FBD64/01	LQFP64	plastic low profile quad flat package; 64 leads; body $10 \times 10 \times 1.4$ mm	SOT314-2		
LPC2129FBD64/01	LQFP64	plastic low profile quad flat package; 64 leads; body $10 \times 10 \times 1.4$ mm	SOT314-2		

Single-chip 16/32-bit microcontrollers

However, the ISP flash erase command can be executed at any time (no matter whether the CRP is on or off). Removal of CRP is achieved by erasure of full on-chip user flash. With the CRP off, full access to the chip via the JTAG and/or ISP is restored.

6.3 On-chip SRAM

On-chip SRAM may be used for code and/or data storage. The SRAM may be accessed as 8 bit, 16 bit, and 32 bit. The LPC2109/2119/2129 provide 8 kB of SRAM for the LPC2109 and 16 kB for the LPC2119 and LPC2129.

6.4 Memory map

The LPC2109/2119/2129 memory maps incorporate several distinct regions, as shown in Figure 3.

In addition, the CPU interrupt vectors may be re-mapped to allow them to reside in either flash memory (the default) or on-chip SRAM. This is described in <u>Section 6.18 "System</u> <u>control"</u>.

Single-chip 16/32-bit microcontrollers

Vectored IRQs have the middle priority. Sixteen of the interrupt requests can be assigned to this category. Any of the interrupt requests can be assigned to any of the 16 vectored IRQ slots, among which slot 0 has the highest priority and slot 15 has the lowest.

Non-vectored IRQs have the lowest priority.

The VIC combines the requests from all the vectored and non-vectored IRQs to produce the IRQ signal to the ARM processor. The IRQ service routine can start by reading a register from the VIC and jumping there. If any of the vectored IRQs are requesting, the VIC provides the address of the highest-priority requesting IRQs service routine, otherwise it provides the address of a default routine that is shared by all the non-vectored IRQs. The default routine can read another VIC register to see what IRQs are active.

6.5.1 Interrupt sources

<u>Table 4</u> lists the interrupt sources for each peripheral function. Each peripheral device has one interrupt line connected to the Vectored Interrupt Controller, but may have several internal interrupt flags. Individual interrupt flags may also represent more than one interrupt source.

Block	Flag(s)	VIC channel #
WDT	Watchdog Interrupt (WDINT)	0
-	Reserved for software interrupts only	1
ARM Core	EmbeddedICE, DbgCommRx	2
ARM Core	EmbeddedICE, DbgCommTx	3
Timer 0	Match 0 to 3 (MR0, MR1, MR2, MR3)	4
	Capture 0 to 3 (CR0, CR1, CR2, CR3)	
Timer 1	Match 0 to 3 (MR0, MR1, MR2, MR3)	5
	Capture 0 to 3 (CR0, CR1, CR2, CR3)	
UART0	Rx Line Status (RLS)	6
	Transmit Holding Register empty (THRE)	
	Rx Data Available (RDA)	
	Character Time-out Indicator (CTI)	
UART1	Rx Line Status (RLS)	7
	Transmit Holding Register empty (THRE)	
	Rx Data Available (RDA)	
	Character Time-out Indicator (CTI)	
	Modem Status Interrupt (MSI)	
PWM0	Match 0 to 6 (MR0, MR1, MR2, MR3, MR4, MR5, MR6)	8
I ² C-bus	SI (state change)	9
SPI0	SPIF, MODF	10
SPI1 and SSP[SPIF, MODF and TXRIS, RXRIS, RTRIS, RORRIS	11
PLL	PLL Lock (PLOCK)	12
RTC	RTCCIF (Counter Increment), RTCALF (Alarm)	13

Table 4.Interrupt sources

Single-chip 16/32-bit microcontrollers

6.8 10-bit ADC

The LPC2109/2119/2129 each contain a single 10-bit successive approximation ADC with four multiplexed channels.

6.8.1 Features

- Measurement range of 0 V to 3 V.
- Capable of performing more than 400000 10-bit samples per second.
- Burst conversion mode for single or multiple inputs.
- Optional conversion on transition on input pin or Timer Match signal.

6.8.2 ADC features available in LPC2109/2119/2129/01 only

- Every analog input has a dedicated result register to reduce interrupt overhead.
- Every analog input can generate an interrupt once the conversion is completed.
- The ADC pads are 5 V tolerant when configured for digital I/O function(s).

6.9 CAN controllers and acceptance filter

The LPC2119 and LPC2129 each contain two CAN controllers, while the LPC2109 has one CAN controller. The CAN is a serial communications protocol which efficiently supports distributed real-time control with a very high level of security. Its domain of application ranges from high-speed networks to low-cost multiplex wiring.

6.9.1 Features

- Data rates up to 1 Mbit/s on each bus.
- 32-bit register and RAM access.
- Compatible with CAN specification 2.0 B, ISO 11898-1.
- Global Acceptance Filter recognizes 11-bit and 29-bit Rx identifiers for all CAN buses.
- Acceptance Filter can provide FullCAN-style automatic reception for selected Standard identifiers.

6.10 UARTs

The LPC2109/2119/2129 each contain two UARTs. In addition to standard transmit and receive data lines, the UART1 also provides a full modem control handshake interface.

6.10.1 Features

- 16 B Receive and Transmit FIFOs.
- Register locations conform to 16C550 industry standard.
- Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B.
- Built-in fractional baud rate generator covering wide range of baud rates without a need for external crystals of particular values.
- Transmission FIFO control enables implementation of software (XON/XOFF) flow control on both UARTs.

Single-chip 16/32-bit microcontrollers

• UART1 is equipped with standard modem interface signals. This module also provides full support for hardware flow control (auto-CTS/RTS).

6.10.2 UART features available in LPC2109/2119/2129/01 only

Compared to previous LPC2000 microcontrollers, UARTs in LPC2109/2119/2129/01 introduce a fractional baud rate generator for both UARTs, enabling these microcontrollers to achieve standard baud rates such as 115200 Bd with any crystal frequency above 2 MHz. In addition, auto-CTS/RTS flow-control functions are fully implemented in hardware.

- Fractional baud rate generator enables standard baud rates such as 115200 Bd to be achieved with any crystal frequency above 2 MHz.
- Auto-bauding.
- Auto-CTS/RTS flow-control fully implemented in hardware.

6.11 I²C-bus serial I/O controller

The I²C-bus is a bidirectional bus for inter-IC control using only two wires: a serial clock line (SCL), and a serial data line (SDA). Each device is recognized by a unique address and can operate as either a receiver-only device (e.g. an LCD driver or a transmitter with the capability to both receive and send information (such as memory). Transmitters and/or receivers can operate in either master or slave mode, depending on whether the chip has to initiate a data transfer or is only addressed. The I²C-bus is a multi-master bus; it can be controlled by more than one bus master connected to it.

The I²C-bus implemented in LPC2109/2119/2129 supports a bit rate up to 400 kbit/s (Fast I²C-bus).

6.11.1 Features

- Standard I²C-bus compliant interface.
- Easy to configure as Master, Slave, or Master/Slave.
- Programmable clocks allow versatile rate control.
- Bidirectional data transfer between masters and slaves.
- Multi-master bus (no central master).
- Arbitration between simultaneously transmitting masters without corruption of serial data on the bus.
- Serial clock synchronization allows devices with different bit rates to communicate via one serial bus.
- Serial clock synchronization can be used as a handshake mechanism to suspend and resume serial transfer.
- The I²C-bus may be used for test and diagnostic purposes.

Single-chip 16/32-bit microcontrollers

Three match registers can be used to provide a PWM output with both edges controlled. Again, the MR0 match register controls the PWM cycle rate. The other match registers control the two PWM edge positions. Additional double edge controlled PWM outputs require only two match registers each, since the repetition rate is the same for all PWM outputs.

With double edge controlled PWM outputs, specific match registers control the rising and falling edge of the output. This allows both positive going PWM pulses (when the rising edge occurs prior to the falling edge), and negative going PWM pulses (when the falling edge occurs prior to the rising edge).

6.17.1 Features

- Seven match registers allow up to six single edge controlled or three double edge controlled PWM outputs, or a mix of both types.
- The match registers also allow:
 - Continuous operation with optional interrupt generation on match.
 - Stop timer on match with optional interrupt generation.
 - Reset timer on match with optional interrupt generation.
- Supports single edge controlled and/or double edge controlled PWM outputs. Single
 edge controlled PWM outputs all go HIGH at the beginning of each cycle unless the
 output is a constant LOW. Double edge controlled PWM outputs can have either edge
 occur at any position within a cycle. This allows for both positive going and negative
 going pulses.
- Pulse period and width can be any number of timer counts. This allows complete flexibility in the trade-off between resolution and repetition rate. All PWM outputs will occur at the same repetition rate.
- Double edge controlled PWM outputs can be programmed to be either positive going or negative going pulses.
- Match register updates are synchronized with pulse outputs to prevent generation of erroneous pulses. Software must 'release' new match values before they can become effective.
- May be used as a standard timer if the PWM mode is not enabled.
- A 32-bit Timer/Counter with a programmable 32-bit Prescaler.

6.18 System control

6.18.1 Crystal oscillator

The oscillator supports crystals in the range of 1 MHz to 30 MHz. The oscillator output frequency is called f_{osc} and the ARM processor clock frequency is referred to as CCLK for purposes of rate equations, etc.. f_{osc} and CCLK are the same value unless the PLL is running and connected. Refer to <u>Section 6.18.2 "PLL"</u> for additional information.

Single-chip 16/32-bit microcontrollers

6.18.2 PLL

The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input frequency is multiplied up into the range of 10 MHz to 60 MHz with a Current Controlled Oscillator (CCO). The multiplier can be an integer value from 1 to 32 (in practice, the multiplier value cannot be higher than 6 on this family of microcontrollers due to the upper frequency limit of the CPU). The CCO operates in the range of 156 MHz to 320 MHz, so there is an additional divider in the loop to keep the CCO within its frequency range while the PLL is providing the desired output frequency. The output divider may be set to divide by 2, 4, 8, or 16 to produce the output clock. Since the minimum output divider value is 2, it is insured that the PLL output has a 50 % duty cycle. The PLL is turned off and bypassed following a chip Reset and may be enabled by software. The program must configure and activate the PLL, wait for the PLL to Lock, then connect to the PLL as a clock source. The PLL settling time is 100 μ s.

6.18.3 Reset and wake-up timer

Reset has two sources on the LPC2109/2119/2129: the RESET pin and Watchdog Reset. The RESET pin is a Schmitt trigger input pin with an additional glitch filter. Assertion of chip Reset by any source starts the Wake-up Timer (see Wake-up Timer description below), causing the internal chip reset to remain asserted until the external Reset is de-asserted, the oscillator is running, a fixed number of clocks have passed, and the on-chip flash controller has completed its initialization.

When the internal Reset is removed, the processor begins executing at address 0, which is the Reset vector. At that point, all of the processor and peripheral registers have been initialized to predetermined values.

The wake-up timer ensures that the oscillator and other analog functions required for chip operation are fully functional before the processor is allowed to execute instructions. This is important at power on, all types of Reset, and whenever any of the aforementioned functions are turned off for any reason. Since the oscillator and other functions are turned off during Power-down mode, any wake-up of the processor from Power-down mode makes use of the Wake-up Timer.

The Wake-up Timer monitors the crystal oscillator as the means of checking whether it is safe to begin code execution. When power is applied to the chip, or some event caused the chip to exit Power-down mode, some time is required for the oscillator to produce a signal of sufficient amplitude to drive the clock logic. The amount of time depends on many factors, including the rate of V_{DD} ramp (in the case of power on), the type of crystal and its electrical characteristics (if a quartz crystal is used), as well as any other external circuitry (e.g. capacitors), and the characteristics of the oscillator itself under the existing ambient conditions.

6.18.4 Code security (Code Read Protection - CRP)

This feature of the LPC2109/2119/2129 allows the user to enable different levels of security in the system so that access to the on-chip flash and use of the JTAG and ISP can be restricted. When needed, CRP is invoked by programming a specific pattern into a dedicated flash location. IAP commands are not affected by the CRP.

There are three levels of the Code Read Protection.

Single-chip 16/32-bit microcontrollers

CRP1 disables access to chip via the JTAG and allows partial flash update (excluding flash sector 0) using a limited set of the ISP commands. This mode is useful when CRP is required and flash field updates are needed but all sectors can not be erased.

CRP2 disables access to chip via the JTAG and only allows full flash erase and update using a reduced set of the ISP commands.

Running an application with level CRP3 selected fully disables any access to chip via the JTAG pins and the ISP. This mode effectively disables ISP override using P0[14] pin, too. It is up to the user's application to provide (if needed) flash update mechanism using IAP calls or call reinvoke ISP command to enable flash update via UART0.

CAUTION

If level three Code Read Protection (CRP3) is selected, no future factory testing can be performed on the device.

Remark: Devices without the suffix /00 or /01 have only a security level equivalent to CRP2 available.

6.18.5 External interrupt inputs

The LPC2109/2119/2129 include up to nine edge or level sensitive External Interrupt Inputs as selectable pin functions. When the pins are combined, external events can be processed as four independent interrupt signals. The External Interrupt Inputs can optionally be used to wake up the processor from Power-down mode.

6.18.6 Memory mapping control

The Memory Mapping Control alters the mapping of the interrupt vectors that appear beginning at address 0x0000 0000. Vectors may be mapped to the bottom of the on-chip flash memory, or to the on-chip SRAM. This allows code running in different memory spaces to have control of the interrupts.

6.18.7 Power control

The LPC2109/2119/2129 support two reduced power modes: Idle mode and Power-down mode. In Idle mode, execution of instructions is suspended until either a Reset or interrupt occurs. Peripheral functions continue operation during Idle mode and may generate interrupts to cause the processor to resume execution. Idle mode eliminates power used by the processor itself, memory systems and related controllers, and internal buses.

In Power-down mode, the oscillator is shut down and the chip receives no internal clocks. The processor state and registers, peripheral registers, and internal SRAM values are preserved throughout Power-down mode and the logic levels of chip output pins remain static. The Power-down mode can be terminated and normal operation resumed by either a Reset or certain specific interrupts that are able to function without clocks. Since all dynamic operation of the chip is suspended, Power-down mode reduces chip power consumption to nearly zero.

A Power Control for Peripherals feature allows individual peripherals to be turned off if they are not needed in the application, resulting in additional power savings.

Single-chip 16/32-bit microcontrollers

6.18.8 APB

The APB divider determines the relationship between the processor clock (CCLK) and the clock used by peripheral devices (PCLK). The APB divider serves two purposes. The first is to provide peripherals with the desired PCLK via APB so that they can operate at the speed chosen for the ARM processor. In order to achieve this, the APB may be slowed down to $\frac{1}{2}$ to $\frac{1}{4}$ of the processor clock rate. Because the APB must work properly at power-up (and its timing cannot be altered if it does not work since the APB divider control registers reside on the APB), the default condition at reset is for the APB to run at $\frac{1}{4}$ of the processor clock rate. The second purpose of the APB divider is to allow power savings when an application does not require any peripherals to run at the full processor rate. Because the APB divider is connected to the PLL output, the PLL remains active (if it was running) during Idle mode.

6.19 Emulation and debugging

The LPC2109/2119/2129 support emulation and debugging via a JTAG serial port. A trace port allows tracing program execution. Debugging and trace functions are multiplexed only with GPIOs on Port 1. This means that all communication, timer and interface peripherals residing on Port 0 are available during the development and debugging phase as they are when the application is run in the embedded system itself.

6.19.1 EmbeddedICE

Standard ARM EmbeddedICE logic provides on-chip debug support. The debugging of the target system requires a host computer running the debugger software and an EmbeddedICE protocol convertor. EmbeddedICE protocol convertor converts the Remote Debug Protocol commands to the JTAG data needed to access the ARM core.

The ARM core has a Debug Communication Channel function built-in. The debug communication channel allows a program running on the target to communicate with the host debugger or another separate host without stopping the program flow or even entering the debug state. The debug communication channel is accessed as a co-processor 14 by the program running on the ARM7TDMI-S core. The debug communication channel allows the JTAG port to be used for sending and receiving data without affecting the normal program flow. The debug communication channel data and control registers are mapped in to addresses in the EmbeddedICE logic.

The JTAG clock (TCK) must be slower than $\frac{1}{6}$ of the CPU clock (CCLK) for the JTAG interface to operate.

6.19.2 Embedded trace macrocell

Since the LPC2109/2119/2129 have significant amounts of on-chip memory, it is not possible to determine how the processor core is operating simply by observing the external pins. The ETM provides real-time trace capability for deeply embedded processor cores. It outputs information about processor execution to the trace port.

The ETM is connected directly to the ARM core and not to the main AMBA system bus. It compresses the trace information and exports it through a narrow trace port. An external trace port analyzer must capture the trace information under software debugger control. Instruction trace (or PC trace) shows the flow of execution of the processor and provides a list of all the instructions that were executed. Instruction trace is significantly compressed by only broadcasting branch addresses as well as a set of status signals that indicate the

Single-chip 16/32-bit microcontrollers

pipeline status on a cycle by cycle basis. Trace information generation can be controlled by selecting the trigger resource. Trigger resources include address comparators, counters and sequencers. Since trace information is compressed the software debugger requires a static image of the code being executed. Self-modifying code can not be traced because of this restriction.

6.19.3 RealMonitor

RealMonitor is a configurable software module, developed by ARM Inc., which enables real time debug. It is a lightweight debug monitor that runs in the background while users debug their foreground application. It communicates with the host using the DCC (Debug Communications Channel), which is present in the EmbeddedICE logic. The LPC2109/2119/2129 contain a specific configuration of RealMonitor software programmed into the on-chip flash memory.

Single-chip 16/32-bit microcontrollers

Conditions Symbol Parameter Min Max Unit Тур VIA analog input voltage 0 V_{DDA} V analog input 1 pF Cia _ _ capacitance [1][2][3] E_D differential linearity _ ±1 LSB error [1][4] _ integral non-linearity ±2 LSB E_{L(adj)} -[1][5] Eo offset error -±3 LSB [1][6] _ E_{G} gain error -±0.5 % [1][7] _ ET absolute error -±4 LSB

Table 7. ADC static characteristics

 V_{DDA} = 2.5 V to 3.6 V unless otherwise specified; T_{amb} = -40 °C to +85 °C unless otherwise specified. ADC frequency 4.5 MHz.

[1] Conditions: $V_{SSA} = 0 V$, $V_{DDA} = 3.3 V$.

[2] The ADC is monotonic, there are no missing codes.

[3] The differential linearity error (E_D) is the difference between the actual step width and the ideal step width. See <u>Figure 4</u>.

[4] The integral non-linearity (E_{L(adj)}) is the peak difference between the center of the steps of the actual and the ideal transfer curve after appropriate adjustment of gain and offset errors. See <u>Figure 4</u>.

[5] The offset error (E_O) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the ideal curve. See Figure 4.

[6] The gain error (E_G) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset error, and the straight line which fits the ideal transfer curve. See <u>Figure 4</u>.

[7] The absolute voltage error (E_T) is the maximum difference between the center of the steps of the actual transfer curve of the non-calibrated ADC and the ideal transfer curve. See Figure 4.

LPC2109/2119/2129

LPC2109/2119/2129

LPC2109/2119/2129

LPC2109/2119/2129

temperatures

Table 8.	Typical LPC2109/01 peripheral power consumption in active mode
Core voltag	the 1.8 V; $T_{amb} = 25 ^{\circ}$ C; all measurements in μ A; PCLK = $^{CCLK}/_{4}$.

Peripheral	CCLK = 12 MHz	CCLK = 48 MHz	CCLK = 60 MHz
Timer0	43	141	184
Timer1	46	150	180
UART0	98	320	398
UART1	103	351	421
PWM0	103	341	407
l ² C-bus	9	37	53
SPI0/1	6	27	29
RTC	16	55	78
ADC	33	128	167
CAN1	230	764	914

Single-chip 16/32-bit microcontrollers

9. Dynamic characteristics

Table 10. Dynamic characteristics

 $T_{amb} = -40 \degree C$ to +85 $\degree C$ for industrial applications; $V_{DD(1V8)}$, $V_{DD(3V3)}$ over specified ranges.[1]

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
External clock							
f _{osc}	oscillator frequency	supplied by an external oscillator (signal generator)	1	-	50	MHz	
		external clock frequency supplied by an external crystal oscillator	1	-	30	MHz	
		external clock frequency if on-chip PLL is used	10	-	25	MHz	
		external clock frequency if on-chip bootloader is used for initial code download	10	-	25	MHz	
T _{cy(clk)}	clock cycle time		20	-	1000	ns	
t _{CHCX}	clock HIGH time		$T_{\text{cy(clk)}} \times 0.4$	-	-	ns	
t _{CLCX}	clock LOW time		$T_{\text{cy(clk)}} \times 0.4$	-	-	ns	
t _{CLCH}	clock rise time		-	-	5	ns	
t _{CHCL}	clock fall time		-	-	5	ns	
Port pins (except P0[2] and P0[3])							
t _r	rise time		-	10	-	ns	
t _f	fall time		-	10	-	ns	
I ² C-bus pins (P0[2] and P0[3])							
t _f	fall time	V _{IH} to V _{IL}	$\begin{tabular}{cccccccccccccccccccccccccccccccccccc$	-	-	ns	

[1] Parameters are valid over operating temperature range unless otherwise specified.

[2] Bus capacitance C_b in pF, from 10 pF to 400 pF.

Product data sheet

Single-chip 16/32-bit microcontrollers

9.1 Timing

Single-chip 16/32-bit microcontrollers

10. Package outline

Fig 19. Package outline SOT314-2 (LQFP64)

All information provided in this document is subject to legal disclaimers.

Single-chip 16/32-bit microcontrollers

11. Abbreviations

Table 11.	Abbrevia	tions
Acronym	De	escription
ADC	An	nalog-to-Digital Converter
AMBA	Ad	Ivanced Microcontroller Bus Architecture
APB	Ad	Ivanced Peripheral Bus
CAN	Co	ontroller Area Network
CPU	Ce	entral Processing Unit
DCC	De	bug Communications Channel
FIFO	Fir	rst In, First Out
GPIO	Ge	eneral Purpose Input/Output
I/O	Inp	put/Output
PLL	Ph	nase-Locked Loop
PWM	Pu	Ilse Width Modulator
RAM	Ra	andom Access Memory
SPI	Se	erial Peripheral Interface
SRAM	Sta	atic Random Access Memory
SSI	Sy	nchronous Serial Interface
SSP	Sy	nchronous Serial Port
TTL	Tra	ansistor-Transistor Logic
UART	Un	niversal Asynchronous Receiver/Transmitter

Single-chip 16/32-bit microcontrollers

12. Revision history

Table 12. Revision history					
Document ID	Release date	Data sheet status	Change notice	Supersedes	
LPC2109_2119_2129 v.7	20110614	Product data sheet	201004021F	LPC2109_2119_2129 v.6	
Modifications:	 <u>Table 6 "Static characteristics</u>"; Changed /01 Power-down mode supply current (I_{DD(pd)}) from 180 µA to 500 µA for industrial temperature range. 				
	 <u>Table 6 "Stati</u> 	c characteristics"; Moved V _{hys}	voltage from typical	to minimum.	
	• <u>Table 6 "Stati</u> 0.05V _{DD(3V3)} .	<u>c characteristics"</u> ; Changed I ²	C pad hysteresis from	m 0.5 $V_{DD(3V3)}$ to	
LPC2109_2119_2129 v.6	20071210	Product data sheet	-	LPC2109_2119_2129 v.5	
Modifications:	 Type number 	LPC2109FBD64/01 has been	added.		
	 Type number LPC2119FBD64/01 has been added. 				
 Type number LPC2129FBD64/01 has been added. 					
 Details introduced with /01 devices on new peripherals/features (Fast I/O Ports, SS and enhancements to existing ones (UART0/1, Timers, ADC, and SPI) have been 				(Fast I/O Ports, SSP, CRP) nd SPI) have been added.	
	 Power measurements for LPC2109/2119/2129/01 devices have been added. 				
	 Description of 	f JTAG pin TCK has been upd	ated.		
LPC2109_2119_2129 v.5	20070627	Product data sheet	-	LPC2119_2129 v.4	
LPC2119_2129 v.4	20060714	Product data sheet	-	LPC2119_2129 v.3	
LPC2119_2129 v.3	20041222	Product data	-	LPC2119_2129 v.2	
LPC2119_2129 v.2	20040202	Preliminary data	-	LPC2119_2129 v.1	
LPC2119_2129 v.1	20031118	Preliminary data	-	-	