

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

-XF

Product Status	Obsolete
Core Processor	ARM® Cortex®-A5
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	500MHz
Co-Processors/DSP	Multimedia; NEON™ MPE
RAM Controllers	LPDDR1, LPDDR2, LPDDR3, DDR2, DDR3, DDR3L, QSPI
Graphics Acceleration	Yes
Display & Interface Controllers	Keyboard, LCD, Touchscreen
Ethernet	10/100Mbps (1)
SATA	-
USB	USB 2.0 + HSIC
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 85°C (TA)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC
Package / Case	196-TFBGA, CSBGA
Supplier Device Package	196-TFBGA (11x11)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsama5d21b-cur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

289-	256-	196-			Primary		Alternat	e		PIO peripheral			Reset State										
pin	pin BGA	pin	Power Rail	I/O Type	Signal	Dir	Signal	Dir	Func	Signal	Dir	IO Set	(Signal, Dir, PU, PD, HiZ, ST) ⁽¹⁾⁽²⁾										
									А	SPI0_SPCK	I/O	1											
									В	TK1	I/O	1											
	D47				DAAA				С	QSPI0_SCK	0	2											
M14	P17	-	VDDIOP1	GPIO_QSPI	PA14	I/O		-	D	I2SC1_MCK	0	2	PIO, I, PU, ST										
											Е	FLEXCOM3_IO2	I/O	1									
								F	D9	I/O	2												
									А	SPI0_MOSI	I/O	1											
									В	TF1	I/O	1											
	D 40			0510	DAAF		D – –	С	QSPI0_CS	0	2												
N16	R18	-	VDDIOP1	GPIO	PA15	I/O		- -	D	I2SC1_CK	I/O	2	PIO, I, PU, ST										
								Е	FLEXCOM3_IO0	I/O	1												
								F	D10	I/O	2												
									А	SPI0_MISO	I/O	1											
				GPIO_IO	O PA16 I/O -					В	TD1	0	1										
						I/O		_	С	QSPI0_IO0	I/O	2	PIO, I, PU, ST										
M10	N15	-	VDDIOP1						D	I2SC1_WS	I/O	2											
											Е	FLEXCOM3_IO3	0	1									
										F	D11	I/O	2										
											А	SPI0_NPCS0	I/O	1									
					PA17	PA17	PA17	PA17	PA17	PA17 I/O	PA17 I/O	PA17 I/O	PA17 I/				В	RD1	Ι	1			
147	D 40													PA17	54.47				С	QSPI0_IO1	I/O	2	
N17	P18	_	VDDIOP1	GPIO_IO											1/0	-	-	D	I2SC1_DI0	I	2	PIO, I, PU, ST	
																		Е	FLEXCOM3_IO4	0	1		
									F	D12	I/O	2											
									А	SPI0_NPCS1	0	1											
									В	RK1	I/O	1											
					DA40				С	QSPI0_IO2	I/O	2											
U14	M9	L9	VDDIOP1	GPIO_IO	PA18	I/O	-	-	D	I2SC1_DO0	0	2	PIO, I, PU, ST										
									Е	SDMMC1_DAT0	I/O	1											
									F	D13	I/O	2											
									А	SPI0_NPCS2	0	1											
									В	RF1	I/O	1											
T 44	140	NG			DAAO				С	QSPI0_IO3	I/O	2											
114	T14 V13	N9	VUUIOP1	DDIOP1 GPIO_IO	PA19	I/O	-		D	TIOA0	I/O	1	PIO, I, PU, ST										
								Е	SDMMC1_DAT1	I/O	1												
									F	D14	I/O	2											

Table 6-2: Pin Description (Continued)

8.1 Embedded Memories

8.1.1 Internal SRAM

The SAMA5D2 embeds a total of 128 Kbytes of high-speed SRAM. After reset, and until the Remap command is performed, the SRAM is accessible at address 0x0020 0000. When the AXI Bus Matrix is remapped, the SRAM is also available at address 0x0.

The device features a second 128-Kbyte SRAM that can be allocated either to the L2 cache controller or used as an internal SRAM. After reset, this block is connected to the system SRAM, making the two 128-Kbyte RAMs contiguous. The SRAM_SEL bit, located in the SFR_L2CC_HRAMC register, is used to reassign this memory as a L2 cache memory.

8.1.2 Internal ROM

The product embeds one 160-Kbyte secured internal ROM mapped at address 0 after reset. The ROM contains a standard and secure bootloader as well as the BCH (Bose, Chaudhuri and Hocquenghem) code tables for NAND Flash ECC correction. The memory area containing the secure boot is automatically hidden after the execution of the secure boot while the one containing the code tables for ECC remains visible.

8.1.3 Boot Strategies

For standard boot strategies, refer to Section 16. "Standard Boot Strategies" of this datasheet.

For secure boot strategies, refer to the document "SAMA5D2x Secure Boot Strategy", document no. 44040 (Non-Disclosure Agreement required).

8.2 External Memory

The SAMA5D2 offers connections to a wide range of external memories or to parallel peripherals.

8.2.1 External Bus Interface

The External Bus Interface (EBI) is a 16-bit wide interface working at MCK/2.

The EBI supports:

- Static memories
- 8-bit NAND Flash with 32-bit BCH ECC
- 16-bit NAND Flash

EBI I/Os accept three drive levels (Low, Medium, High) to avoid overshoots and provide the best performances according to the bus load and external memories voltage.

The drive levels are configured with the DRVSTR field in the PIO Configuration Register (PIO_CFGRx) if the corresponding line is nonsecure or the Secure PIO Configuration Register (S_PIO_CFGRx) if the I/O line is secure.

At reset, the selected drive is low. The user must make sure to program the correct drive according to the device load. The I/O embeds serial resistors for impedance matching.

8.2.2 Supported Memories on DDR2/DDR3/LPDDR1/LPDDR2/LPDDR3 Interface

- 16-bit or 32-bit external interface
- 512 Mbytes of address space on DDR CS and DDR/AES CS in 32-bit mode
- 256 Mbytes of address space on DDR CS and DDR/AES CS in 16-bit mode
- Supports 16-bit or 32-bit 8-bank DDR2, DDR3, LPDDR1, LPDDR2 and LPDDR3 memories
- Automatic drive level control
- Multiport
- · Scramblable data path
- Port 0 of this interface has an embedded automatic AES encryption and decryption mechanism (refer to Section 59. "Advanced Encryption Standard Bridge (AESB)"). Writing to or reading from the address 0x40000000 may trigger the encryption and decryption mechanism depending on the AESB on External Memories configuration.
- TrustZone: The multiport feature of this interface implies TrustZone configuration constraints. Refer to Section 18.12 "TrustZone Extension to AHB and APB" for more details.

8.2.3 Supported Memories on Static Memories and NAND Flash Interfaces

The Static Memory Controller is dedicated to interfacing external memory devices:

• Asynchronous SRAM-like memories and parallel peripherals

SAMA5D2 SERIES

18.13.8 Master Error Status Register

Name:	MATRIX_ME	SR										
Address:	: 0xF001815C (0), 0xFC03C15C (1)											
Access:	Read-only											
31		30	29	28	27	26	25	24				
-		-	-	-	_	_	-	-				
23		22	21	20	19	18	17	16				
-		-	—	-	_	_	-	_				
15		14	13	12	11	10	9	8				
-		-	-	-	MERR11	MERR10	MERR9	MERR8				
7		6	5	4	3	2	1	0				
MERF	R7 ME	RR6 M	/IERR5 M	ERR4	MERR3	MERR2	MERR1	MERR0				

MERRx: Master x Access Error

0: No Master Access Error has occurred since the last read of the MATRIX_MESR.

1: At least one Master Access Error has occurred since the last read of the MATRIX_MESR.

Name: Address:	SFR_UTMIHSTRIM 0xF8030034							
Access:	Read/Write							
31	30	29	28	27	26	25	24	
_	-	-	_	_	-	-	_	
23	22	21	20	19	18	17	16	
_	-	_	_	_		SLOPE2		
15	14	13	12	11	10	9	8	
-		SLOPE1			SLOPE0			
7	6	5	4	3	2	1	0	
_		DISC		_		SQUELCH		

19.3.6 UTMI High-Speed Trimming Register

SQUELCH: UTMI HS SQUELCH Voltage Trimming

Calibration bits to adjust squelch threshold.

DISC: UTMI Disconnect Voltage Trimming

Calibration bits to adjust disconnect threshold.

SLOPEx: UTMI HS PORTx Transceiver Slope Trimming

Calibration bits to adjust HS Transceiver output slope for PORTx.

23.5.2 RSTC Status Register

Address: 0xF	TC_SR 8048004 ad-only						
31	30	29	28	27	26	25	24
—	-	_	—	—	_	_	-
23	22	21	20	19	18	17 SRCMP	16 NRSTL
						GICOMI	NICOTE
15	14	13	12	11	10	9	8
_	—	_	—	—		RSTTYP	
7	6	5	4	3	2	1	0
_	_	_	_	_		-	URSTS

URSTS: User Reset Status

0: No high-to-low edge on NRST happened since the last read of RSTC_SR.

1: At least one high-to-low transition of NRST has been detected since the last read of RSTC_SR. Reading the RSTC_SR resets the URSTS bit and clears the interrupt.

RSTTYP: Reset Type

This field reports the cause of the last processor reset. Reading this RSTC_SR does not reset this field.

Value	Name	Description				
0	GENERAL_RST	Both VDDCORE and VDDBU rising				
1	WKUP_RST	VDDCORE rising				
2	WDT_RST	Watchdog fault occurred				
3	SOFT_RST	Processor reset required by the software				
4	USER_RST	NRST pin detected low				

NRSTL: NRST Pin Level

This bit records the level of the NRST pin sampled on each Master Clock (MCK) rising edge.

SRCMP: Software Reset Command in Progress

0: No software command is being performed by the reset controller. The reset controller is ready for a software command.

1: A software reset command is being performed by the reset controller. The reset controller is busy.

26.6.12 RTC Interrupt Enable Register

Address: 0xF80480D0

Access: Write-only

31	30	29	28	27	26	25	24
-	-		—	-	-	-	_
23	22	21	20	19	18	17	16
-	-		—	-	-	-	_
15	14	13	12	11	10	9	8
_	-	I	_	-	-	-	_
7	6	5	4	3	2	1	0
_	_	TDERREN	CALEN	TIMEN	SECEN	ALREN	ACKEN

ACKEN: Acknowledge Update Interrupt Enable

0: No effect.

1: The acknowledge for update interrupt is enabled.

ALREN: Alarm Interrupt Enable

0: No effect.

1: The alarm interrupt is enabled.

SECEN: Second Event Interrupt Enable

0: No effect.

1: The second periodic interrupt is enabled.

TIMEN: Time Event Interrupt Enable

0: No effect.

1: The selected time event interrupt is enabled.

If the RTC is configured in UTC mode, this bit has no effect.

CALEN: Calendar Event Interrupt Enable

0: No effect.

1: The selected calendar event interrupt is enabled.

If the RTC is configured in UTC mode, this bit has no effect.

TDERREN: Time and/or Date Error Interrupt Enable

0: No effect.

1: The time and date error interrupt is enabled.

If the RTC is configured in UTC mode, this bit has no effect.

29.7.1 PTC Command Register

Name:	PTC	CMD
nume.	110	

Access: Write-only

7	6	5	4	3	2	1	0
-	-	-	-		CN	1D	

CMD: Host Command

Issues commands to the pPP.

Value	Name	Description
0x0	NO_ACTION	-
0x1	STOP	Waits for ongoing execution to complete, then stops.
0x2	RESET	Stops and resets.
0x3	Reserved	-
0x4	ABORT	Stops without waiting for ongoing execution to complete.
0x5	RUN	Starts execution (from stopped state).
0x6–0xF	Reserved	-

33.22.27 PMC Peripheral Control Register

Address:	PMC_PCR 0xF001410C Read/Write						
31	30	29	28	27	26	25	24
_	_	GCKEN	EN		GCK	DIV	
23	22 GCł	21 KDIV	20	19 —	18 -	17	16 -
15	14	13	12 CMD	11	10	9 GCKCSS	8
7	6	5	4	3	2	1	0
-				PID			

PID: Peripheral ID

Peripheral ID selection from PID2 to the maximum PID number. This refers to identifiers as defined in the section "Peripheral Identifiers".

GCKCSS: Generic Clock Source Selection

Value	Name	Description
0	SLOW_CLK	Slow clock is selected
1	MAIN_CLK	Main clock is selected
2	PLLA_CLK	PLLACK is selected
3	UPLL_CLK	UPLL Clock is selected
4	MCK_CLK	Master Clock is selected
5	AUDIO_CLK	Audio PLL clock is selected

CMD: Command

0: Read mode

1: Write mode

GCKDIV: Generic Clock Division Ratio

Generic clock is: selected clock period divided by GCKDIV + 1. GCKDIV must not be changed while the peripheral selects GCLK (e.g., bit rate, etc.).

EN: Enable

0: The selected peripheral clock is disabled.

1: The selected peripheral clock is enabled.

GCKEN: Generic Clock Enable

0: The selected generic clock is disabled.

1: The selected generic clock is enabled.

34.7.16 Secure PIO Configuration Register

Name: S_PIO_CFGRx [x=0..3]

Address: 0xFC039004 [0], 0xFC039044 [1], 0xFC039084 [2], 0xFC0390C4 [3]

Access: Read/Write

31	30	29	28	27	26	25	24
-	ICFS	PCFS	-			EVTSEL	
23	22	21	20	19	18	17	16
-	-	—	-	—	-	DRV	′STR
15	14	13	12	11	10	9	8
SCHMITT	OPD	IFSCEN	IFEN	—	PDEN	PUEN	DIR
7	6	5	4	3	2	1	0
-	-	-	-	—		FUNC	

This register can only be written if the WPEN bit is cleared in the Secure PIO Write Protection Mode Register.

Writing this register will only affect I/O lines enabled in the S_PIO_MSKRx.

FUNC: I/O Line Function

This field defines the function for I/O lines of the I/O group x according to the Secure PIO Mask Register.

Value	Name	Description
0	GPIO	Select the PIO mode for the selected I/O lines.
1	PERIPH_A	Select the peripheral A for the selected I/O lines.
2	PERIPH_B	Select the peripheral B for the selected I/O lines.
3	PERIPH_C	Select the peripheral C for the selected I/O lines.
4	PERIPH_D	Select the peripheral D for the selected I/O lines.
5	PERIPH_E	Select the peripheral E for the selected I/O lines.
6	PERIPH_F	Select the peripheral F for the selected I/O lines.
7	PERIPH_G	Select the peripheral G for the selected I/O lines.

DIR: Direction

This bit defines the direction of the I/O lines of the I/O group x according to the Secure PIO Mask Register.

0 (INPUT): The selected I/O lines are pure inputs.

1 (OUTPUT): The selected I/O lines are enabled in output.

PUEN: Pull-Up Enable

This bit defines the pull-up configuration of the I/O lines of the I/O group x according to the Secure PIO Mask Register.

0 (DISABLED): Pull-Up is disabled for the selected I/O lines.

1 (ENABLED): Pull-Up is enabled for the selected I/O lines.

PDEN: Pull-Down Enable

This bit defines the pull-down configuration of the I/O lines of the I/O group x according to the Secure PIO Mask Register. 0 (DISABLED): Pull-Down is disabled for the selected I/O lines.

1 (ENABLED): Pull-Down is enabled for the selected I/O lines only if PUEN is $0^{(1)}$.

Note 1: PDEN can be written to 1 only if PUEN is written to 0.

IFEN: Input Filter Enable

This bit defines if the glitch filtering is used for the I/O lines of the I/O group x according to the Secure PIO Mask Register.

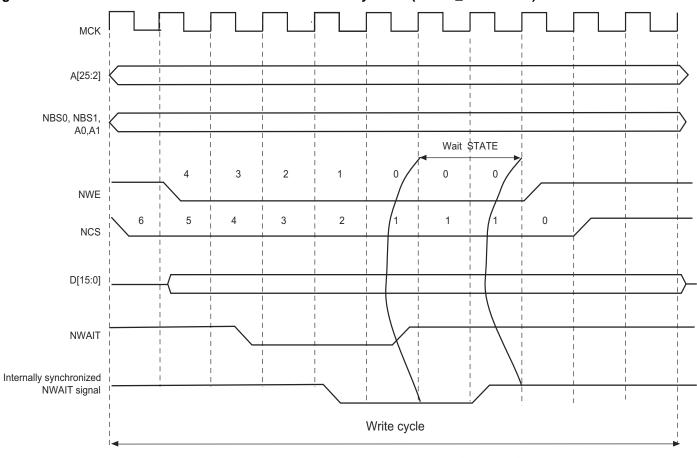


Figure 37-25: NWAIT Assertion in Write Access: Ready Mode (EXNW_MODE = 11)

EXNW_MODE = 11 (Ready mode) WRITE_MODE = 1 (NWE_controlled)

NWE_PULSE = 5 NCS_WR_PULSE = 7

39.6.4.12 19 bpp Unpacked Memory Mapping with Transparency Bit, RGB 1:6:6:6

Table 39-23: 19 bpp Unpacked Memory Mapping, Little Endian Organization

Mem addr	0x3	•							0x2	2							0x1								0x0)						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Pixel 19 bpp				-	-						-			A0			R0[5:0]					G0[5:0]					B0[5:0]		

39.6.4.13 19 bpp Packed Memory Mapping with Transparency Bit, ARGB 1:6:6:6

Table 39-24: 19 bpp Packed Memory Mapping, Little Endian Organization at Address 0x0, 0x1, 0x2, 0x3

Mem addr	0x3	3							0x2	2							0x1								0x0)						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Pixel 19 bpp	G1	[1:0]			B1[5:0]					-			A0			R0[5:0]					G0[5:0]					B0[5:0]		

Table 39-25: 19 bpp Packed Memory Mapping, Little Endian Organization at Address 0x4, 0x5, 0x6, 0x7

Mem addr	0x7	,							0x6	5							0x5								0x4	Ļ						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Pixel 19 bpp		R2[3:0]				G2[5:0]					B2[5:0]					_			A1			R1[5:2]				G1[5:2]	

Table 39-26: 18 bpp Packed Memory Mapping, Little Endian Organization at Address 0x8, 0x9, 0xA, 0xB

Mem addr	0xE	3							0xA	٩							0x9								0x8	;						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Pixel 19 bpp	G4[1:0]			B4[5:0]				-		A3			R3[5:0]					G3[5:0]					B3[3:0]			R2[5:4]

39.6.4.14 24 bpp Unpacked Memory Mapping, RGB 8:8:8

Table 39-27: 24 bpp Memory Mapping, Little Endian Organization

Mem addr	0x3	3							0x2	2							0x1								0x0)						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Pixel 24 bpp				-	_							R0[7:0]				·		·	G0[7:0]	·						B0[7:0]			

39.6.4.15 24 bpp Packed Memory Mapping, RGB 8:8:8

Table 39-28: 24 bpp Packed Memory Mapping, Little Endian Organization at Address 0x0, 0x1, 0x2, 0x3

Mem addr	0x3	3							0x2	2							0x1								0x0)						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Pixel 24 bpp				B1[[7:0]							R0[7:0]	·						G0[7:0]							B0[7:0]			

Table 39-29: 24 bpp Packed Memory Mapping, Little Endian Organization at Address 0x4, 0x5, 0x6, 0x7

Mem addr	0 x	7							0x6	5							0x5	5							0x4	4						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Pixel 24 bpp				G2[7:0]							B2[7:0]							R1[7:0]							G1[[7:0]			

SAMA5D2 SERIES

40.8.6 GMAC Transmit Status Register

Address: 0xF8	C_TSR 008014 d/Write						
31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19 —	18 —	17	16
15	14	13	12	11	10	9	8 HRESP
7	6	5 TXCOMP	4 TFC	3 TXGO	2 RLE	1 COL	0 UBR

UBR: Used Bit Read

Set when a transmit buffer descriptor is read with its used bit set. Writing a one clears this bit.

COL: Collision Occurred

Set by the assertion of collision. Writing a one clears this bit. When operating in 10/100 mode, this status indicates either a collision or a late collision.

RLE: Retry Limit Exceeded

Writing a one clears this bit.

TXGO: Transmit Go

Transmit go, if high transmit is active. When using the DMA interface this bit represents the TXGO variable as specified in the transmit buffer description.

TFC: Transmit Frame Corruption Due to AHB Error

Transmit frame corruption due to AHB error. Set if an error occurs while midway through reading transmit frame from the AHB, including HRESP errors and buffers exhausted mid frame (if the buffers run out during transmission of a frame then transmission stops, FCS shall be bad and GTXER asserted).

Also set in DMA packet buffer mode if single frame is too large for configured packet buffer memory size.

Writing a one clears this bit.

TXCOMP: Transmit Complete

Set when a frame has been transmitted. Writing a one clears this bit.

HRESP: HRESP Not OK

Set when the DMA block sees HRESP not OK. Writing a one clears this bit.

40.8.38	GMAC Specific Ad	dress 1 Mask B	Bottom Registe	er			
Name:	GMAC_SAMB1						
Address:	0xF80080C8						
Access:	Read/Write						
31	30	29	28	27	26	25	24
			AD	DR			
23	22	21	20	19	18	17	16
			AD	DR			
15	14	13	12	11	10	9	8
			AD	DR			
7	6	5	4	3	2	1	0
			AD	DR			

onifin Address 1 Mark Pottom Pogistor 10 0 20 CMAC C.

ADDR: Specific Address 1 Mask

Setting a bit to one masks the corresponding bit in the Specific Address 1 Register.

41.7.13 UDPHS Endpoint Control Register (Control, Bulk, Interrupt Endpoints)

Name: UDPHS_EPTCTLx [x=0..15]

Read-only

Access:

Address: 0xFC02C10C [0], 0xFC02C12C [1], 0xFC02C14C [2], 0xFC02C16C [3], 0xFC02C18C [4], 0xFC02C1AC [5], 0xFC02C1CC [6], 0xFC02C1EC [7], 0xFC02C20C [8], 0xFC02C22C [9], 0xFC02C24C [10], 0xFC02C26C [11], 0xFC02C28C [12], 0xFC02C2AC [13], 0xFC02C2CC [14], 0xFC02C2EC [15]

31	30	29	28	27	26	25	24				
SHRT_PCKT	—	—									—
23	22	21	20	19 18 17		16					
-	-	-	-	-	BUSY_BANK	-	-				
15	14	13	12	11	10	9	8				
NAK_OUT	NAK_IN	STALL_SNT	RX_SETUP	TXRDY	TX_COMPLT	RXRDY_TXKL	ERR_OVFLW				
7	6	5	4	3	2	1	0				
-	-	-	NYET_DIS	INTDIS_DMA	-	AUTO_VALID	EPT_ENABL				

This register view is relevant only if EPT_TYPE = 0x0, 0x2 or 0x3 in "UDPHS Endpoint Configuration Register".

EPT_ENABL: Endpoint Enable (cleared upon USB reset)

0: The endpoint is disabled according to the device configuration. Endpoint 0 should always be enabled after a hardware or UDPHS bus reset and participate in the device configuration.

1: The endpoint is enabled according to the device configuration.

AUTO_VALID: Packet Auto-Valid Enabled (Not for CONTROL Endpoints) (cleared upon USB reset)

Set this bit to automatically validate the current packet and switch to the next bank for both IN and OUT endpoints.

For IN Transfer:

If this bit is set, the UDPHS_EPTSTAx register TXRDY bit is set automatically when the current bank is full and at the end of DMA buffer if the UDPHS_DMACONTROLx register END_B_EN bit is set.

The user may still set the UDPHS_EPTSTAx register TXRDY bit if the current bank is not full, unless the user needs to send a Zero Length Packet by software.

For OUT Transfer:

If this bit is set, the UDPHS_EPTSTAx register RXRDY_TXKL bit is automatically reset for the current bank when the last packet byte has been read from the bank FIFO or at the end of DMA buffer if the UDPHS_DMACONTROLx register END_B_EN bit is set. For example, to truncate a padded data packet when the actual data transfer size is reached.

The user may still clear the UDPHS_EPTSTAx register RXRDY_TXKL bit, for example, after completing a DMA buffer by software if UDPHS_DMACONTROLx register END_B_EN bit was disabled or in order to cancel the read of the remaining data bank(s).

INTDIS_DMA: Interrupt Disables DMA (cleared upon USB reset)

If set, when an enabled endpoint-originated interrupt is triggered, the DMA request is disabled regardless of the UDPHS_IEN register EPT_x bit for this endpoint. Then, the firmware will have to clear or disable the interrupt source or clear this bit if transfer completion is needed.

If the exception raised is associated with the new system bank packet, then the previous DMA packet transfer is normally completed, but the new DMA packet transfer is not started (not requested).

If the exception raised is not associated to a new system bank packet (NAK_IN, NAK_OUT, etc.), then the request cancellation may happen at any time and may immediately stop the current DMA transfer.

This may be used, for example, to identify or prevent an erroneous packet to be transferred into a buffer or to complete a DMA buffer by software after reception of a short packet.

NYET_DIS: NYET Disable (Only for High Speed Bulk OUT Endpoints) (cleared upon USB reset)

0: Lets the hardware handle the handshake response for the High Speed Bulk OUT transfer.

Name:	TWIHS_FIER									
Address:	0xF8028064 (0), 0xF0	0xF8028064 (0), 0xFC028064 (1)								
Access:	Write-only									
31	30	29	28	27	26	25	24			
_	-	-	_	_	_	_	_			
23	22	21	20	19	18	17	16			
_	_	_	_	_	_	_	_			
15	14	13	12	11	10	9	8			
-	-	-	—	—	—	—	-			
7	6	5	4	3	2	1	0			
RXFPT	EF TXFPTEF	RXFTHF	RXFFF	RXFEF	TXFTHF	TXFFF	TXFEF			

46.7.23 TWIHS FIFO Interrupt Enable Register

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Enables the corresponding interrupt.

TXFEF: TXFEF Interrupt Enable

TXFFF: TXFFF Interrupt Enable

TXFTHF: TXFTHF Interrupt Enable

RXFEF: RXFEF Interrupt Enable

RXFFF: RXFFF Interrupt Enable

RXFTHF: RXFTHF Interrupt Enable

TXFPTEF: TXFPTEF Interrupt Enable

RXFPTEF: RXFPTEF Interrupt Enable

SAMA5D2 SERIES

47.10.6 USART Mode Register

Name: FLEX_US_MR

Address: 0xF8034204 (0), 0xF8038204 (1), 0xFC010204 (2), 0xFC014204 (3), 0xFC018204 (4)

Access: Read/Write

31	30	29	28	27	26	25	24		
ONEBIT	MODSYNC	MAN	FILTER	_		MAX_ITERATION			
23	22	21	20	19	18	17	16		
INVDATA	VAR_SYNC	DSNACK	INACK	OVER	CLKO	MODE9	MSBF		
15	14	13	12	11	10	9	8		
CHN	NODE	NBSTOP		PAR SYN			SYNC		
7	6	5	4	3	2	1	0		
CH	HRL	USC	LKS	USART_MODE					

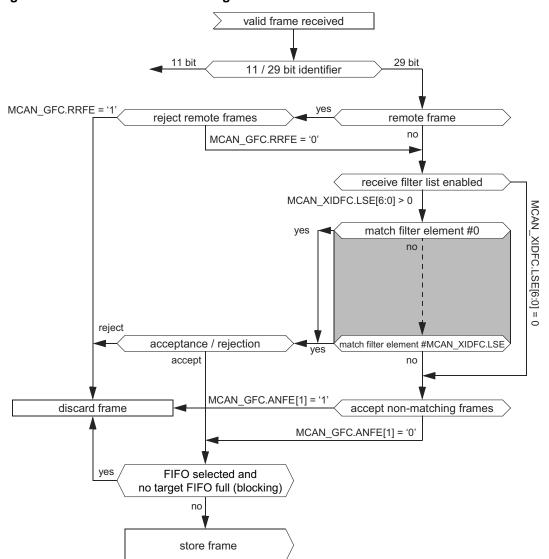
This register can only be written if the WPEN bit is cleared in the USART Write Protection Mode Register.

For SPI configuration, see Section 47.10.7 "USART Mode Register (SPI_MODE)".

USART_MODE: USART Mode of Operation

Value	Name	Description
0x0	NORMAL	Normal mode
0x1	RS485	RS485
0x2	HW_HANDSHAKING	Hardware handshaking
0x4	IS07816_T_0	IS07816 Protocol: T = 0
0x6	IS07816_T_1	IS07816 Protocol: T = 1
0x8	IRDA	IrDA
0xA	LIN_MASTER	LIN Master mode
0xB	LIN_SLAVE	LIN Slave mode
0xE	SPI_MASTER	SPI Master mode (CLKO must be written to 1 and USCLKS = 0, 1 or 2)
0xF	SPI_SLAVE	SPI Slave mode

USCLKS: Clock Selection


Value	Name	Description
0	MCK	Peripheral clock is selected
1	DIV	Peripheral clock divided (DIV = 8) is selected
2	GCLK	PMC generic clock is selected. If the SCK pin is driven (CLKO = 1), the CD field must be greater than 1.
3	SCK	External pin SCK is selected

• Extended Message ID Filtering

Figure 53-6 below shows the flow for extended Message ID (29-bit Identifier) filtering. The Extended Message ID Filter element is described in Section 53.5.7.6.

Controlled by MCAN_GFC and MCAN_XIDFC Message ID, Remote Transmission Request bit (RTR), and the Identifier Extension bit (IDE) of received frames are compared against the list of configured filter elements.

MCAN_XIDAM is ANDed with the received identifier before the filter list is executed.

Figure 53-6: Extended Message ID Filter Path

53.6.21 MCAN Standard ID Filter Configuration

	MCAN_SIDFC 0xF8054084 (0), 0>	FC050084 (1)					
Access:	Read/Write						
31	30	29	28	27	26	25	
-	-	-	-	-	-	-	
23	22	21	20	19	18	17	
			L	SS			
15	14	13	12	11	10	9	
			FL	SSA			
7	6	5	4	3	2	1	
		FLS	SSA			_	Τ

Settings for 11-bit standard Message ID filtering. The Standard ID Filter Configuration controls the filter path for standard messages as described in Figure 53-5.

This register can only be written if the bits CCE and INIT are set in MCAN CC Control Register.

FLSSA: Filter List Standard Start Address

Start address of standard Message ID filter list (32-bit word address, see Figure 53-12).

Write FLSSA with the bits [15:2] of the 32-bit address.

LSS: List Size Standard

0: No standard Message ID filter.

1-128: Number of standard Message ID filter elements.

>128: Values greater than 128 are interpreted as 128.

24 -16

8

0

53.6.38 MCAN Transmit Buffer Request Pending

Name: MCAN_TXBRP

Address: 0xF80540CC (0), 0xFC0500CC (1)

Access: Read-only

31	30	29	28	27	26	25	24
TRP31	TRP30	TRP29	TRP28	TRP27	TRP26	TRP25	TRP24
23	22	21	20	19	18	17	16
TRP23	TRP22	TRP21	TRP20	TRP19	TRP18	TRP17	TRP16
15	14	13	12	11	10	9	8
TRP15	TRP14	TRP13	TRP12	TRP11	TRP10	TRP9	TRP8
7	6	5	4	3	2	1	0
TRP7	TRP6	TRP5	TRP4	TRP3	TRP2	TRP1	TRP0

TRPx: Transmission Request Pending for Buffer x

Each Tx Buffer has its own Transmission Request Pending bit. The bits are set via register MCAN_TXBAR. The bits are reset after a requested transmission has completed or has been cancelled via register MCAN_TXBCR.

TXBRP bits are set only for those Tx Buffers configured via MCAN_TXBC. After a MCAN_TXBRP bit has been set, a Tx scan (see Section 53.5.5) is started to check for the pending Tx request with the highest priority (Tx Buffer with lowest Message ID).

A cancellation request resets the corresponding transmission request pending bit of register MCAN_TXBRP. In case a transmission has already been started when a cancellation is requested, this is done at the end of the transmission, regardless whether the transmission was successful or not. The cancellation request bits are reset directly after the corresponding TXBRP bit has been reset.

After a cancellation has been requested, a finished cancellation is signalled via MCAN_TXBCF.

- after successful transmission together with the corresponding MCAN_TXBTO bit.
- when the transmission has not yet been started at the point of cancellation.
- when the transmission has been aborted due to lost arbitration.
- when an error occurred during frame transmission.

In DAR mode, all transmissions are automatically cancelled if they are not successful. The corresponding MCAN_TXBCF bit is set for all unsuccessful transmissions.

0: No transmission request pending

1: Transmission request pending

Note: MCAN_TXBRP bits which are set while a Tx scan is in progress are not considered during this particular Tx scan. In case a cancellation is requested for such a Tx Buffer, this Add Request is cancelled immediately, the corresponding MCAN_TXBRP bit is reset.

Table 66-97: ISC IOSET3 Timings

	Power Supply		BV	3.:		
Symbol	Parameter	Min	Max	Min	Max	Unit
ISC ₁	DATA setup time before PIXCLK rises	4.6	-	4.2	-	ns
ISC ₂	DATA hold time after PIXCLK rises	0.5	_	0.4	_	ns
ISC ₃	VSYNC/HSYNC/FIELD setup time before PIXCLK rises	4.3	_	4	_	ns
ISC ₄	CONTROL VSYNC/HSYNC/FIELD hold time after PIXCLK rises	1.5	_	0.4	-	ns
ISC ₅	PIXCLK frequency	-	96	-	96	MHz

Table 66-98: ISC IOSET4 Timings

	Power Supply	1.3	8V	3.		
Symbol	Parameter	Min	Max	Min	Max	Unit
ISC ₁	DATA setup time before PIXCLK rises	4.3	_	4	-	ns
ISC ₂	DATA hold time after PIXCLK rises	0.5	_	0.4	_	ns
ISC ₃	VSYNC/HSYNC/FIELD setup time before PIXCLK rises	4.2	_	4	_	ns
ISC ₄	CONTROL VSYNC/HSYNC/FIELD hold time after PIXCLK rises	0.5	_	0.3	_	ns
ISC ₅	PIXCLK frequency	_	96	_	96	MHz

66.25 SDMMC Timings

The Secure Digital Multimedia Card (SDMMC) Controller supports the embedded MultiMedia Card (e.MMC) Specification V4.51, the SD Memory Card Specification V3.0, and the SDIO V3.0 specification. It is compliant with the SD Host Controller Standard V3.0 specification.

Features are different for the two instances of SDMMC:

SDMMC0: SD 3.0, eMMC 4.51, 8 bits

SDMMC1: SD 2.0, eMMC 4.41, 4 bits only

In SDR104 mode (SD 3.0), SDMMC0 is limited to 120 MHz (instead of 208 MHz). In HS200 mode (eMMC 4.51), SDMMC0 is limited to 120 MHz (instead of 200 MHz).