

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	ARM® Cortex®-A5
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	500MHz
Co-Processors/DSP	Multimedia; NEON™ MPE
RAM Controllers	LPDDR1, LPDDR2, LPDDR3, DDR2, DDR3, DDR3L, QSPI
Graphics Acceleration	Yes
Display & Interface Controllers	Keyboard, LCD, Touchscreen
Ethernet	10/100Mbps (1)
SATA	-
USB	USB 2.0 + HSIC
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 85°C (TA)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC
Package / Case	256-TFBGA
Supplier Device Package	256-TFBGA (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsama5d24b-cu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

SAMA5D2 SERIES

Signal Name	Function	Type	Comments	Active Level
Serial Peripheral Interf	ace - SPIx [10]	71		
SPIx_MISO	Master In Slave Out	I/O	_	_
SPIx_MOSI	Master Out Slave In	I/O	-	_
SPIx_SPCK	SPI Serial Clock	I/O	_	_
SPIx_NPCS0	SPI Peripheral Chip Select 0	I/O	-	Low
SPIx_NPCS[31]	SPI Peripheral Chip Select	Output	-	Low
Two-wire Interface - TV	VIx [10]	1		
TWDx	Two-wire Serial Data	I/O	_	_
TWCKx	Two-wire Serial Clock	I/O	_	_
Pulse Width Modulatio	n Controller - PWM			
PWMH0-3	PWM Waveform Output High	Output	_	_
PWML0-3	PWM Waveform Output Low	Output	_	_
PWMFI0–1	PWM Fault Inputs	Input	_	_
PWMEXTRG1-2	PWM External Trigger	Input	_	_
USB Host High Speed	Port - UHPHS			
HHSDPA	USB Host Port A High Speed Data +	Analog	-	_
HHSDMA	USB Host Port A High Speed Data -	Analog	-	_
HHSDPB	USB Host Port B High Speed Data +	Analog	_	-
HHSDMB	USB Host Port B High Speed Data -	Analog	_	_
USB Device High Spee	d Port - UDPHS			
DHSDP	USB Device High Speed Data +	Analog	_	-
DHSDM	USB Device High Speed Data -	Analog	-	-
USB High-Speed Inter-	Chip Port - HSIC			
HHSTROBE	USB High-Speed Inter-Chip Strobe	I/O	-	_
HHDATA	USB High-Speed Inter-Chip Data	I/O	_	_
Ethernet 10/100 - GMA	С			
GREFCK	Reference Clock	Input	-	_
GTXCK	Transmit Clock	Input	-	_
GRXCK	Receive Clock	Input	-	_
GTXEN	Transmit Enable	Output	-	_
GTX0–GTX3	Transmit Data	Output	-	_
GTXER	Transmit Coding Error	Output	-	-
GRXDV	Receive Data Valid	Input	-	_
GRX0–GRX3	Receive Data	Input	-	-
GRXER	Receive Error	Input	-	_
GCRS	Carrier Sense	Input	-	-

Table 4-1: Signal Description List (Continued)

7.3 Powerdown Considerations

Figure 7-2 shows the SAMA5D2 powerdown sequence that starts by asserting the NRST line to 0. Once NRST is asserted, the supply inputs can be immediately shutdown without any specific timing or order. VDDBU may not be shutdown if the application uses a backup battery on this supply input. In applications where VDDFUSE is powered, it is mandatory to shutdown VDDFUSE prior to removing any other supply. VDDFUSE can be removed before or after asserting the NRST signal.

Figure 7-2: Recommended Powerdown Sequence

Table 7-3:	Powerdown Timin	g Specification
------------	-----------------	-----------------

Symbol	Parameter	Conditions	Min	Max	Unit
t _{RSTPD}	Reset delay at powerdown	From NRST low to the first supply turn-off	0	_	~~~
t ₁	VDDFUSE delay at shutdown	From VDDFUSE < 1V to the first supply turn-off	0	Ι	ms

7.4 Power Supply Sequencing at Backup Mode Entry and Exit

7.4.1 VDDBU Power Architecture

The backup power switch aims at optimizing the power consumption on VDDBU source by switching the supply of the backup digital part (BUREG memories + 64-kHz RC oscillator) to VDDANA.

When enabled, the backup power source can be automatically switched to VDDANA, which reduces power consumption on VDDBU. Then, VDDBU powers the pads, VDDBU POR, 32-kHz crystal and, on secure products SAMA5D23 and SAMA5D28, the temperature sensor and the backup supply monitor.

The power source (VDDANA or VDDBU) can be selected manually or can be set to work automatically by programming an SFRBU register (refer to SFRBU_PSWBUCTRL in Section 20. "Special Function Registers Backup (SFRBU)").

SAMA5D2 SERIES

The PMC_PCKx.CSS field selects the programmable clock divider source. Five clock options are available: Main clock, Slow clock, Master clock, PLLACK, UPLLCK. The Slow clock is the default clock source.

The PRES field is used to control the programmable clock prescaler. It is possible to choose among different values (from 1 to 256). Programmable clock output is prescaler input divided by PRES parameter. By default, the PRES value is cleared which means that PCKx is equal to Slow clock.

Once the PMC_PCKx register has been configured, The corresponding programmable clock must be enabled and the user is constrained to wait for the PCKRDYx bit to be set in PMC_SR. This can be done either by polling PCKRDYx in PMC_SR or by waiting for the interrupt line to be raised if the associated interrupt source (PCKRDYx) has been enabled in PMC_IER. All parameters in PMC_PCKx can be programmed in a single write operation.

If the CSS and PRES parameters are to be modified, the corresponding programmable clock must be disabled first. The parameters can then be modified. Once this has been done, the user must re-enable the programmable clock and wait for the PCKRDYx bit to be set.

13. Enable Peripheral Clocks

Once all of the previous steps have been completed, the peripheral clocks can be enabled and/or disabled via PMC_PCERx and PMC_PCDRx.

33.20 Clock Switching Details

33.20.1 Master Clock Switching Timings

Table 33-2 and Table 33-3 give the worst case timings required for the Master clock to switch from one selected clock to another one. This is in the event that the prescaler is deactivated. When the prescaler is activated, an additional time of 64 clock cycles of the new selected clock has to be added.

		From	
То	Main Clock	SLCK	PLL Clock
Main Clock	_	$4 \times SLCK +$ 2.5 × Main Clock	$3 \times PLL Clock +$ $4 \times SLCK +$ $1 \times Main Clock$
SLCK	0.5 imes Main Clock + $4.5 imes$ SLCK	-	$3 \times PLL Clock + 5 \times SLCK$
PLL Clock	$0.5 \times Main Clock + 4 \times SLCK + PLLCOUNT \times SLCK + 2.5 \times PLL Clock$	2.5 × PLL Clock + 5 × SLCK + PLLCOUNT × SLCK	$2.5 \times PLL Clock + 4 \times SLCK + PLLCOUNT \times SLCK$

Table 33-2: Clock Switching Timings (Worst Case)

Note 1: PLL designates either the PLLA or the UPLL Clock.

2: PLLCOUNT designates either PLLACOUNT or UPLLCOUNT.

Table 33-3: Clock Switching Timings Between Two PLLs (Worst Case)

	From			
То	PLLA Clock	UPLL Clock		
PLLA Clock	2.5 × PLLA Clock + 4 × SLCK + PLLACOUNT × SLCK	$3 \times PLLA Clock + 4 \times SLCK + 1.5 \times PLLA Clock$		
UPLL Clock	$3 \times \text{UPLL Clock} + 4 \times \text{SLCK} + 1.5 \times \text{UPLL Clock}$	$2.5 \times UPLL Clock + 4 \times SLCK + UPLLCOUNT \times SLCK$		

37.6 Application Example

37.6.1 Hardware Interface

Figure 37-2: SMC Connections to Static Memory Devices

BCH_ERR Field	Sector Size Set to 512 Bytes	Sector Size Set to 1024 Bytes
4	PMECCREM0, PMECCREM1, PMECCREM2, PMECCREM3, PMECCREM4, PMECCREM5, PMECCREM6, PMECCREM7, PMECCREM8, PMECCREM9, PMECCREM10, PMECCREM11	PMECCREM0, PMECCREM1, PMECCREM2, PMECCREM3, PMECCREM4, PMECCREM5, PMECCREM6, PMECCREM7, PMECCREM8, PMECCREM9, PMECCREM10, PMECCREM11
5	PMECCREM0, PMECCREM1, PMECCREM2, PMECCREM3, PMECCREM4, PMECCREM5, PMECCREM6, PMECCREM7, PMECCREM8, PMECCREM9, PMECCREM10, PMECCREM11, PMECCREM12, PMECCREM13, PMECCREM14, PMECCREM15	PMECCREM0, PMECCREM1, PMECCREM2, PMECCREM3, PMECCREM4, PMECCREM5, PMECCREM6, PMECCREM7, PMECCREM8, PMECCREM9, PMECCREM10, PMECCREM11, PMECCREM12, PMECCREM13, PMECCREM14, PMECCREM15

Table 37-16: Relevant Remainder Registers (Continued)

37.18.2.1 MLC/SLC Read Operation with Spare Decoding

When the spare area is protected, it contains valid data. As the redundancy may be included in the middle of the information stream, the user shall program the start address and the end address of the ECC area. The controller will automatically skip the ECC area. This mode is entered writing a 1 in the DATA bit of the PMECCTRL register. When the page has been fully retrieved from the NAND, the ECC area shall be read using the User mode, writing a 1 to the USER bit of the PMECCTRL register.

Figure 37-42: Read Operation with Spare Decoding

Read NAND operation with SPAREEN set to One and AUTO set to Zero

37.18.2.2 MLC/SLC Read Operation

If the spare area is not protected with the error correcting code, the redundancy area is retrieved directly. This mode is entered writing a 1 in the DATA bit of the PMECCTRL register. When AUTO field is set to one, the ECC is retrieved automatically; otherwise, the ECC must be read using the User mode.

37.20.1 NFC Configuration Register

Name:	HSMC_CFG							
Address:	0xF8014000							
Access:	Read/Write							
31	30	29	28	27	26	25	24	
_				NFCSPARESIZE				
23	22	21	20	19	18	17	16	
_		DTOMUL			DTOCYC			
15	14	13	12	11	10	9	8	
_	-	RBEDGE	EDGECTRL	-	-	RSPARE	WSPARE	
7	6	5	4	3	2	1	0	
-	-	-	_	_		PAGESIZE		

PAGESIZE: Page Size of the NAND Flash Device

Value	Name	Description
0	PS512	Main area 512 bytes
1	PS1024	Main area 1024 bytes
2	PS2048	Main area 2048 bytes
3	PS4096	Main area 4096 bytes
4	PS8192	Main area 8192 bytes

WSPARE: Write Spare Area

0: The NFC skips the spare area in Write mode.

1: The NFC writes both main area and spare area in Write mode.

RSPARE: Read Spare Area

0: The NFC skips the spare area in Read mode.

1: The NFC reads both main area and spare area in Read mode.

EDGECTRL: Rising/Falling Edge Detection Control

- 0: Rising edge is detected
- 1: Falling edge is detected

RBEDGE: Ready/Busy Signal Edge Detection

0: When configured to zero, RB_EDGE fields indicate the level of the Ready/Busy lines.

1: When set to one, RB_EDGE fields indicate only transition on Ready/Busy lines.

DTOCYC: Data Timeout Cycle Number

DTOMUL: Data Timeout Multiplier

These fields determine the maximum number of Master Clock cycles that the SMC waits until the detection of a rising edge on Ready/ Busy signal.

39.7.55 Overlay 2 Channel Enable Register

Name:	LCDC_OVR2CHER						
Address:	0xF0000240						
Access:	Write-only						
31	30	29	28	27	26	25	24
_	-	_	—	—	—	—	-
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	-	-	-	-	-	-	-
7	6	5	4	3	2	1	0
-	-	-	-	-	A2QEN	UPDATEEN	CHEN

CHEN: Channel Enable

0: No effect

1: Enables the DMA channel

UPDATEEN: Update Overlay Attributes Enable

0: No effect

1: Updates windows attributes on the next start of frame.

A2QEN: Add To Queue Enable

0: No effect

1: Indicates that a valid descriptor has been written to memory, its memory location should be written to the DMA head pointer. The A2QSR status bit is set to one, and it is reset by hardware as soon as the descriptor pointed to by the DMA head pointer is added to the list.

40.0.00									
Name:	GMAC_ROE								
Address:	0xF80081A4								
Access:	Read-only								
31	30	29	28	27	26	25	24		
_	_	—	_	_	_	_	_		
23	22	21	20	19	18	17	16		
-	-	_	-	-	-	_	_		
15	14	13	12	11	10	9	8		
-	-	-	—	-	-	RXC	DVR		
7	6	5	4	3	2	1	0		
	RXOVR								

40.8.88 GMAC Receive Overruns Register

RXOVR: Receive Overruns

This register counts the number of frames that are address recognized but were not copied to memory due to a receive overrun.

40.8.115 GMAC Credit-Based Shaping IdleSlope Register for Queue A

Name:	GMAC_CBSISQA						
Address:	0xF80084C0						
Access:	Read/Write						
31	30	29	28	27	26	25	24
			IS	3			
23	22	21	20	19	18	17	16
			IS	>			
15	14	13	12	11	10	9	8
			IS	\$			
7	6	5	4	3	2	1	0
			IS	3			

Credit-based shaping must be disabled in GMAC_CBSCR before updating this register.

IS: IdleSlope

IdleSlope value for queue A in bytes/second.

The IdleSlope value is defined as the rate of change of credit when a packet is waiting to be sent. This must not exceed the port transmit rate which is dependent on the speed of operation, e.g., 100 Mb/second = 32'h017D7840

If 50% of bandwidth was to be allocated to a particular queue in 100 Mb/second mode, then the IdleSlope value for that queue would be calculated as 32'h017D7840 / 2.

42.6 Functional Description

Figure 42-4: USB Selection

42.6.1 EHCI

The USB Host Port controller is fully compliant with the Enhanced HCI specification. The USB Host Port User Interface (registers description) can be found in the Enhanced HCI Rev 1.0 Specification available on www.usb.org. The standard EHCI USB stack driver can be easily ported to the device architecture without hardware specialization.

42.6.2 OHCI

The USB Host Port integrates a root hub and transceivers on downstream ports. It provides several Full-speed half-duplex serial communication ports at a baud rate of 12 Mbit/s. Up to 127 USB devices (printer, camera, mouse, keyboard, disk, etc.) and the USB hub can be connected to the USB host in the USB "tiered star" topology.

The USB Host Port controller is fully compliant with the Open HCI specification. The USB Host Port User Interface (registers description) can be found in the Open HCI Rev 1.0 Specification available on www.usb.org. The standard OHCI USB stack driver can be easily ported to the device architecture without hardware specialization.

This means that all standard class devices are automatically detected and available to the user's application. As an example, integrating an HID (Human Interface Device) class driver provides a plug & play feature for all USB keyboards and mouses.

42.6.3 HSIC

The High-Speed Inter-Chip (HSIC) is a standard for USB chip-to-chip interconnect with a 2-signal (strobe, data) source synchronous serial interface using 240 MHz DDR signaling to provide only high-speed 480 Mbps data rate.

External cables, connectors and hot plug & play are not supported.

The HSIC interface operates at high speed, 480 Mbps, and is fully compatible with existing USB software stacks. It meets all data transfer needs through a single unified USB software stack.

Figure 46-22: TWIHS Read Operation with Single Data Byte and Internal Address

0: No effect.

1: Alternative Command mode disabled.

TXFCLR: Transmit FIFO Clear

0: No effect.

1: Clears the Transmit FIFO, Transmit FIFO will become empty.

RXFCLR: Receive FIFO Clear

0: No effect.

1: Clears the Receive FIFO, Receive FIFO will become empty.

TXFLCLR: Transmit FIFO Lock CLEAR

0: No effect.

1: Clears the Transmit FIFO Lock.

FIFOEN: FIFO Enable

0: No effect.

1: Enables the Transmit and Receive FIFOs

FIFODIS: FIFO Disable

0: No effect.

1: Disables the Transmit and Receive FIFOs

Name:	TWIHS_RHR						
Address:	ess: 0xF8028030 (0), 0xFC028030 (1)						
Access:	Read-only						
31	30	29	28	27	26	25	24
_	-	_	-	—	—	—	-
23	22	21	20	19	18	17	16
_	-	-	_	_	_	_	_
15	. 14	13	12	11	10	9	8
_	-	-	-	-	-	-	-
7	6	5	4	3	2	1	0
	RXDATA						

46.7.15 TWIHS Receive Holding Register

RXDATA: Master or Slave Receive Holding Data

Name: TW	TWIHS_FIER						
Address: 0xF	: 0xF8028064 (0), 0xFC028064 (1)						
Access: Write	te-only						
31	30	29	28	27	26	25	24
_	-	-	—	-	-	-	-
23	22	21	20	19	18	17	16
_	_	_	_	_	_	_	_
15	14	13	12	11	10	9	8
_	—	-	-	-	-	-	_
7	6	5	4	3	2	1	0
RXFPTEF	TXFPTEF	RXFTHF	RXFFF	RXFEF	TXFTHF	TXFFF	TXFEF

46.7.23 TWIHS FIFO Interrupt Enable Register

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Enables the corresponding interrupt.

TXFEF: TXFEF Interrupt Enable

TXFFF: TXFFF Interrupt Enable

TXFTHF: TXFTHF Interrupt Enable

RXFEF: RXFEF Interrupt Enable

RXFFF: RXFFF Interrupt Enable

RXFTHF: RXFTHF Interrupt Enable

TXFPTEF: TXFPTEF Interrupt Enable

RXFPTEF: RXFPTEF Interrupt Enable

47.10.78 TWI SleepWalking Matching Register

Name: FLEX_TWI_SWMR

Address: 0xF803464C (0), 0xF803864C (1), 0xFC01064C (2), 0xFC01464C (3), 0xFC01864C (4)

Access: Read/Write

31	30	29	28	27	26	25	24
			DA	TAM			
23	22	21	20	19	18	17	16
_				SADR3			
15	14	13	12	11	10	9	8
_				SADR2			
7	6	5	4	3	2	1	0
-				SADR1			

SADR1: Slave Address 1

Slave address 1. The TWI module will match on this additional address if SADR1EN bit is enabled.

SADR2: Slave Address 2

Slave address 2. The TWI module will match on this additional address if SADR2EN bit is enabled.

SADR3: Slave Address 3

Slave address 3. The TWI module will match on this additional address if SADR3EN bit is enabled.

DATAM: Data Match

The TWI module will extend the SleepWalking matching process to the first received data comparing it with DATAM if DATAMEN bit is enabled.

When the CSAAT bit is configured to 0, the NPCS does not rise in all cases between two transfers on the same peripheral. During a transfer on a chip select, the TDRE flag rises as soon as the content of SPI_TDR is transferred into the internal shift register. When this flag is detected, SPI_TDR can be reloaded. If this reload occurs before the end of the current transfer and if the next transfer is performed on the same chip select as the current transfer, the chip select is not deasserted between the two transfers. This can lead to difficulties to interface with some serial peripherals requiring the chip select to be deasserted after each transfer. To facilitate interfacing with such devices, SPI_CSR can be programmed with the Chip Select Not Active After Transfer (CSNAAT) bit at 1. This allows the chip select lines to be deasserted systematically during a time "DLYBCS" (the value of the CSNAAT bit is processed only if the CSAAT bit is configured to 0 for the same chip select).

Figure 49-11 shows different peripheral deselection cases and the effect of the CSAAT and CSNAAT bits.

Figure 49-11: Peripheral Deselection

53.6.35 MCAN Tx Buffer Configuration

Name:	MCAN_TXBC						
Address:	0xF80540C0 (0), 0xFC0500C0 (1)						
Access:	Read/Write						
31	30	29	28	27	26	25	24
-	TFQM			TF	QS		
23	22	21	20	19	18	17	16
-	-			ND	ΟTΒ		
15	14	13	12	11	10	9	8
			TB	SA			
7	6	5	4	3	2	1	0
		TB	SA			_	_

This register can only be written if the bits CCE and INIT are set in MCAN CC Control Register.

TBSA: Tx Buffers Start Address

Start address of Tx Buffers section in Message RAM (32-bit word address, see Figure 53-12).

Write TBSA with the bits [15:2] of the 32-bit address.

NDTB: Number of Dedicated Transmit Buffers

0: No dedicated Tx Buffers.

1-32: Number of dedicated Tx Buffers.

>32: Values greater than 32 are interpreted as 32.

TFQS: Transmit FIFO/Queue Size

0: No Tx FIFO/Queue.

1-32: Number of Tx Buffers used for Tx FIFO/Queue.

>32: Values greater than 32 are interpreted as 32.

TFQM: Tx FIFO/Queue Mode

0: Tx FIFO operation.

1: Tx Queue operation.

Note: The sum of TFQS and NDTB may be not greater than 32. There is no check for erroneous configurations. The Tx Buffers section in the Message RAM starts with the dedicated Tx Buffers.

Note: The QDEC connections are detailed in Figure 54-17.

Table 54-2:	Channel Signal Description
-------------	----------------------------

Signal Name		Description				
	XC0, XC1, XC2	External Clock Inputs				
	TIOAx	Capture Mode: Timer Counter Input Waveform Mode: Timer Counter Output				
	TIOBx	Capture Mode: Timer Counter Input Waveform Mode: Timer Counter Input/Output				
	INT	Interrupt Signal Output (internal signal)				
	SYNC	Synchronization Input Signal (from configuration register)				

Issue Date	Changes						
	Section 16. "Standard Boot Strategies"						
	Replaced all occurrences of "Spansion" by "Cypress".						
	Updated Section 16.3 "Chip Setup".						
	Updated Section 16.4.1 "Boot Configuration Word".						
	Section 16.4.2 "Boot Sequence Controller Configuration Register": updated BUREG_VALID bit description.						
	Added Note to descriptions of SDMMC_0 and SDMMC_1 in Section 16.4.4 "Boot Configuration Word".						
	Updated Section 16.4.5 "NVM Boot Sequence" and figures.						
	Renamed Section 16.4.7.5 "QSPI NOR Flash Boot for MRL A and MRL B".						
	Added Section 16.4.7.6 "QSPI NOR Flash Boot for MRL C".						
	Updated Section 16.4.8 "Hardware and Software Constraints":						
	added Table 16-6 "Clock Frequencies during External Memory Boot Sequence".						
	Table 16-7 "PIO Driven during Boot Program Execution": renamed SDMMC_VDDSEL to SDMMC0_1V8SEL. Added column "Drive Strength (MRL C only)".						
	Section 16.5 "SAM-BA Monitor": deleted sentence on Main Clock; updated 3rd paragraph.						
	Updated Section 16.6.1 "Fuse Bit Mapping".						
	Section 18. "Matrix (H64MX/H32MX)"						
	Table 18-5 "List of H32MX Slaves": added Peripheral Touch Controller (PTC) at Slave 6.						
	Table 18-6 "Master to Slave Access on H32MX": added Peripheral Touch Controller (PTC) at Slave 6.						
	Table 18-9 "Peripheral Identifiers": added PTC at ID 58.						
Mar-2017	Section 19. "Special Function Registers (SFR)" Section 19.3.5 "UTMI Clock Trimming Register": VBG now 2 bits wide at index [17:16] (was [19:16]).						
	Section 20. "Special Function Registers Backup (SFRBU)" Section 20.3.3 "SFRBU DDR BU Mode Control Register" changed occurrences of VCCCORE to VDDCORE.						
	Section 26. "Real-time Clock (RTC)"						
	Table 26-1 "Register Mapping": updated offsets as of 0xCC. Deleted RTC_WPMR at offset 0xE4.						
	Deleted "Section 25.6.23 RTC Write Protection Mode Register".						
	Added Section 27. "System Controller Write Protection (SYSCWP)".						
	Added Section 29. "Peripheral Touch Controller (PTC)".						
	Section 33. "Power Management Controller (PMC)"						
	Reorganized order of sub-sections within the chapter.						
	Updated Figure 33-2. H32MX 32-bit Matrix Clock Configuration.						
	Figure 33-1. General Clock Block Diagram: updated PMC_PCR block.						
	Added Section 33.8 "Core and Bus Independent Clocks for Peripherals".						
	Added Section 33.9 "Peripheral and Generic Clock Controller".						
	Deleted section "Peripheral Clock Controller".						
	Deleted section "Generic Clock Controller".						
	Figure 33-10. Clock Failure Detection (Example): corrected CDFEV to CFDEV and CDFS to CFDS.						
	Section 33.19 "Programming Sequence": deleted paragraph on DIVA from Step 6.						
	Section 33.22.10 "PMC Clock Generator PLLA Register": changed DIVA description for value '0'.						
	cont'd on next page						

Table 72-2: SAMA5D2 Datasheet DS60001476 Rev. A Revision History