

#### Welcome to E-XFL.COM

#### **Understanding Embedded - Microprocessors**

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

#### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details

**E·XF** 

| Product Status                     | Active                                                                                            |
|------------------------------------|---------------------------------------------------------------------------------------------------|
| Core Processor                     | ARM® Cortex®-A5                                                                                   |
| Number of Cores/Bus Width          | 1 Core, 32-Bit                                                                                    |
| Speed                              | 500MHz                                                                                            |
| Co-Processors/DSP                  | Multimedia; NEON <sup>™</sup> MPE                                                                 |
| RAM Controllers                    | LPDDR1, LPDDR2, LPDDR3, DDR2, DDR3, DDR3L, QSPI                                                   |
| Graphics Acceleration              | Yes                                                                                               |
| Display & Interface<br>Controllers | Keyboard, LCD, Touchscreen                                                                        |
| Ethernet                           | 10/100Mbps (1)                                                                                    |
| SATA                               | -                                                                                                 |
| USB                                | USB 2.0 + HSIC                                                                                    |
| Voltage - I/O                      | 3.3V                                                                                              |
| Operating Temperature              | -40°C ~ 105°C (TA)                                                                                |
| Security Features                  | ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC |
| Package / Case                     | 289-LFBGA                                                                                         |
| Supplier Device Package            | 289-LFBGA (14x14)                                                                                 |
| Purchase URL                       | https://www.e-xfl.com/product-detail/microchip-technology/atsama5d27a-cnr                         |
|                                    |                                                                                                   |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### 18.13 Matrix (H64MX/H32MX) User Interface

The user interface below is constructed with the maximum numbers of masters, slaves and regions by slave that are possible on the two product matrixes. The exact number of these elements must be used to deduce the exact register description of the Matrix user interface.

The exact numbers of these elements can be found in:

- Section 18.3 "64-bit Matrix (H64MX)"
- Section 18.4 "32-bit Matrix (H32MX)"

#### Table 18-10: Register Mapping

| Offset        | Register                         | Name          | Access     | Reset      |
|---------------|----------------------------------|---------------|------------|------------|
| 0x0000        | Master Configuration Register 0  | MATRIX_MCFG0  | Read/Write | 0x00000004 |
| 0x0004        | Master Configuration Register 1  | MATRIX_MCFG1  | Read/Write | 0x00000004 |
| 0x0008        | Master Configuration Register 2  | MATRIX_MCFG2  | Read/Write | 0x0000004  |
| 0x000C        | Master Configuration Register 3  | MATRIX_MCFG3  | Read/Write | 0x00000004 |
| 0x0010        | Master Configuration Register 4  | MATRIX_MCFG4  | Read/Write | 0x0000004  |
| 0x0014        | Master Configuration Register 5  | MATRIX_MCFG5  | Read/Write | 0x0000004  |
| 0x0018        | Master Configuration Register 6  | MATRIX_MCFG6  | Read/Write | 0x0000004  |
| 0x001C        | Master Configuration Register 7  | MATRIX_MCFG7  | Read/Write | 0x00000004 |
| 0x0020        | Master Configuration Register 8  | MATRIX_MCFG8  | Read/Write | 0x00000004 |
| 0x0024        | Master Configuration Register 9  | MATRIX_MCFG9  | Read/Write | 0x0000004  |
| 0x0028        | Master Configuration Register 10 | MATRIX_MCFG10 | Read/Write | 0x0000004  |
| 0x002C        | Master Configuration Register 11 | MATRIX_MCFG11 | Read/Write | 0x0000004  |
| 0x0030-0x003C | Reserved                         | _             | _          | _          |
| 0x0040        | Slave Configuration Register 0   | MATRIX_SCFG0  | Read/Write | 0x000001FF |
| 0x0044        | Slave Configuration Register 1   | MATRIX_SCFG1  | Read/Write | 0x000001FF |
| 0x0048        | Slave Configuration Register 2   | MATRIX_SCFG2  | Read/Write | 0x000001FF |
| 0x004C        | Slave Configuration Register 3   | MATRIX_SCFG3  | Read/Write | 0x000001FF |
| 0x0050        | Slave Configuration Register 4   | MATRIX_SCFG4  | Read/Write | 0x000001FF |
| 0x0054        | Slave Configuration Register 5   | MATRIX_SCFG5  | Read/Write | 0x000001FF |
| 0x0058        | Slave Configuration Register 6   | MATRIX_SCFG6  | Read/Write | 0x000001FF |
| 0x005C        | Slave Configuration Register 7   | MATRIX_SCFG7  | Read/Write | 0x000001FF |
| 0x0060        | Slave Configuration Register 8   | MATRIX_SCFG8  | Read/Write | 0x000001FF |
| 0x0064        | Slave Configuration Register 9   | MATRIX_SCFG9  | Read/Write | 0x000001FF |
| 0x0068        | Slave Configuration Register 10  | MATRIX_SCFG10 | Read/Write | 0x000001FF |
| 0x006C        | Slave Configuration Register 11  | MATRIX_SCFG11 | Read/Write | 0x000001FF |
| 0x0070        | Slave Configuration Register 12  | MATRIX_SCFG12 | Read/Write | 0x000001FF |
| 0x0074        | Slave Configuration Register 13  | MATRIX_SCFG13 | Read/Write | 0x000001FF |
| 0x0078        | Slave Configuration Register 14  | MATRIX_SCFG14 | Read/Write | 0x000001FF |
| 0x007C        | Reserved                         | _             | _          | _          |
| 0x0080        | Priority Register A for Slave 0  | MATRIX_PRAS0  | Read/Write | 0x0000000  |
| 0x0084        | Priority Register B for Slave 0  | MATRIX_PRBS0  | Read/Write | 0x00000000 |

#### 26.6.12 RTC Interrupt Enable Register

#### Address: 0xF80480D0

#### Access: Write-only

| 31 | 30 | 29      | 28    | 27    | 26    | 25    | 24    |
|----|----|---------|-------|-------|-------|-------|-------|
| _  | -  | —       | Ι     | Ι     | -     | -     | -     |
| 23 | 22 | 21      | 20    | 19    | 18    | 17    | 16    |
| -  | -  | -       | -     | -     | -     | -     | -     |
| 15 | 14 | 13      | 12    | 11    | 10    | 9     | 8     |
| _  | -  | —       | Ι     | Ι     | -     | -     | _     |
| 7  | 6  | 5       | 4     | 3     | 2     | 1     | 0     |
| _  | _  | TDERREN | CALEN | TIMEN | SECEN | ALREN | ACKEN |

#### ACKEN: Acknowledge Update Interrupt Enable

0: No effect.

1: The acknowledge for update interrupt is enabled.

#### ALREN: Alarm Interrupt Enable

0: No effect.

1: The alarm interrupt is enabled.

#### SECEN: Second Event Interrupt Enable

0: No effect.

1: The second periodic interrupt is enabled.

#### **TIMEN: Time Event Interrupt Enable**

0: No effect.

1: The selected time event interrupt is enabled.

If the RTC is configured in UTC mode, this bit has no effect.

#### CALEN: Calendar Event Interrupt Enable

0: No effect.

1: The selected calendar event interrupt is enabled.

If the RTC is configured in UTC mode, this bit has no effect.

#### **TDERREN: Time and/or Date Error Interrupt Enable**

0: No effect.

1: The time and date error interrupt is enabled.

If the RTC is configured in UTC mode, this bit has no effect.

| Name:    | HSMC_ELPRIM |    |      |       |    |    |    |  |  |  |  |
|----------|-------------|----|------|-------|----|----|----|--|--|--|--|
| Address: | 0xF8014504  |    |      |       |    |    |    |  |  |  |  |
| Access:  | Read-only   |    |      |       |    |    |    |  |  |  |  |
| 31       | 30          | 29 | 28   | 27    | 26 | 25 | 24 |  |  |  |  |
| -        | -           | -  | -    | —     | -  | _  | -  |  |  |  |  |
| 23       | 22          | 21 | 20   | 19    | 18 | 17 | 16 |  |  |  |  |
| -        | -           | -  | -    | -     | -  | _  | -  |  |  |  |  |
| 15       | 14          | 13 | 12   | 11    | 10 | 9  | 8  |  |  |  |  |
| PRIMITIV |             |    |      |       |    |    |    |  |  |  |  |
| 7        | 6           | 5  | 4    | 3     | 2  | 1  | 0  |  |  |  |  |
|          |             |    | PRIM | ΛΙΤΙν |    |    |    |  |  |  |  |

### 37.20.22 PMECC Error Location Primitive Register

#### **PRIMITIV: Primitive Polynomial**

This field indicates the Primitive Polynomial used in the ECC computation.

#### 38.5.3 Peripheral Synchronized Transfer

A peripheral hardware request interface is used to control the pace of the chunk transfer. When a peripheral is ready to transmit or receive a chunk of data, it asserts its request line and the DMA Controller transfers a data to or from the memory to the peripheral.

#### 38.5.3.1 Software Triggered Synchronized Transfer

The Peripheral hardware request can be software controlled using the SWREQ field of the XDMAC Global Channel Software Request Register (XDMAC\_GSWR). The peripheral synchronized transfer is paced using a processor write access in the XDMAC\_GSWR. Each bit of that register triggers a transfer request. The XDMAC Global Channel Software Request Status Register (XDMAC\_GSWS) indicates the status of the request; when set, the request is still pending.

#### 38.5.4 XDMAC Transfer Software Operation

**Note:** When a memory-to-memory transfer is performed, configure the field XDMAC\_CCx.PERID (where 'x' is the index of the channel used for transfer) to an unused peripheral ID (refer to Table 11-1 "Peripheral Identifiers").

#### 38.5.4.1 Single Block With Single Microblock Transfer

- 1. Read the XDMAC Global Channel Status Register (XDMAC\_GS) to select a free channel.
- 2. Clear the pending Interrupt Status bit(s) by reading the selected XDMAC Channel x Interrupt Status Register (XDMAC\_CISx).
- 3. Write the XDMAC Channel x Source Address Register (XDMAC\_CSAx) for channel x.
- 4. Write the XDMAC Channel x Destination Address Register (XDMAC\_CDAx) for channel x.
- 5. Program field UBLEN in the XDMAC Channel x Microblock Control Register (XDMAC\_CUBCx) with the number of data.
- 6. Program the XDMAC Channel x Configuration Register (XDMAC\_CCx):
  - a) Clear XDMAC\_CCx.TYPE for a memory-to-memory transfer, otherwise set this bit.
    - b) Configure XDMAC\_CCx.MBSIZE to the memory burst size used.
    - c) Configure XDMAC\_CCx.SAM and DAM to Memory Addressing mode.
  - d) Configure XDMAC\_CCx.DSYNC to select the peripheral transfer direction.
  - e) Set XDMAC\_CCx.PROT to activate a secure channel.
  - f) Configure XDMAC\_CCx.CSIZE to configure the channel chunk size (only relevant for peripheral synchronized transfer).
  - g) Configure XDMAC\_CCx.DWIDTH to configure the transfer data width.
  - h) Configure XDMAC\_CCx.SIF, XDMAC\_CCx.DIF to configure the master interface used to read data and write data, respectively.
  - i) Configure XDMAC\_CCx.PERID to select the active hardware request line (only relevant for a peripheral synchronized transfer).
  - j) Set XDMAC\_CCx.SWREQ to use a software request (only relevant for a peripheral synchronized transfer).
- 7. Clear the following five registers:
  - XDMAC Channel x Next Descriptor Control Register (XDMAC\_CNDCx)
  - XDMAC Channel x Block Control Register (XDMAC\_CBCx)
  - XDMAC Channel x Data Stride Memory Set Pattern Register (XDMAC\_CDS\_MSPx)
  - XDMAC Channel x Source Microblock Stride Register (XDMAC\_CSUSx)
  - XDMAC Channel x Destination Microblock Stride Register (XDMAC\_CDUSx)

This indicates that the linked list is disabled, there is only one block and striding is disabled.

- 8. Enable the Microblock interrupt by writing a '1' to bit BIE in the XDMAC Channel x Interrupt Enable Register (XDMAC\_CIEx). Enable the Channel x Interrupt Enable bit by writing a '1' to bit IEx in the XDMAC Global Interrupt Enable Register (XDMAC\_GIE).
- 9. Enable channel x by writing a '1' to bit ENx in the XDMAC Global Channel Enable Register (XDMAC\_GE). XDMAC\_GS.STx (XDMAC Channel x Status bit) is set by hardware.
- 10. Once completed, the DMA channel sets XDMAC\_CISx.BIS (End of Block Interrupt Status bit) and generates an interrupt. XDMAC\_GS.STx is cleared by hardware. The software can either wait for an interrupt or poll the channel status bit.

#### 38.5.4.2 Single Block Transfer With Multiple Microblock

- 1. Read the XDMAC\_GS register to choose a free channel.
- 2. Clear the pending Interrupt Status bit by reading the chosen XDMAC\_CISx register.
- 3. Write the XDMAC\_CSAx register for channel x.
- 4. Write the XDMAC\_CDAx register for channel x.
- 5. Program XDMAC\_CUBCx.UBLEN with the number of data.

| 40.8.49  | GMAC Frames Ira | nsmitted Regis | ster |    |    |    |    |
|----------|-----------------|----------------|------|----|----|----|----|
| Name:    | GMAC_FT         |                |      |    |    |    |    |
| Address: | 0xF8008108      |                |      |    |    |    |    |
| Access:  | Read-only       |                |      |    |    |    |    |
| 31       | 30              | 29             | 28   | 27 | 26 | 25 | 24 |
|          |                 |                | FT   | ГХ |    |    |    |
| 23       | 22              | 21             | 20   | 19 | 18 | 17 | 16 |
|          |                 |                | F1   | ГХ |    |    |    |
| 15       | 14              | 13             | 12   | 11 | 10 | 9  | 8  |
|          |                 |                | FT   | ГХ |    |    |    |
| 7        | 6               | 5              | 4    | 3  | 2  | 1  | 0  |
|          |                 |                | F1   | ГХ |    |    |    |

#### CMAC Eromon Transmitted Pagista 10 0 10

#### FTX: Frames Transmitted without Error

Frames transmitted without error. This register counts the number of frames successfully transmitted, i.e., no underrun and not too many retries. Excludes pause frames.

| 40.8.56  | SMAC 200 to 511 Byte Frames Transmitted Register |    |    |    |    |    |    |  |  |  |  |
|----------|--------------------------------------------------|----|----|----|----|----|----|--|--|--|--|
| Name:    | GMAC_TBFT511                                     |    |    |    |    |    |    |  |  |  |  |
| Address: | 0xF8008124                                       |    |    |    |    |    |    |  |  |  |  |
| Access:  | Read-only                                        |    |    |    |    |    |    |  |  |  |  |
| 31       | 30                                               | 29 | 28 | 27 | 26 | 25 | 24 |  |  |  |  |
|          |                                                  |    | NF | ТХ |    |    |    |  |  |  |  |
| 23       | 22                                               | 21 | 20 | 19 | 18 | 17 | 16 |  |  |  |  |
|          |                                                  |    | NF | ТХ |    |    |    |  |  |  |  |
| 15       | 14                                               | 13 | 12 | 11 | 10 | 9  | 8  |  |  |  |  |
|          |                                                  |    | NF | ТХ |    |    |    |  |  |  |  |
| 7        | 6                                                | 5  | 4  | 3  | 2  | 1  | 0  |  |  |  |  |
|          |                                                  |    | NF | ТХ |    |    |    |  |  |  |  |

#### 0 050 4 544 D . . . • • • - -

NFTX: 256 to 511 Byte Frames Transmitted without Error

This register counts the number of 256 to 511 byte frames successfully transmitted without error, i.e., no underrun and not too many retries.

| 40.0.00  |                   |    |    |     |    |    |     |  |  |  |  |  |
|----------|-------------------|----|----|-----|----|----|-----|--|--|--|--|--|
| Name:    | GMAC_ROE          |    |    |     |    |    |     |  |  |  |  |  |
| Address: | 0xF80081A4        |    |    |     |    |    |     |  |  |  |  |  |
| Access:  | Read-only         |    |    |     |    |    |     |  |  |  |  |  |
| 31       | 30                | 29 | 28 | 27  | 26 | 25 | 24  |  |  |  |  |  |
| _        | _                 | —  | _  | _   | _  | _  | _   |  |  |  |  |  |
| 23       | 22                | 21 | 20 | 19  | 18 | 17 | 16  |  |  |  |  |  |
| -        | -                 | _  | -  | -   | -  | _  | _   |  |  |  |  |  |
| 15       | 14                | 13 | 12 | 11  | 10 | 9  | 8   |  |  |  |  |  |
| -        | - – – – – – RXOVR |    |    |     |    |    | DVR |  |  |  |  |  |
| 7        | 6                 | 5  | 4  | 3   | 2  | 1  | 0   |  |  |  |  |  |
|          |                   |    | RX | OVR |    |    |     |  |  |  |  |  |

#### 40.8.88 GMAC Receive Overruns Register

#### **RXOVR: Receive Overruns**

This register counts the number of frames that are address recognized but were not copied to memory due to a receive overrun.

| Name:<br>Address: | GMAC_<br>0xF8008 | IHCE<br>81A8 |    |     |     |    |    |    |
|-------------------|------------------|--------------|----|-----|-----|----|----|----|
| Access:           | Read-or          | nly          |    |     |     |    |    |    |
| 31                |                  | 30           | 29 | 28  | 27  | 26 | 25 | 24 |
| -                 |                  | _            | _  | _   | _   | _  | _  | _  |
| 23                |                  | 22           | 21 | 20  | 19  | 18 | 17 | 16 |
|                   |                  | -            | —  | _   | _   | _  | _  | _  |
| 15                |                  | 14           | 13 | 12  | 11  | 10 | 9  | 8  |
| _                 |                  | -            | _  | _   | —   | _  | _  | -  |
| 7                 |                  | 6            | 5  | 4   | 3   | 2  | 1  | 0  |
|                   |                  |              |    | HCł | KER |    |    |    |

#### 40.8.89 GMAC IP Header Checksum Errors Register

#### HCKER: IP Header Checksum Errors

This register counts the number of frames discarded due to an incorrect IP header checksum, but are between 64 and 1518 bytes (1536 bytes if bit 8 is set in the Network Configuration Register) and do not have a CRC error, an alignment error, nor a symbol error.

#### 42.7.4 UHPHS USB Command Register

| Name:   | UHPHS_USBCMD |     |     |       |    |         |     |
|---------|--------------|-----|-----|-------|----|---------|-----|
| Access: | Read/Write   |     |     |       |    |         |     |
| 31      | 30           | 29  | 28  | 27    | 26 | 25      | 24  |
|         |              |     | -   | -     |    |         |     |
| 23      | 22           | 21  | 20  | 19    | 18 | 17      | 16  |
|         |              |     | IT  | С     |    |         |     |
| 15      | 14           | 13  | 12  | 11    | 10 | 9       | 8   |
|         | -            | -   |     | ASPME | -  | ASF     | РМС |
| 7       | 6            | 5   | 4   | 3     | 2  | 1       | 0   |
| LHCF    | R IAAD       | ASE | PSE | FI    | _S | HCRESET | RS  |

The Command Register indicates the command to be executed by the serial bus host controller. Writing to the register causes a command to be executed.

#### RS: Run/Stop (read/write)

0: Stop (default value).

1: Run.

When set to 1, the Host Controller proceeds with execution of the schedule. The Host Controller continues execution as long as this bit is set to 1. When this bit is set to 0, the Host Controller completes the current and any actively pipelined transactions on the USB and then halts. The Host Controller must halt within 16 micro-frames after software clears the Run bit. The HC Halted bit in the status register indicates when the Host Controller has finished its pending pipelined transactions and has entered the stopped state. Software must not write 1 to this field unless the host controller is in the Halted state (i.e., HCHalted in the UHPHS\_USBSTS register is 1). Doing so will yield undefined results.

#### HCRESET: Host Controller Reset (read/write)

This control bit is used by software to reset the host controller. The effects of this on Root Hub registers are similar to a Chip Hardware Reset.

When software writes a 1 to this bit, the Host Controller resets its internal pipelines, timers, counters, state machines, etc. to their initial value. Any transaction currently in progress on USB is immediately terminated. A USB reset is not driven on downstream ports.

PCI Configuration registers are not affected by this reset. All operational registers, including port registers and port state machines, are set to their initial values. Port ownership reverts to the companion host controller(s) with side effects. Software must reinitialize the host controller in order to return the host controller to an operational state.

This bit is set to 0 by the Host Controller when the reset process is complete. Software cannot terminate the reset process early by writing a 0 to this register.

Software should not set this bit to 1 when the HCHalted bit in the UHPHS\_USBSTS register is 0. Attempting to reset an actively running host controller will result in undefined behavior.

#### FLS: Frame List Size (read/write or read-only)

This field is R/W only if Programmable Frame List Flag in the UHPHS\_HCCPARAMS registers is set to 1. This field specifies the size of the frame list. The size of the frame list controls which bits in the Frame Index Register should be used for the Frame List Current index.

00b: 1024 elements (4096 bytes) (default value).

01b: 512 elements (2048 bytes).

10b: 256 elements (1024 bytes), for resource-constrained environments.

11b: Reserved.

#### PSE: Periodic Schedule Enable (read/write)

This bit controls whether the host controller skips processing the Periodic Schedule.

0: Do not process the Periodic Schedule (default value).

1: Use the UHPHS\_PERIODICLISTBASE register to access the Periodic Schedule.

#### ASE: Asynchronous Schedule Enable (read/write)

#### 46.7.2 TWIHS Control Register (FIFO\_ENABLED)

|--|

Address: 0xF8028000 (0), 0xFC028000 (1)

#### Access: Write-only

| 31    | 30    | 29      | 28     | 27     | 26      | 25     | 24     |
|-------|-------|---------|--------|--------|---------|--------|--------|
| -     | -     | FIFODIS | FIFOEN | -      | TXFLCLR | RXFCLR | TXFCLR |
|       |       |         |        |        |         |        |        |
| 23    | 22    | 21      | 20     | 19     | 18      | 17     | 16     |
| _     | —     | _       | _      | —      | _       | ACMDIS | ACMEN  |
|       |       |         |        |        |         |        |        |
| 15    | 14    | 13      | 12     | 11     | 10      | 9      | 8      |
| CLEAR | PECRQ | PECDIS  | PECEN  | SMBDIS | SMBEN   | HSDIS  | HSEN   |
|       |       |         |        |        |         |        |        |
| 7     | 6     | 5       | 4      | 3      | 2       | 1      | 0      |
| SWRST | QUICK | SVDIS   | SVEN   | MSDIS  | MSEN    | STOP   | START  |

This configuration is relevant only if TWIHS\_CR.FIFOEN = '1'.

#### START: Send a START Condition

0: No effect.

1: A frame beginning with a START bit is transmitted according to the features defined in the TWIHS Master Mode Register (TWIHS\_MMR).

This action is necessary when the TWIHS peripheral needs to read data from a slave. When configured in Master mode with a write operation, a frame is sent as soon as the user writes a character in the Transmit Holding Register (TWIHS\_THR).

#### STOP: Send a STOP Condition

0: No effect.

1: STOP condition is sent just after completing the current byte transmission in Master Read mode.

- In single data byte master read, both START and STOP must be set.
- In multiple data bytes master read, the STOP must be set after the last data received but one.
- In Master Read mode, if a NACK bit is received, the STOP is automatically performed.
- In master data write operation, a STOP condition will be sent after the transmission of the current data is finished.

#### MSEN: TWIHS Master Mode Enabled

0: No effect.

1: Enables the Master mode (MSDIS must be written to 0).

Note: Switching from Slave to Master mode is only permitted when TXCOMP = 1.

#### MSDIS: TWIHS Master Mode Disabled

0: No effect.

1: The Master mode is disabled, all pending data is transmitted. The shifter and holding characters (if it contains data) are transmitted in case of write operation. In read operation, the character being transferred must be completely received before disabling.

#### SVEN: TWIHS Slave Mode Enabled

0: No effect.

1: Enables the Slave mode (SVDIS must be written to 0).

**Note:** Switching from Master to Slave mode is only permitted when TXCOMP = 1.

#### SVDIS: TWIHS Slave Mode Disabled

0: No effect.

#### • $t_{Frame_Maximum} = (63 + 14 \times DLC) \times t_{bit}$

**Note 1:** The term "+1" leads to an integer result for t<sub>Frame\_Maximum</sub> (LIN Specification 1.3).

#### Figure 47-46: Frame Slot Mode



#### 47.7.9.14 LIN Errors

#### Bit Error

This error is generated in master of slave node configuration, when the USART is transmitting and if the transmitted value on the Tx line is different from the value sampled on the Rx line. If a bit error is detected, the transmission is aborted at the next byte border.

This error is reported by the FLEX\_US\_CSR.LINBE flag.

Inconsistent Synch Field Error

This error is generated in slave node configuration, if the Synch Field character received is other than 0x55.

This error is reported by the FLEX\_US\_CSR.LINISFE flag.

Identifier Parity Error

This error is generated in slave node configuration, if the parity of the identifier is wrong. This error can be generated only if the parity feature is enabled (PARDIS = 0).

This error is reported by the FLEX\_US\_CSR.LINIPE flag.

Checksum Error

This error is generated in master of slave node configuration, if the received checksum is wrong. This flag can be set to 1 only if the checksum feature is enabled (CHKDIS = 0).

This error is reported by the FLEX\_US\_CSR.LINCE flag.

• Slave Not Responding Error

This error is generated in master of slave node configuration, when the USART expects a response from another node (NACT = SUB-SCRIBE) but no valid message appears on the bus within the time given by the maximum length of the message frame,  $t_{Frame}$  Maximum (see Section 47.7.9.13 "Frame Slot Mode"). This error is disabled if the USART does not expect any message (NACT = PUBLISH or NACT = IGNORE).

This error is reported by the FLEX\_US\_CSR.LINSNRE.

• Synch Tolerance Error

This error is generated in slave node configuration if, after the clock synchronization procedure, it appears that the computed baud rate deviation compared to the initial baud rate is superior to the maximum tolerance FTol\_Unsynch (±15%).

This error is reported by the FLEX\_US\_CSR.LINSTE flag.

• Header Timeout Error

This error is generated in slave node configuration, if the Header is not entirely received within the time given by the maximum length of the Header, t<sub>Header\_Maximum</sub>.

# SAMA5D2 SERIES

#### 50.7.5 QSPI Status Register

Name: QSPI\_SR

Address: 0xF0020010 (0), 0xF0024010 (1)

Access: Read-only

| 31 | 30 | 29 | 28 | 27    | 26      | 25   | 24      |
|----|----|----|----|-------|---------|------|---------|
| -  | -  | -  | -  | -     | —       | -    | QSPIENS |
| 23 | 22 | 21 | 20 | 19    | 18      | 17   | 16      |
| -  | -  | -  | _  | -     | _       |      | -       |
| 15 | 14 | 13 | 12 | 11    | 10      | 9    | 8       |
| -  | -  | -  | _  | -     | INSTRE  | CSS  | CSR     |
| 7  | 6  | 5  | 4  | 3     | 2       | 1    | 0       |
| -  | -  | -  | -  | OVRES | TXEMPTY | TDRE | RDRF    |

#### RDRF: Receive Data Register Full (cleared by reading QSPI\_RDR)

0: No data has been received since the last read of QSPI\_RDR.

1: Data has been received and the received data has been transferred from the serializer to QSPI\_RDR since the last read of QSPI\_RDR.

#### TDRE: Transmit Data Register Empty (cleared by writing QSPI\_TDR)

0: Data has been written to QSPI\_TDR and not yet transferred to the serializer.

1: The last data written in the QSPI\_TDR has been transferred to the serializer.

TDRE equals zero when the QSPI is disabled or at reset. The QSPI enable command sets this bit to one.

#### TXEMPTY: Transmission Registers Empty (cleared by writing QSPI\_TDR)

0: As soon as data is written in QSPI\_TDR.

1: QSPI\_TDR and the internal shifter are empty. If a transfer delay has been defined, TXEMPTY is set after the completion of such delay.

#### **OVRES: Overrun Error Status (cleared on read)**

0: No overrun has been detected since the last read of QSPI\_SR.

1: At least one overrun error has occurred since the last read of QSPI\_SR.

An overrun occurs when QSPI\_RDR is loaded at least twice from the serializer since the last read of the QSPI\_RDR.

#### CSR: Chip Select Rise (cleared on read)

0: No chip select rise has been detected since the last read of QSPI\_SR.

1: At least one chip select rise has been detected since the last read of QSPI\_SR.

#### **CSS: Chip Select Status**

0: The chip select is asserted.

1: The chip select is not asserted.

#### **INSTRE: Instruction End Status (cleared on read)**

0: No instruction end has been detected since the last read of QSPI\_SR.

1: At least one instruction end has been detected since the last read of QSPI\_SR.

#### **QSPIENS: QSPI Enable Status**

- 0: QSPI is disabled.
- 1: QSPI is enabled.

# SAMA5D2 SERIES

#### 50.7.11 QSPI Instruction Code Register

Name: QSPI\_ICR

Address: 0xF0020034 (0), 0xF0024034 (1)

Access: Read/Write

| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24 |
|----|------|----|----|----|----|----|----|
| _  | —    | -  | —  | _  | _  | _  | —  |
| 23 | 22   | 21 | 20 | 19 | 18 | 17 | 16 |
|    |      |    | OI | РТ |    |    |    |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8  |
| _  | -    | -  | —  | _  | _  | _  | _  |
| 7  | 6    | 5  | 4  | 3  | 2  | 1  | 0  |
|    | INST |    |    |    |    |    |    |

#### **INST: Instruction Code**

Instruction code to send to the serial Flash memory.

#### **OPT: Option Code**

Option code to send to the serial Flash memory.

#### 52.5.5 Parallel Front End (PFE) Module

#### Figure 52-14: PFE Block Diagram



The Parallel Front End module performs data resampling across clock domain boundary. It includes a CCIR656 decoder used to convert a standard ITU-R BT.656 stream to 24-bit digital video. It also generates pixels, syncs flags and valid signals to the main video pipeline. It ouputs field, video and synchronization signals. The PFE can optionally crop and limit the incoming pixel stream to a predefined horizontal and vertical value. By default, the PFE only relies on the cmos sensor horizontal and vertical reference to sample the incoming pixel stream. A pixel is sampled if, and only if, the vertical and horizontal synchronizations are valid and a pixel clock edge is detected. ISC\_PFE\_CFG0.BPS shows the number of bits per sample. The PFE module outputs a 12-bit data on the vp\_data[11:0] bus, and asserts the vp\_valid signal when the data can be sampled.

| PFE VP_DATA<br>Mapping | Raw Bayer<br>12-bit | Raw Bayer<br>10-bit | YUV422<br>8-bit | YUV422<br>10-bit | Mono<br>12-bit |
|------------------------|---------------------|---------------------|-----------------|------------------|----------------|
| VP_DATA[11]            | RGGB[11]            | RGGB[9]             | YC422[7]        | YC422[9]         | Y[11]          |
| VP_DATA[10]            | RGGB[10]            | RGGB[8]             | YC422[6]        | YC422[8]         | Y[10]          |
| VP_DATA[9]             | RGGB[9]             | RGGB[7]             | YC422[5]        | YC422[7]         | Y[9]           |
| VP_DATA[8]             | RGGB[8]             | RGGB[6]             | YC422[4]        | YC422[6]         | Y[8]           |
| VP_DATA[7]             | RGGB[7]             | RGGB[5]             | YC422[3]        | YC422[5]         | Y[7]           |
| VP_DATA[6]             | RGGB[6]             | RGGB[4]             | YC422[2]        | YC422[4]         | Y[6]           |
| VP_DATA[5]             | RGGB[5]             | RGGB[3]             | YC422[1]        | YC422[3]         | Y[5]           |
| VP_DATA[4]             | RGGB[4]             | RGGB[2]             | YC422[0]        | YC422[2]         | Y[4]           |
| VP_DATA[3]             | RGGB[3]             | RGGB[1]             | YC422[7] or 0   | YC422[1]         | Y[3]           |
| VP_DATA[2]             | RGGB[2]             | RGGB[0]             | YC422[6] or 0   | YC422[0]         | Y[2]           |
| VP_DATA[1]             | RGGB[1]             | RGGB[9] or 0        | YC422[5] or 0   | YC422[9] or 0    | Y[1]           |
| VP_DATA[0]             | RGGB[0]             | RGGB[8] or 0        | YC422[4] or 0   | YC422[8] or 0    | Y[0]           |

**Note:** When ISC\_PFE\_CFG0.REP is set, missing VP\_DATA LSBs are replaced with replicated LSBs of the incoming stream, otherwise they are forced to zero.

The PFE module also includes logic to synchronize capture request with the incoming pixel stream. Two operating modes are available: Single Shot and Continuous Acquisition. When the ISC\_PFE\_CFG0.CONT field is cleared, the ISC transfers a single image to memory,

| 52.6.32  | ISC Gamma Correction Green Entry Register |         |      |       |    |      |        |
|----------|-------------------------------------------|---------|------|-------|----|------|--------|
| Name:    | ISC_GAM_GENTRYx                           | [x=063] |      |       |    |      |        |
| Address: | 0xF0008198                                |         |      |       |    |      |        |
| Access:  | Read/Write                                |         |      |       |    |      |        |
| 31       | 30                                        | 29      | 28   | 27    | 26 | 25   | 24     |
| _        | -                                         | _       | _    | _     | _  | GCON | ISTANT |
| 23       | 22                                        | 21      | 20   | 19    | 18 | 17   | 16     |
|          |                                           |         | GCON | STANT |    |      |        |
| 15       | 14                                        | 13      | 12   | 11    | 10 | 9    | 8      |
| -        | -                                         | -       | -    | -     | -  | GSL  | OPE    |
| 7        | 6                                         | 5       | 4    | 3     | 2  | 1    | 0      |
|          | GSLOPE                                    |         |      |       |    |      |        |

GSLOPE: Green Color Slope for Piecewise Interpolation (signed 10 bits 1:3:6)

GCONSTANT: Green Color Constant for Piecewise Interpolation (unsigned 10 bits 0:10:0)

#### 56.7.38 PWM Comparison x Mode Register

#### Name: PWM\_CMPMx

Address: 0xF802C138 [0], 0xF802C148 [1], 0xF802C158 [2], 0xF802C168 [3], 0xF802C178 [4], 0xF802C188 [5], 0xF802C198 [6], 0xF802C1A8 [7]

#### Access: Read/Write

| 31     | 30   | 29   | 28 | 27 | 26 | 25 | 24  |
|--------|------|------|----|----|----|----|-----|
| -      | —    | —    | —  | -  | _  | -  | -   |
| 23     | 22   | 21   | 20 | 19 | 18 | 17 | 16  |
|        | CUPF | RCNT |    |    | CU | PR |     |
| 15     | 14   | 13   | 12 | 11 | 10 | 9  | 8   |
| CPRCNT |      |      |    |    | CF | PR |     |
| 7      | 6    | 5    | 4  | 3  | 2  | 1  | 0   |
|        | C    | ſR   |    | _  | -  | —  | CEN |

#### **CEN:** Comparison x Enable

0: The comparison x is disabled and can not match.

1: The comparison x is enabled and can match.

#### **CTR: Comparison x Trigger**

The comparison x is performed when the value of the comparison x period counter (CPRCNT) reaches the value defined by CTR.

#### **CPR: Comparison x Period**

CPR defines the maximum value of the comparison x period counter (CPRCNT). The comparison x value is performed periodically once every CPR+1 periods of the channel 0 counter.

#### **CPRCNT: Comparison x Period Counter**

Reports the value of the comparison x period counter.

Note: The field CPRCNT is read-only

#### **CUPR: Comparison x Update Period**

Defines the time between each update of the comparison x mode and the comparison x value. This time is equal to CUPR+1 periods of the channel 0 counter.

#### **CUPRCNT: Comparison x Update Period Counter**

Reports the value of the comparison x update period counter.

Note: The field CUPRCNT is read-only

#### 60.3 **Product Dependencies**

#### 60.3.1 Power Management

The AES is clocked through the Power Management Controller (PMC), so the programmer must first to configure the PMC to enable the AES clock.

#### 60.3.2 Interrupt Sources

The AES interface has an interrupt line connected to the Interrupt Controller.

Handling the AES interrupt requires programming the Interrupt Controller before configuring the AES.

| Table 60-1: Pe | ripheral IDs |
|----------------|--------------|
|----------------|--------------|

| Instance | ID |
|----------|----|
| AES      | 9  |

#### 60.4 Functional Description

The Advanced Encryption Standard (AES) specifies a FIPS-approved cryptographic algorithm that can be used to protect electronic data. The AES algorithm is a symmetric block cipher that can encrypt (encipher) and decrypt (decipher) information.

Encryption converts data to an unintelligible form called ciphertext. Decrypting the ciphertext converts the data back into its original form, called plaintext. The CIPHER bit in the AES Mode register (AES\_MR) allows selection between the encryption and the decryption processes.

The AES is capable of using cryptographic keys of 128/192/256 bits to encrypt and decrypt data in blocks of 128 bits. This 128-bit/192bit/256-bit key is defined in the user interface AES\_KEYWRx register.

The input to the encryption processes of the CBC, CFB, and OFB modes includes, in addition to the plaintext, a 128-bit data block called the initialization vector (IV), which must be set in AES\_IVRx. The initialization vector is used in an initial step in the encryption of a message and in the corresponding decryption of the message. AES\_IVRx are also used by the CTR mode to set the counter value.

#### 60.4.1 AES Register Endianness

In ARM processor-based products, the system bus and processors manipulate data in little-endian form. The AES interface requires littleendian format words. However, in accordance with the protocol of the FIPS 197 specification, data is collected, processed and stored by the AES algorithm in big-endian form.

The following example illustrates how to configure the AES:

If the first 64 bits of a message (according to FIPS 197, i.e., big-endian format) to be processed is 0xcafedeca\_01234567, then AES\_IDATAR0 and AES\_IDATAR1 registers must be written with the following pattern:

- AES\_IDATAR0 = 0xcadefeca
- AES\_IDATAR1 = 0x67452301

#### Table 66-5:DC Characteristics

| Symbol              | Parameter          | Conditions                    | Min | Тур | Max | Unit       |  |
|---------------------|--------------------|-------------------------------|-----|-----|-----|------------|--|
| P                   |                    | GPIO_CLK, GPIO_IO, GPIO: 1.8V | 80  | 143 | 310 | <u>۲</u> 0 |  |
| NPULLUP             |                    | GPIO_CLK, GPIO_IO, GPIO: 3.3V | 40  | 66  | 130 | K12        |  |
| D                   | Bull down Posistor | GPIO_CLK, GPIO_IO, GPIO: 1.8V |     | 161 | 430 | ۲O         |  |
| RPULLDOWN           |                    | GPIO_CLK, GPIO_IO, GPIO: 3.3V | 40  | 77  | 160 | K12        |  |
| р                   | Pull up Register   | GPIO_AD: 1.8V                 | 280 | 380 | 480 | ۲O         |  |
| RPULLUP             | Full-up Resistor   | GPIO_AD: 3.3V                 | 280 | 380 | 480 | K12        |  |
| Б                   | Bull down Register | GPIO_AD: 1.8V                 | 280 | 380 | 480 | ۲Q         |  |
| NPULLDOWN           | Pull-down Resistor | GPIO_AD: 3.3V                 | 280 | 380 | 480 | 480 602    |  |
|                     |                    | GPIO                          | _   | 30  | _   | Ω          |  |
| R <sub>SERIAL</sub> | Serial Resistor    | GPIO_IO                       | _   | 13  | _   | Ω          |  |
|                     |                    | GPIO_CLK, GPIO_AD             | _   | 0   | _   | Ω          |  |

Notes: 1.  $V_{DDIO}$  voltage must be equal to  $V_{DDIN}$  voltage.

2. Current injection may lead to performance degradation or functional failures.

#### Table 66-6: I/O Switching Frequency

| GPIO Type | Drive                    |      | l lm it   |     |        |
|-----------|--------------------------|------|-----------|-----|--------|
|           | C <sub>Load</sub> = 30pF | 1.8V | 1.8V 2.5V |     |        |
|           | Low                      | 8    | 12        | 15  |        |
| GPIO_IO   | Medium                   | 60   | 80        | 90  |        |
|           | High                     | 80   | 110       | 110 |        |
|           | Low                      | 10   | 15        | 18  |        |
| GPIO_CLK  | Medium                   | 90   | 100       | 120 |        |
|           | High                     | -    | -         | -   |        |
|           | Low                      | 10   | 15        | 18  | IVICIZ |
| GPIO_AD   | Medium                   | 90   | 100       | 120 |        |
|           | High                     | -    | _         | _   |        |
| GPIO      | Low                      | 7    | 10        | 12  |        |
|           | Medium                   | 40   | 50        | 60  |        |
|           | High                     | 50   | 60        | 70  |        |

#### Table 66-7: QSPI I/O Switching Frequency

| GPIO Type | Description              | Name             | Conditions   | Min | Мах | Unit |
|-----------|--------------------------|------------------|--------------|-----|-----|------|
|           | Maximum output frequency | f <sub>max</sub> | Load = 30 pF | -   | 133 | MHz  |
| Grio_Qori | Output duty cycle        | -                | Load = 30 pF | 45  | 55  | %    |

### 68. Schematic Checklist

The schematic checklist provides the user with the requirements regarding the different pin connections that must be considered before starting any new board design as well as information on the minimum hardware resources required to quickly develop an application with the SAMA5D2. It does not consider PCB layout constraints.

It also provides recommendations regarding low-power design constraints to minimize power consumption.

This information is not intended to be exhaustive. Its objective is to cover as many configurations of use as possible.

The checklist contains a column for use by designers, making it easy to track and verify each line item.

## 72. Revision History

| Table 72-1: | SAMA5D2 Datasheet DS60001476 Rev. B Revision History |
|-------------|------------------------------------------------------|
|-------------|------------------------------------------------------|

| Issue Date | Changes                                                                                                                       |  |  |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|            | Section 6. "Package and Pinout"                                                                                               |  |  |  |  |
|            | Table 6-2 Pin Description: added notes <sup>(2)</sup> and <sup>(3)</sup> .                                                    |  |  |  |  |
|            | Table 6-3 Pin Description (SAMA5D23 pins different from those in Table 6-2 "Pin Description"): added note <sup>(2)</sup> .    |  |  |  |  |
|            | Table 6-4 Pin Description (SAMA5D28B/C pins different from those in Table 6-2 "Pin Description"): added note <sup>(2)</sup> . |  |  |  |  |
|            | Section 7. "Power Considerations"                                                                                             |  |  |  |  |
|            | Updated Figure 7-1 "Recommended Powerup Sequence" and Table 7-2 "Powerup Timing Specification".                               |  |  |  |  |
|            | Section 16. "Standard Boot Strategies"                                                                                        |  |  |  |  |
|            | Updated Section 16.4.7.3 "SDCard / e.MMC Boot".                                                                               |  |  |  |  |
|            | Reworked Section 16.4.7.6 "QSPI NOR Flash Boot for MRL C".                                                                    |  |  |  |  |
|            | Section 29. "Peripheral Touch Controller (PTC)"                                                                               |  |  |  |  |
|            | - Replaced "Peripheral Touch Controller" with "Peripheral Touch Controller Subsystem".                                        |  |  |  |  |
|            | - Changed "PTC_IRQ_EVT" to "PTC_IRQ".                                                                                         |  |  |  |  |
|            | - Replaced "PIO" and "IO" with "GPIO".                                                                                        |  |  |  |  |
|            | Updated:                                                                                                                      |  |  |  |  |
| Jul-2017   | - Figure 29-1. "PTC Block Diagram"                                                                                            |  |  |  |  |
|            | - Section 29.2 "Embedded Characteristics"                                                                                     |  |  |  |  |
|            | - Section 29.5.2 "I/O Lines"                                                                                                  |  |  |  |  |
|            | - Section 29.5.3 "Interrupt Sources"                                                                                          |  |  |  |  |
|            | - Section 29.6.2.3 "Firmware in SRAM Code Area"                                                                               |  |  |  |  |
|            | Section 29.5.1 "Power Management": updated description of "SLCK".                                                             |  |  |  |  |
|            | Section 29.6.3.1 "PTC Digital Controller Operations": modified Sensing mode description.                                      |  |  |  |  |
|            | Renamed and reworked Section 29.7.1 "PTC Command Register" and Section 29.7.2 "PTC Interrupt Status Register".                |  |  |  |  |
|            | Section 29.7.3 "PTC Enable Register": removed field CLR_IRQEN, and replaced field SET_IRQEN with bits IER0, IER1, IER2, IER3. |  |  |  |  |
|            | Renamed the following registers:                                                                                              |  |  |  |  |
|            | - "Mode 1: Write Access" to "PTC Command Register"                                                                            |  |  |  |  |
|            | - "Host Flags" to "PTC Interrupt Status Register"                                                                             |  |  |  |  |
|            | - "Host Flags Control" to "PTC Enable Register"                                                                               |  |  |  |  |
|            | Section 39. "LCD Controller (LCDC)"                                                                                           |  |  |  |  |
|            | Corrected Figure 39-1. Block Diagram (added "PP Layer" block).                                                                |  |  |  |  |
|            | cont'd on next page                                                                                                           |  |  |  |  |