

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XFI

Product Status	Obsolete
Core Processor	ARM® Cortex®-A5
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	500MHz
Co-Processors/DSP	Multimedia; NEON™ MPE
RAM Controllers	LPDDR1, LPDDR2, LPDDR3, DDR2, DDR3, DDR3L, QSPI
Graphics Acceleration	Yes
Display & Interface Controllers	Keyboard, LCD, Touchscreen
Ethernet	10/100Mbps (1)
SATA	-
USB	USB 2.0 + HSIC
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 85°C (TA)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC
Package / Case	289-LFBGA
Supplier Device Package	289-LFBGA (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsama5d27a-cur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Configuration Summary

		J	. ,					
Feature	SAMA5D21	SAMA5D22	SAMA5D23	SAMA5D24	SAMA5D26	SAMA5D27	SAMA5D28	
Package		TFBGA196		TFBGA256	LFBGA289			
PIOs		72		105		128		
DDR Bus		16-bit			16/3	32-bit		
SMC				Up to 16-bit				
SRAM		128 Kbytes						
QSPI				2				
LCD				24-bit RGB				
Camera Interface (ISC)				1				
EMAC				1				
PTC	_	4 X-lines	x 8 Y-lines	8 X-lines x 8 Y-lines	_	– 8 X-lines x 8 Y-lines		
CAN	- 1				_	2	2	
USB	2 (2 Hosts or 1 Host/1 Device)			3 (2 Hosts/ 1 HSIC, or 1 Host/ 1 Device/ 1 HSIC)	2 (2 Hosts or 1 Host/ 1 Device) 3 (2 Hosts/1 HSIC or 1 Host/1 Device/1 HSIC)			
UART/SPI/I ² C	-	9/6/6			10 /	7/7		
SDIO/SD/MMC		1				2		
I ² S/SSC/ Class D/PDM				2/2/1/1				
ADC Inputs		5			1	2		
Timers		5				6		
PWM		4 (PWM) + 5 (TC)		4 (PWM)) + 6 (TC)		
Tamper Pins		6		2		8		
AESB	_		Yes		_	Ye	es	
Environmental Monitors, Die Shield	-	_	Yes		Ye			

Table 2-1: SAMA5D2 Configuration Summary

For information on device pin compatibility, see Section 6.2 "Pinouts".

				-	Primary		Alternate			PIO poriphoral			
289-	256-	196- nin			r rinnar y		Alternate					10	Reset State
BGA	BGA	BGA	Power Rail	I/O Type	Signal	Dir	Signal	Dir	Func	Signal	Dir	Set	PD, HiZ, ST) ⁽¹⁾⁽²⁾
									А	LCDPCK	0	2	
									В	FLEXCOM4_IO4	0	1	
G10	E9	-	VDDIOP2	GPIO_CLK	PD0	I/O	-	-	С	UTXD3	0	2	PIO, I, PU, ST
									D	GTSUCOMP	0	2	
									F	A23	0	2	
									А	LCDDEN	0	2	
E10	F8	-	VDDIOP2	GPIO	PD1	I/O	-	-	D	GRXCK	Т	2	PIO, I, PU, ST
									F	A24	0	2	
									А	URXD1	I	1	
<u> </u>	50				002	10			D	GTXER	0	2	
Ga	г9	_	VDDIOP2	GPIO_CLK	PDZ	1/0	-	-	Е	ISC_MCK	0	2	PIO, I, PO, SI
									F	A25	0	2	
									А	UTXD1	0	1	
									В	FIQ	Т	2	
K1	J4	-	VDDANA	GPIO_AD	PD3	I/O	PTC_X0	-	D	GCRS	Т	2	PIO, I, PU, ST
									Е	ISC_D11	Ι	2	
									F	NWAIT	Ι	2	
									А	TWD1	I/O	2	
									В	URXD2	Ι	1	
J6	H6	-	VDDANA	GPIO_AD	PD4	I/O	PTC_X1	-	D	GCOL	Т	2	PIO, I, PU, ST
									Е	ISC_D10	Т	2	
									F	NCS0	0	2	
									А	TWCK1	I/O	2	
									В	UTXD2	0	1	
J4	H1	-	VDDANA	GPIO_AD	PD5	I/O	PTC_X2	-	D	GRX2	Т	2	PIO, I, PU, ST
									Е	ISC_D9	Ι	2	
									F	NCS1	0	2	
									А	ТСК	Ι	2	
									В	PCK1	0	1	
J2	G4	-	VDDANA	GPIO_AD	PD6	I/O	PTC_X3	-	D	GRX3	Ι	2	PIO, I, PU, ST
									Е	ISC_D8	Ι	2	
									F	NCS2	0	2	
									А	TDI	Т	2	
									С	UTMI_RXVAL	0	1	
J7	H5	F5	VDDANA	GPIO_AD	PD7	I/O	PTC_X4	-	D	GTX2	0	2	PIO, I, PU, ST
									Е	ISC_D0	I	2	
									F	NWR1/NBS1	0	2	

Table 6-2:	Pin Description	(Continued)
------------	-----------------	-------------

18.13.8 Master Error Status Register

Name:	MATRIX_MESR						
Address:	0xF001815C (0), 0xF0	C03C15C (1)					
Access:	Read-only						
31	30	29	28	27	26	25	24
-	_	_	_	—		_	—
23	22	21	20	19	18	17	16
_	_			_		_	_
15	14	13	12	11	10	9	8
_	-		_	MERR11	MERR10	MERR9	MERR8
7	6	5	4	3	2	1	0
MERR7	/ MERR6	MERR5	MERR4	MERR3	MERR2	MERR1	MERR0

MERRx: Master x Access Error

0: No Master Access Error has occurred since the last read of the MATRIX_MESR.

1: At least one Master Access Error has occurred since the last read of the MATRIX_MESR.

18.13.9	Master Error Addre	ess Registers								
Name:	MATRIX_MEARx [x=0	11]								
Address:	0xF0018160 (0), 0xFC03C160 (1)									
Access:	Read-only									
31	30	29	28	27	26	25	24			
			ERR	ADD						
23	22	21	20	19	18	17	16			
			ERR	ADD						
15	14	13	12	11	10	9	8			
			ERR	ADD						
7	6	5	4	3	2	1	0			
			ERR	ADD						

ERRADD: Master Error Address

Master Last Access Error Address

24

25

26.6.18 RTC TimeStamp Time Register 1

Name:	RTC_	RTC_TSTR1							
Address:	0xF8)xF804816C							
Access:	Read	-only							
31		30	29	28					
BACKI	JP	_	_	_					

BACKUP	-	-	-	-	-	-	-			
23	22	21	20	19	18	17	16			
—	AMPM		HOUR							
15	14	13	12	11	10	9	8			
_				MIN						
7	6	5	4	3	2	1	0			
_				SEC						

27

26

These fields are valid for non-UTC mode only.

RTC_TSTR1 reports the timestamp of the last tamper event.

This register is cleared by reading RTC_TSSR1.

SEC: Seconds of the Tamper

MIN: Minutes of the Tamper

HOUR: Hours of the Tamper

AMPM: AM/PM Indicator of the Tamper

BACKUP: System Mode of the Tamper

0: The state of the system is different from Backup mode when the tamper event occurs.

1: The system is in Backup mode when the tamper event occurs.

33.14 Fast Startup from Ultra Low-power (ULP) Mode 0

In Ultra Low-power (ULP) mode 0, the Main clock (MAINCK) must be running, thus either the 12 MHz crystal oscillator or the Fast RC oscillator must be enabled. The lowest power consumption that can be achieved in ULP Mode 0, can be obtained when dividing the selected oscillator frequency by 64 by writing PMC_MCKR.PRES to 6. Any interrupt exits the system from ULP Mode. The software must write PMC_MCKR.PRES to 1 to provide MCK with the fastest clock. If the PLL is used, the startup procedure must be done prior to writing PMC_MCKR.PRES to 1. Figure 33-5 illustrates an example of startup phase from ULP Mode 0 without use of PLL.

Warning: The duration of the WKUPx pins active level must be greater than four MAINCK cycles.

34.7.28 Secure PIO I/O Security Status Register

Name: S_PIO_IOSSRx [x=0..3]

Address: 0xFC039038 [0], 0xFC039078 [1], 0xFC0390B8 [2], 0xFC0390F8 [3]

Access: Read-only

31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

P0-P31: I/O Security Status

0 (SECURE): The I/O line of the I/O group x is in Secure mode.

1 (NON_SECURE): The I/O line of the I/O group x is in Non-Secure mode.

Value	Name	Description
0	CLUT_1BPP	Color Lookup Table mode set to 1 bit per pixel
1	CLUT_2BPP	Color Lookup Table mode set to 2 bits per pixel
2	CLUT_4BPP	Color Lookup Table mode set to 4 bits per pixel
3	CLUT_8BPP	Color Lookup Table mode set to 8 bits per pixel

CLUTMODE: Color Lookup Table Mode Input Selection

39.7.51 Overlay 1 Configuration Register 6

Name: Address: Access:	LCDC_OVR1CFG6 0xF0000184 Read/Write								
31	30	29	28	27	26	25	24		
_	_	_	—	_	_	_	_		
23	22	21	20 RD	19 EF	18	17	16		
15	14	13	12	11 FF	10	9	8		
GDEF									
7	6	5	4	3	2	1	0		
			BD	EF					

RDEF: Red Default

Default Red color when the Overlay 1 DMA channel is disabled.

GDEF: Green Default

Default Green color when the Overlay 1 DMA channel is disabled.

BDEF: Blue Default

Default Blue color when the Overlay 1 DMA channel is disabled.

39.7.110	High-End Overlay	conniguration	Register 15					
Name:	LCDC_HEOCFG15							
Address:	0xF00003C8							
Access:	Read/Write							
31	30	29	28	27	26	25	24	
—	CSCUOFF CSCGV							
23	22	21	20	19	18	17	16	
	CSC	GV		CSCGU				
15	14	13	12	11	10	9	8	
		CS	CGU			CSC	CGY	
7	6	5	4	3	2	1	0	
			CSC	GY				

20.7.110 High End Overlay Configuration Pagister 15

CSCGY: Color Space Conversion Y coefficient for Green Component 1:2:7 format

Color Space Conversion coefficient format is 1 sign bit, 2 magnitude bits and 7 fractional bits.

CSCGU: Color Space Conversion U coefficient for Green Component 1:2:7 format

Color Space Conversion coefficient format is 1 sign bit, 2 magnitude bits and 7 fractional bits.

CSCGV: Color Space Conversion V coefficient for Green Component 1:2:7 format

Color Space Conversion coefficient format is 1 sign bit, 2 magnitude bits and 7 fractional bits.

CSCUOFF: Color Space Conversion Offset

0: Offset is set to 0

1: Offset is set to 128

40.8.98	GMAC PTP Event Frame Transmitted Seconds Low Register						
Name:	GMAC_EFTSL						
Address:	0xF80081E0						
Access:	Read-only						
31	30	29	28	27	26	25	24
			Rl	D			
23	22	21	20	19	18	17	16
			Rl	D			
15	14	13	12	11	10	9	8
			Rl	JD			
7	6	5	4	3	2	1	0
			RI	JD			

RUD: Register Update

The register is updated with the value that the 1588 Timer Seconds Register holds when the SFD of a PTP transmit primary event crosses the MII interface. An interrupt is issued when the register is updated.

Name:	GMAC_TBQBAPQx[x=12]						
Address:	0xF8008440						
Access:	Read/Write						
31	30	29	28	27	26	25	24
			TXB	QBA			
23	22	21	20	19	18	17	16
TXBQBA							
15	14	13	12	11	10	9	8
TXBQBA							
7	6	5	4	3	2	1	0
	TXBQBA – –				_		

40.8.111 GMAC Transmit Buffer Queue Base Address Register Priority Queue x

These registers hold the start address of the transmit buffer queues (transmit buffers descriptor lists) for the additional queues and must be initialized to the address of valid descriptors, even if the priority queues are not used.

TXBQBA: Transmit Buffer Queue Base Address

Written with the address of the start of the transmit queue.

40.8.121 GMAC Interrupt Mask Register Priority Queue x

Name:	GMAC_IMRPQx[x=1	2]					
Address:	0xF8008640						
Access:	Read/Write						
31	30	29	28	27	26	25	24
			-	_			
23	22	21	20	19	18	17	16
			-	_			
15	14	13	12	11	10	9	8
	-	-		HRESP	ROVR	-	-
7	6	5	4	3	2	1	0
TCON	IP AHB	RLEX	_	_	RXUBR	RCOMP	_

A read of this register returns the value of the receive complete interrupt mask.

A write to this register directly affects the state of the corresponding bit in the Interrupt Status Register, causing an interrupt to be generated if a 1 is written.

The following values are valid for all listed bit names of this register:

0: Corresponding interrupt is enabled.

1: Corresponding interrupt is disabled.

RCOMP: Receive Complete

RXUBR: RX Used Bit Read

RLEX: Retry Limit Exceeded or Late Collision

AHB: AHB Error

TCOMP: Transmit Complete

ROVR: Receive Overrun

HRESP: HRESP Not OK

Figure 46-22: TWIHS Read Operation with Single Data Byte and Internal Address

50.6.3 Transfer Delays

Figure 50-4 shows several consecutive transfers while the chip select is active. Three delays can be programmed to modify the transfer waveforms:

- The delay between the deactivation and the activation of QCS, programmed by writing QSPI_MR.DLYCS. Allows to adjust the minimum time of QCS at high level.
- The delay before QSCK, programmed by writing QSPI_SR.DLYBS. Allows the start of QSCK to be delayed after the chip select has been asserted.
- The delay between consecutive transfers, programmed by writing QSPI_MR.DLYBCT. Allows insertion of a delay between two consecutive transfers. In Serial Memory mode, this delay is not programmable and DLYBCT is ignored. In this mode, DLYBCT must be written to '0'.

These delays allow the QSPI to be adapted to the interfaced peripherals and their speed and bus release time.

Figure 50-4: Programmable Delays

50.6.4 QSPI SPI Mode

In SPI mode, the QSPI acts as a standard SPI Master.

To activate this mode, QSPI_MR.SMM must be written to '0' in QSPI_MR.

50.6.4.1 SPI Mode Operations

The QSPI in standard SPI mode operates on the clock generated by the internal programmable baud rate generator. It fully controls the data transfers to and from the slave connected to the SPI bus. The QSPI drives the chip select line to the slave (QCS) and the serial clock signal (QSCK).

The QSPI features two holding registers, the Transmit Data register (QSPI_TDR) and the Receive Data register (QSPI_RDR), and a single internal shift register. The holding registers maintain the data flow at a constant rate.

After enabling the QSPI, a data transfer begins when the processor writes to the QSPI_TDR. The written data is immediately transferred to the internal shift register and transfer on the SPI bus starts. While the data in the internal shift register is shifted on the MOSI line, the MISO line is sampled and shifted to the internal shift register. Receiving data cannot occur without transmitting data. If receiving mode is not needed, for example when communicating with a slave receiver only (such as an LCD), the receive status flags in the Status register (QSPI_SR) can be discarded.

If new data is written in QSPI_TDR during the transfer, it is retained there until the current transfer is completed. Then, the received data is transferred from the internal shift register to the QSPI_RDR, the data in QSPI_TDR is loaded in the internal shift register and a new transfer starts.

The transfer of a data written in QSPI_TDR in the internal shift register is indicated by the Transmit Data Register Empty (TDRE) bit in the QSPI_SR. When new data is written in QSPI_TDR, this bit is cleared. QSPI_SR.TDRE is used to trigger the Transmit DMA channel.

The end of transfer is indicated by the TXEMPTY flag in the QSPI_SR. If a transfer delay (DLYBCT) is greater than 0 for the last transfer, QSPI_SR.TXEMPTY is set after the completion of this delay. The peripheral clock can be switched off at this time.

The transfer of received data from the internal shift register in QSPI_RDR is indicated by the Receive Data Register Full (RDRF) bit in the QSPI_SR. When the received data is read, QSPI_SR.RDRF bit is cleared.

If the QSPI_RDR has not been read before new data is received, the Overrun Error Status (OVRES) bit in QSPI_SR is set. As long as this flag is set, data is loaded in QSPI_RDR. The user must read the QSPI_SR to clear the OVRES bit.

Figure 50-5 shows a block diagram of the SPI when operating in Master mode. Figure 50-6 shows a flow chart describing how transfers are handled.

Example 5:

Instruction in Single-bit SPI, with address in Dual SPI, without option, with data write in Dual SPI.

Command: BYTE/PAGE PROGRAM (02h)

- Write 0x0000_0002 in QSPI_ICR.
- Write 0x0000_30B3 in QSPI_IFR.
- Read QSPI_IFR (dummy read) to synchronize system bus accesses.
- Write data in the QSPI system bus memory space (0x9000_00000-0x9800_00000/0XD000_0000-0XD800_0000). The address of the first system bus write accesss is sent in the instruction frame. The address of the next system bus write accesses is not used.
- Write a '1' to QSPI_CR.LASTXFR.
- Wait for QSPI_SR.INSTRE to rise.

Figure 50-15: Instruction Transmission Waveform 5

52.5.12 4:4:4 To 4:2:2 Chrominance Horizontal Subsampler (SUB422) Module

The color space conversion output stream is a full-bandwidth YCbCr 4:4:4 signal. The chrominance subsampling divides the horizontal chrominance sampling rate by two. A horizontal low pass filter is applied to avoid aliasing effect. The SUB422 module samples 444 full scale YCbCr cbc_data[29:0] 30-bit data, performs horizontal subsampling and generates the sub422_data[39:0] 40-bit data bus with its validity signal sub422_valid.

Figure 52-27: SUB422 Block Diagram

ISC_SUB422_CTRL.ENABLE	ISC_SUB422_CFG.CCIR	SUB422_DATA Slice	Value
0	0	sub422_data[29:0]	cbc_data[29:0]
		sub422_data[39:30]	Y1= cbc_data1[29:20]
1	0	sub422_data[29:20]	Y0 = cbc_data0[29:20]
		sub422_data[19:10]	Cb = filter_hor(cbc_data[19:10])
		sub422_data[9:0]	Cr = filter_hor(cbc_data[9:0])
		sub422_data[39:30]	Y1 = cbc_data[9:0]
1	1	sub422_data[29:20]	$Y0 = cbc_data[9:0]$
		sub422_data[19:10]	Cb = cbc_data[9:0]
		sub422_data[9:0]	$Cr = cbc_data[9:0]$

The filter_hor function included in the sub422 module is the chrominance horizontal filter.

sub422 data slice	YCbCr mapping
sub422_data[39:30]	Y1 (sample <i>n</i>)
sub422_data[29:20]	Y0 (sample <i>n-1</i>)
sub422_data[19:10]	Cb (from filter)
sub422_data[9:0]	Cr (from filter)

The filter chrominance position is selectable through the use of the ISC_SUB422_CFG.FILTER field.

Note: 1. Optional

60.4.6.2 Key Writing and Automatic Hash Subkey Calculation

Whenever a new key is written to the hardware, two automatic actions are processed:

 GCM Hash Subkey H generation—The GCM hash subkey (H) is automatically generated. The GCM hash subkey generation must be complete before doing any other action. AES_ISR.DATRDY indicates when the subkey generation is complete (with interrupt if configured). The GCM hash subkey calculation is processed with the formula H = CIPHER(Key, <128 bits to zero>). The generated GCM H value is then available in AES_GCMHRx. If the application software requires a specific hash subkey, the automatically generated H value can be overwritten in AES_GCMHRx.

AES_GCMHRx can be written after the end of the hash subkey generation (see AES_ISR.DATRDY) and prior to starting the input data feed.

- AES_GHASHRx Clear—AES_GHASHRx are automatically cleared. If a hash initial value is needed for the GHASH, it must be written to AES_GHASHRx
 - after a write to the AES Key Register, if any
 - before starting the input data feed

60.4.6.3 GCM Processing

GCM processing is made up of three phases:

- 1. Processing the Additional Authenticated Data (AAD), hash computation only.
- 2. Processing the Ciphertext (*C*), hash computation + ciphering/deciphering.

When TSMODE = 1 or 3, each trigger event adds two half-words in the buffer (assuming TSAV = 0), first half-word being XPOS of ADC_XPOSR then YPOS of ADC_YPOSR. If TSAV/TSFREQ \neq 0, the data structure remains unchanged. Not all trigger events add data to the buffer.

When TSMODE = 2, each trigger event adds four half-words to the buffer (assuming TSAV = 0), first half-word being XPOS of ADC_XPOSR followed by YPOS of ADC_YPOSR and finally Z1 followed by Z2, both located in ADC_PRESSR.

When TAG is set (ADC_EMR), the CHNB field (four most significant bits of ADC_LCDR) is cleared when XPOS is transmitted and set when YPOS is transmitted, allowing an easier post-processing of the buffer or a better checking of the buffer integrity. In case 4-wire with Pressure mode is selected, Z1 value is transmitted to the buffer along with tag set to 2 and Z2 is tagged with value 3.

XSCALE and YSCALE (calibration values) are not transmitted to the buffer because they are supposed to be constant and moreover only measured at the very first startup of the controller or upon user request.

There is no change in buffer structure whatever the value of PENDET bit configuration in ADC_TSMR but it is recommended to use the pen detection function for buffer post-processing (see Section 65.6.17.4 "Pen Detection Status").

Issue Date	Changes
	Section 41. "Inter-IC Sound Controller (I2SC)"
	Section 41.6.3 "Master, Controller and Slave Modes": removed text fragment: 'in order to avoid unwanted glitches on the I2SWS and I2SCK pins.'
	Section 41.8.2 "Inter-IC Sound Controller Mode Register": removed text fragment: 'in order to avoid unexpected behavior on the I2SWS, I2SCK and I2SDO outputs.' and added note ⁽²⁾ below IMCKDIV field description.
	Section 44. "Flexible Serial Communication Controller (FLEXCOM)"
	Restored all references to ISO7816 specification
	Updated Figure 44-3 "Fractional Baud Rate Generator"
	Added Figure 44-27 "RTS line software control when FLEX_US_MR.USART_MODE = 2"
	Section 44.10.6 "USART Mode Register": updated USART_MODE field description (SPI_MASTER item)
	Section 44.10.44 "SPI Mode Register": added LBHPC bit
	Section 55. "Universal Asynchronous Receiver Transmitter (UART)"
	Section 55.6.9 "UART Baud Rate Generator Register": in CD field description, corrected equation after "If BRSRCCK = 1"
	Section 59. "Quad SPI Interface (QSPI)"
	Section 59.7.5 "QSPI Status Register": updated RDRF, TDRE, TXEMPTY, and OVRES field descriptions
	Section 48. "Secure Digital Multimedia Card Controller (SDMMC)"
	Section 48.12.41 "SDMMC Preset Value Register": updated CLKGSEL field description
	Section 49. "Image Sensor Controller (ISC)"
8-Jan-16	Section 49.1 "Description": removed "serial csi-2 based CMOS/CCD sensor" (not supported).
	Section 50. "Controller Area Network (MCAN)"
	Changed MCAN interrupt line names to MCAN_INT0 and MCAN_INT1 thoughout the section
	Section 50.6.7 "MCAN CC Control Register": added bit NISO
	Section 51. "Timer Counter (TC)"
	Reformatted and renamed Table 51-2 "Channel Signal Description"
	Section 51.6.3 "Clock Selection": updated notes ⁽¹⁾ and ⁽²⁾
	Section 52. "Pulse Density Modulation Interface Controller (PDMIC)"
	Replaced all instances of "PCK" with "GCLK"
	Section 52.2 "Embedded Characteristics": removed 'Multiplexed PDM Input Support' characteristic
	Updated Section 52.5.2 "Power Management" and Section 52.6.2.1 "Description"
	Section 52.6.2.6 "Gain and Offset Compensation": updated dgain bullet
	Section 52.7.3 "PDMIC Converted Data Register": updated DATA field description
	Section 52.7.8 "PDMIC DSP Configuration Register 0": updated OSR field description
	Section 61. "Security Module"
	Section 61.5.5 "SECUMOD Status Clear Register": removed MCKM field description
	Section 61.5.18 "SECUMOD Wake Up Register": removed TPML field description
	Section 77. "Analog-to-Digital Converter (ADC)"
	Section 77.7.2 "ADC Mode Register": updated TRACKTIM and TRANSFER field descriptions.

Table 72-5: SAMA5D2 Datasheet Rev. 11267C Revision History (Continued)