

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XF

Product Status	Active
Core Processor	ARM® Cortex®-A5
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	500MHz
Co-Processors/DSP	Multimedia; NEON™ MPE
RAM Controllers	LPDDR1, LPDDR2, LPDDR3, DDR2, DDR3, DDR3L, QSPI
Graphics Acceleration	Yes
Display & Interface Controllers	Keyboard, LCD, Touchscreen
Ethernet	10/100Mbps (1)
SATA	-
USB	USB 2.0 + HSIC
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC
Package / Case	289-LFBGA
Supplier Device Package	289-LFBGA (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsama5d28a-cnr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name:	L2CC_CIIR						
Address:	0x00A007F8						
Access:	Read/Write						
31	30	29	28	27	26	25	24
-		WAY		_	-	_	—
23	22	21	20	19	18	17	16
-	_	_	—	—	_	_	—
15	14	13	12	11	10	9	8
-	-			IC	X		
7	6	5	4	3	2	1	0
	IDX		_	_	_	_	C

14.5.23 L2CC Clean Invalidate Index Register

C: Cache Synchronization Status

0: No background operation is in progress. When written, must be zero.

1: A background operation is in progress.

IDX: Index Number

WAY: Way Number

19.3.4 Security Configuration Register

Address: 0xF8030028

Access: Read/Write

31	30	29	28	27	26	25	24
_	-	-	-	-	_	-	_
23	22	21	20	19	18	17	16
—	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	-	-	Ι	-	—	-	FUSE
7	6	5	4	3	2	1	0
_	_	_	_	_	_	_	ROM

ROM: Disable Access to ROM Code

This bit is writable once only. When the ROM is secured, only a reset signal can clear this bit.

0: ROM is enabled.

1: ROM is disabled.

FUSE: Disable Access to Fuse Controller

This bit is writable once only. When the Fuse Controller is secured, only a reset signal can clear this bit.

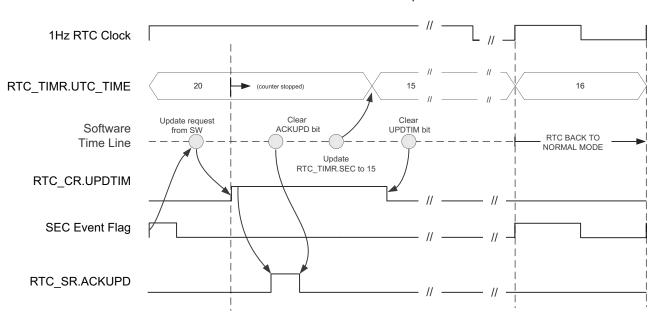
0: Fuse Controller is enabled.

1: Fuse Controller is disabled.

26.5.6.2 UTC Mode

The update of the UTC time field must be synchronized on a second periodic event by either polling the RTC_SR.SEC status bit or by enabling the SECEN interrupt in the RTC_IER.

Once the second event occurs, the user must stop the RTC by setting the UPDTIM field in the Control Register (RTC_CR).


The ACKUPD bit must then be read to 1 by either polling the RTC_SR or by enabling the ACKUPD interrupt in the RTC_IER. Once ACK-UPD is read to 1, it is mandatory to clear this flag by writing the corresponding bit in the RTC_SCCR, after which the user can write to the Time Register.

Once the update is finished, the user must write UPDTIM to 0 in the RTC_CR.

The timing sequence of the UTC time update is described in Figure 26-4 "UTC Time Update Timing Diagram".

In successive update operations, the user must wait for at least one second after resetting the UPDTIM bit in the RTC_CR before setting this bit again. This is done by waiting for the SEC flag in the RTC_SR before setting UPDTIM bit. After resetting UPDTIM, the SEC flag must also be cleared.

General Time Update

In order to calibrate the 12 MHz oscillator frequency, SEL must be set to 1 and a correct frequency value must be configured in the CAL field.

It is possible to restart, at anytime, a measurement of the frequency of the selected clock by means of the RCMEAS bit in the Clock Generator Main Clock Frequency register (CKGR_MCFR). Thus, when MAINFRDY flag reads 1, another read access on CKGR_MCFR provides an image of the frequency of the Main clock on MAINF field. The software can calculate the error with an expected frequency and correct PMC_OCR.CAL accordingly. This may be used to compensate frequency drift due to derating factors such as temperature and/or voltage.

32.5.3 8 to 24 MHz Crystal Oscillator

After reset, the 8 to 24 MHz crystal oscillator is disabled and is not selected as the source of MAINCK.

As the source of MAINCK, the 8 to 24 MHz crystal oscillator provides an accurate frequency. The software enables or disables this oscillator in order to reduce power consumption via CKGR_MOR.MOSCXTEN.

When disabling this oscillator by clearing the CKGR_MOR.MOSCXTEN bit, the PMC_SR.MOSCXTS bit is automatically cleared, indicating the 8 to 24 MHz crystal oscillator is off.

When enabling this oscillator, the user must initiate the startup time counter. This startup time depends on the characteristics of the external device connected to this oscillator. Refer to Section 66. "Electrical Characteristics" for the startup time.

When CKGR_MOR.MOSCXTEN and CKGR_MOR.MOSCXTST are written to enable this oscillator, the PMC_SR.MOSCXTS bit is cleared and the counter starts counting down on the Slow clock divided by 8 from the MOSCXTST value. When the counter reaches 0, the PMC_SR.MOSCXTS is set, indicating that the 8 to 24 MHz crystal oscillator is stabilized. Setting MOSCXTS in the PMC Interrupt Mask register (PMC_IMR) triggers an interrupt to the processor.

32.5.4 Main Clock Source Selection

The source of the Main clock can be selected from the following:

- embedded 12 MHz RC oscillator
- 8 to 24 MHz crystal oscillator
- an XRCGB crystal resonator

The advantage of the Main RC oscillator is its fast startup time. By default, this oscillator is selected to start the system and it must be selected prior to entering Wait mode.

The advantage of the Main crystal oscillator is its high level of accuracy.

The selection is made by writing CKGR_MOR.MOSCSEL. The switch of the Main clock source is glitch-free, so there is no need to run out of SLCK or PLLACK in order to change the selection. PMC_SR.MOSCSELS indicates when the switch sequence is done.

Setting PMC_IMR.MOSCSELS triggers an interrupt to the processor.

The 8 to 24 MHz crystal oscillator can be bypassed by setting the CKGR_MOR.MOSCXTBY to accept an external Main clock on XIN (refer to Section 32.5.5 "Bypassing the 8 to 24 MHz Crystal Oscillator").

MOSCRCEN, MOSCSEL, MOSCXTEN and MOSCXTBY bits are located in the PMC Clock Generator Main Oscillator Register (CKGR_MOR).

After a VDDBU power-on reset, the default configuration is MOSCRCEN = 1, MOSCXTEN = 0 and MOSCSEL = 0, allowing the 12 MHz RC oscillator to start as Main clock.

It takes two 32 kHz (typical) clock cycles to detect and switch from the 8 to 24 MHz crystal oscillator to the 12 MHz RC oscillator if the source Master clock (MCK) is Main clock (MAINCK), or three 32 kHz (typical) cycles if the source of MCK is PLLACK or UPLLCK.

A clock failure detection activates a fault output that is connected to the Pulse Width Modulator (PWM) Controller. With this connection, the PWM controller is able to force its outputs and to protect the driven device, if a clock failure is detected.

The user can know the status of the clock failure detector at any time by reading bit PMC_SR.FOS.

This fault output remains active until the defect is detected and until it is cleared by the bit FOCLR in the PMC Fault Output Clear register (PMC_FOCR).

33.18 32.768 kHz Crystal Oscillator Frequency Monitor

The frequency of the 32.768 kHz crystal oscillator can be monitored by means of logic driven by the 12 MHz RC oscillator known as a reliable clock source. This function is enabled by configuring the XT32KFME bit of CKGR_MOR.

The error flag XT32KERR in PMC_SR is asserted when the 32.768 kHz crystal oscillator frequency is out of the ±10% nominal frequency value (i.e., 32.768 kHz). The error flag can be cleared only if the Slow clock frequency monitoring is disabled.

The monitored clock frequency is declared invalid if at least four consecutive clock period measurement results are over the nominal period ±10%.

Due to the possible frequency variation of the embedded 12 MHz RC oscillator acting as reference clock for the monitor logic, any Slow clock crystal frequency deviation over $\pm 10\%$ of the nominal frequency is systematically reported as an error by means of PMC_SR.XT32KERR. Between -1% and -10% and +1% and +10%, the error is not systematically reported.

Thus, only a crystal running at a 32.768 kHz frequency ensures that the error flag is not asserted. The permitted drift of the crystal is 10000 ppm (1%), which allows any standard crystal to be used.

The error flag can be defined as an interrupt source of the PMC by setting PMC_IER.XT32KERR.

33.19 Programming Sequence

- Note 1: If the 8 to 24 MHz crystal oscillator is not required, PLL can be directly configured (begin with Step 9. or Step 10.) else this oscillator must be started (begin with Step 5.).
- 5. Enable the 8 to 24 MHz crystal oscillator by setting CKGR_MOR.MOSCXTEN. The user can define a startup time. This can be achieved by writing a value in CKGR_MOR.MOSCXTST. Once this register has been correctly configured, the user must wait for PMC_SR.MOSCXTS to be set. This can be done either by polling MOSCXTS or by waiting for the interrupt line to be raised if the associated interrupt source (MOSCXTS) has been enabled in PMC_IER.
- 6. Switch the MAINCK to the 8 to 24 MHz crystal oscillator by setting CKGR_MOR.MOSCSEL.
- 7. Wait for PMC_SR.MOSCSELS to be set to ensure the switchover is complete.
- 8. Check the Main clock frequency:

The Main clock frequency can be measured via CKGR_MCFR.

Read CKGR_MCFR until the MAINFRDY field is set, after which the user can read the field CKGR_MCFR.MAINF by performing an additional read. This provides the number of Main clock cycles that have been counted during a period of 16 Slow clock cycles.

If MAINF = 0, switch the MAINCK to the 12 MHz RC oscillator by clearing CKGR_MOR.MOSCSEL. If MAINF \neq 0, proceed to Step 9.

9. Set the PLLA and divider (if not required, proceed to Step 10.)

All parameters needed to configure PLLA and the divider are located in CKGR_PLLAR.

The MULA field is the PLLA multiplier factor. This parameter can be programmed between 0 and 127. If MULA is cleared, PLLA is turned off, otherwise the PLLA output frequency is PLLA input frequency multiplied by (MULA + 1).

The PLLACOUNT field specifies the number of Slow clock cycles before LOCKA bit is set in PMC_SR after CKGR_PLLAR has been written.

Once CKGR_PLLAR has been written, the user must wait for the LOCKA bit to be set in PMC_SR. This can be done either by polling LOCKA in PMC_SR or by waiting for the interrupt line to be raised if the associated interrupt source (LOCKA) has been enabled in PMC_IER. All parameters in CKGR_PLLAR can be programmed in a single write operation. If at some stage parameter MULA or DIVA is modified, LOCKA bit goes low to indicate that PLLA is not yet ready. When PLLA is locked, LOCKA is set again.

The user must wait for the LOCKA bit to be set before using the PLLA output clock.

10. Set Bias and High-speed PLL (UPLL) for UTMI

39.7 LCD Controller (LCDC) User Interface

Offset	Register	Name	Access	Reset
0x0000000	LCD Controller Configuration Register 0	LCDC_LCDCFG0	Read/ Write	0x00000000
0x00000004	LCD Controller Configuration Register 1	LCDC_LCDCFG1	Read/ Write	0x00000000
0x0000008	LCD Controller Configuration Register 2	LCDC_LCDCFG2	Read/ Write	0x00000000
0x000000C	LCD Controller Configuration Register 3	LCDC_LCDCFG3	Read/ Write	0x00000000
0x0000010	LCD Controller Configuration Register 4	LCDC_LCDCFG4	Read/ Write	0x00000000
0x00000014	LCD Controller Configuration Register 5	LCDC_LCDCFG5	Read/ Write	0x00000000
0x00000018	LCD Controller Configuration Register 6	LCDC_LCDCFG6	Read/ Write	0x00000000
0x0000001C	Reserved	-	-	-
0x0000020	LCD Controller Enable Register	LCDC_LCDEN	Write-only	-
0x00000024	LCD Controller Disable Register	LCDC_LCDDIS	Write-only	-
0x0000028	LCD Controller Status Register	LCDC_LCDSR	Read-only	0x00000000
0x0000002C	LCD Controller Interrupt Enable Register	LCDC_LCDIER	Write-only	-
0x0000030	LCD Controller Interrupt Disable Register	LCDC_LCDIDR	Write-only	_
0x0000034	LCD Controller Interrupt Mask Register	LCDC_LCDIMR	Read-only	0x00000000
0x0000038	LCD Controller Interrupt Status Register	LCDC_LCDISR	Read-only	0x00000000
0x000003C	LCD Controller Attribute Register	LCDC_ATTR	Write-only	-
0x00000040	Base Layer Channel Enable Register	LCDC_BASECHER	Write-only	-
0x00000044	Base Layer Channel Disable Register	LCDC_BASECHDR	Write-only	_
0x00000048	Base Layer Channel Status Register	LCDC_BASECHSR	Read-only	0x00000000
0x000004C	Base Layer Interrupt Enable Register	LCDC_BASEIER	Write-only	_
0x00000050	Base Layer Interrupt Disabled Register	LCDC_BASEIDR	Write-only	-
0x00000054	Base Layer Interrupt Mask Register	LCDC_BASEIMR	Read-only	0x00000000
0x0000058	Base Layer Interrupt Status Register	LCDC_BASEISR	Read-only	0x00000000
0x0000005C	Base DMA Head Register	LCDC_BASEHEAD	Read/ Write	0x00000000
0x0000060	Base DMA Address Register	LCDC_BASEADDR	Read/ Write	0x00000000
0x0000064	Base DMA Control Register	LCDC_BASECTRL	Read/ Write	0x00000000
0x0000068	Base DMA Next Register	LCDC_BASENEXT	Read/ Write	0x0000000

Table 39-55: Register Mapping

39.7.150	rost riocessing configuration Register 2										
Name:	LCDC_PPCFG2										
Address:	0xF0000574										
Access:	Read/Write	Read/Write									
31	30	29	28	27	26	25	24				
			XSTI	RIDE							
23	22	21	20	19	18	17	16				
			XSTI	RIDE							
15	14	13	12	11	10	9	8				
	XSTRIDE										
7	6	5	4	3	2	1	0				
			XSTI	RIDE							

39.7.150 Post Processing Configuration Register 2

XSTRIDE: Horizontal Stride

XSTRIDE represents the memory offset, in bytes, between two rows of the image memory.

Offset ^{(1) (2)}	Register	Name	Access	Reset
0x14C	Carrier Sense Errors Register	GMAC_CSE	Read-only	0x0000_0000
0x150	Octets Received Low Received Register	GMAC_ORLO	Read-only	0x0000_0000
0x154	Octets Received High Received Register	GMAC_ORHI	Read-only	0x0000_0000
0x158	Frames Received Register	GMAC_FR	Read-only	0x0000_0000
0x15C	Broadcast Frames Received Register	GMAC_BCFR	Read-only	0x0000_0000
0x160	Multicast Frames Received Register	GMAC_MFR	Read-only	0x0000_0000
0x164	Pause Frames Received Register	GMAC_PFR	Read-only	0x0000_0000
0x168	64 Byte Frames Received Register	GMAC_BFR64	Read-only	0x0000_0000
0x16C	65 to 127 Byte Frames Received Register	GMAC_TBFR127	Read-only	0x0000_0000
0x170	128 to 255 Byte Frames Received Register	GMAC_TBFR255	Read-only	0x0000_0000
0x174	256 to 511 Byte Frames Received Register	GMAC_TBFR511	Read-only	0x0000_0000
0x178	512 to 1023 Byte Frames Received Register	GMAC_TBFR1023	Read-only	0x0000_0000
0x17C	1024 to 1518 Byte Frames Received Register	GMAC_TBFR1518	Read-only	0x0000_0000
0x180	1519 to Maximum Byte Frames Received Register	GMAC_TMXBFR	Read-only	0x0000_0000
0x184	Undersize Frames Received Register	GMAC_UFR	Read-only	0x0000_0000
0x188	Oversize Frames Received Register	GMAC_OFR	Read-only	0x0000_0000
0x18C	Jabbers Received Register	GMAC_JR	Read-only	0x0000_0000
0x190	Frame Check Sequence Errors Register	GMAC_FCSE	Read-only	0x0000_0000
0x194	Length Field Frame Errors Register	GMAC_LFFE	Read-only	0x0000_0000
0x198	Receive Symbol Errors Register	GMAC_RSE	Read-only	0x0000_0000
0x19C	Alignment Errors Register	GMAC_AE	Read-only	0x0000_0000
0x1A0	Receive Resource Errors Register	GMAC_RRE	Read-only	0x0000_0000
0x1A4	Receive Overrun Register	GMAC_ROE	Read-only	0x0000_0000
0x1A8	IP Header Checksum Errors Register	GMAC_IHCE	Read-only	0x0000_0000
0x1AC	TCP Checksum Errors Register	GMAC_TCE	Read-only	0x0000_0000
0x1B0	UDP Checksum Errors Register	GMAC_UCE	Read-only	0x0000_0000
0x1B4–0x1B8	Reserved	-	_	_
0x1BC	1588 Timer Increment Sub-nanoseconds Register	GMAC_TISUBN	Read/Write	0x0000_0000
0x1C0	1588 Timer Seconds High Register	GMAC_TSH	Read/Write	0x0000_0000
0x1C4-0x1CC	Reserved	-	_	_
0x1D0	1588 Timer Seconds Low Register	GMAC_TSL	Read/Write	0x0000_0000
0x1D4	1588 Timer Nanoseconds Register	GMAC_TN	Read/Write	0x0000_0000
0x1D8	1588 Timer Adjust Register	GMAC_TA	Write-only	_
0x1DC	1588 Timer Increment Register	GMAC_TI	Read/Write	0x0000_0000
0x1E0	PTP Event Frame Transmitted Seconds Low Register	GMAC_EFTSL	Read-only	0x0000_0000

Table 40-18: Register Mapping (Continued)

RXRDY_TXKL: Received OUT Data Interrupt Disable

0: No effect.

1: Disable Received OUT Data Interrupt.

TX_COMPLT: Transmitted IN Data Complete Interrupt Disable

0: No effect.

1: Disable Transmitted IN Data Complete Interrupt.

TXRDY_TRER: TX Packet Ready/Transaction Error Interrupt Disable

0: No effect.

1: Disable TX Packet Ready/Transaction Error Interrupt.

ERR_FL_ISO: Error Flow Interrupt Disable

0: No effect.

1: Disable Error Flow ISO Interrupt.

ERR_CRC_NTR: ISO CRC Error/Number of Transaction Error Interrupt Disable

0: No effect.

1: Disable Error CRC ISO/Error Number of Transaction Interrupt.

ERR_FLUSH: bank flush error Interrupt Disable

- 0: No effect.
- 1: Disable Bank Flush Error Interrupt.

BUSY_BANK: Busy Bank Interrupt Disable

0: No effect.

1: Disable Busy Bank Interrupt.

SHRT_PCKT: Short Packet Interrupt Disable

For OUT endpoints:

0: No effect.

1: Disable Short Packet Interrupt.

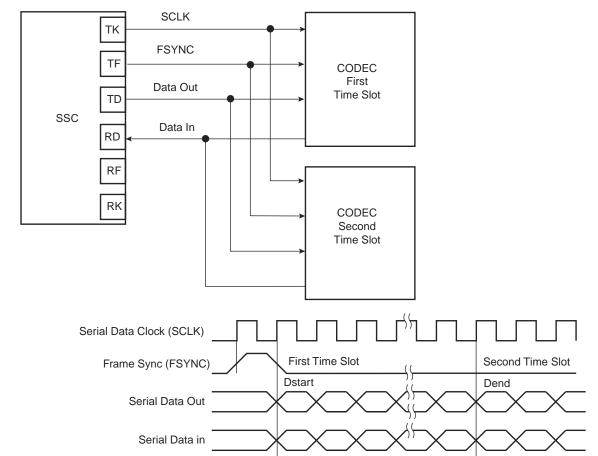
For IN endpoints: Never automatically add a zero length packet at end of DMA transfer.

JHPHS_FRINDEX						
Read/Write						
30	29	28	27	26	25	24
		-	-			
22	21	20	19	18	17	16
		-	-			
14	13	12	11	10	9	8
-			F	FI		
6	5	4	3	2	1	0
		F	1			
	Read/Write 30 22 14 -	Read/Write <u>30</u> 29 22 21 14 13 -	30 29 28 22 21 20 14 13 12 - - - 6 5 4	30 29 28 27	Read/Write 30 29 28 27 26 - - - - - 22 21 20 19 18 - - - - - 14 13 12 11 10 - - FI - - 6 5 4 3 2	Read/Write 30 29 28 27 26 25 - - - - - - 22 21 20 19 18 17 - - - - - - 14 13 12 11 10 9 - - - - - 6 5 4 3 2 1

42.7.7 UHPHS USB Frame Index Register

This register is used by the host controller to index into the periodic frame list. The register updates every 125 µs (once each micro-frame). Bits [N:3] are used to select a particular entry in the Periodic Frame List during periodic schedule execution. The number of bits used for the index depends on the size of the frame list as set by system software in the Frame List Size field in the UHPHS_USBCMD register (see Section 42.7.4 "UHPHS USB Command Register").

This register must be written as a DWord. Byte writes produce undefined results. This register cannot be written unless the Host Controller is in the Halted state as indicated by the HCHalted bit (UHPHS_USBSTS register, Section 42.7.5 "UHPHS USB Status Register"). A write to this register while the Run/Stop bit is set to 1 (UHPHS_USBCMD register, Section 42.7.4 "UHPHS USB Command Register") produces undefined results. Writes to this register also affect the SOF value.


FI: Frame Index

The value in this register increments at the end of each time frame (e.g. micro-frame). Bits [N:3] are used for the Frame List current index. This means that each location of the frame list is accessed eight times (frames or micro-frames) before moving to the next index. The following illustrates values of N based on the value of the Frame List Size field in the UHPHS_USBCMD register.

USBCMD [Frame List Size]	Number Elements	N
00b	(1024)	12
01b	(512)	11
10b	(256)	10
11b	Reserved	_

The SOF frame number value for the bus SOF token is derived or alternatively managed from this register. The value of FRINDEX must be 125 µs (1 micro-frame) ahead of the SOF token value. The SOF value may be implemented as an 11-bit shadow register. For this discussion, this shadow register is 11 bits and is named SOFV. SOFV updates every eight micro-frames (1 millisecond). An example implementation to achieve this behavior is to increment SOFV each time the FRINDEX[2:0] increments from 0 to 1.

Software must use the value of FRINDEX to derive the current micro-frame number, both for high-speed isochronous scheduling purposes and to provide the "get micro-frame number" function required for client drivers. Therefore, the value of FRINDEX and the value of SOFV must be kept consistent if chip is reset or software writes to FRINDEX. Writes to FRINDEX must also write-through FRINDEX[13:3] to SOFV[10:0]. In order to keep the update as simple as possible, software should never write a FRINDEX value where the three least significant bits are 111b or 000b.

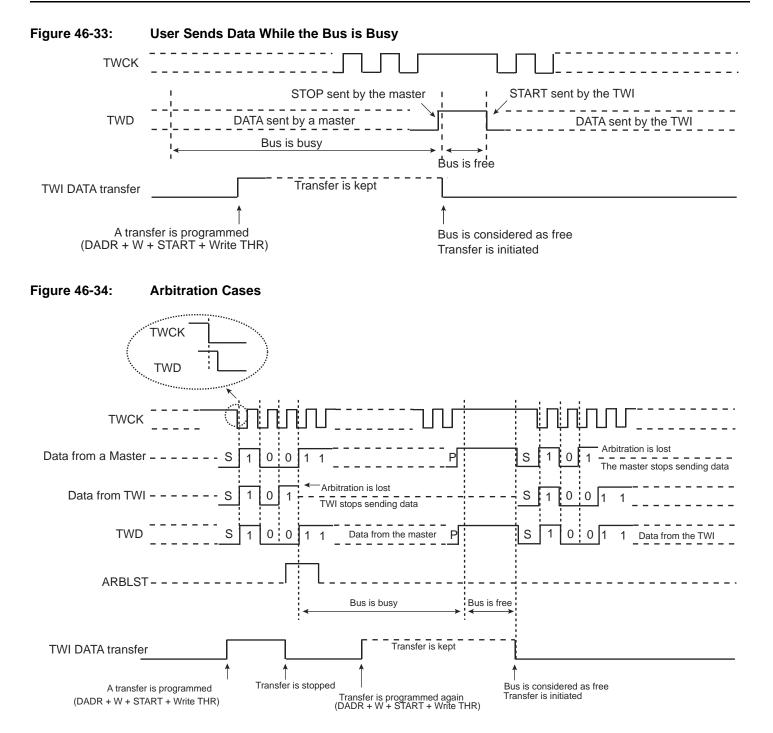


Figure 45-5: Time Slot Application Block Diagram

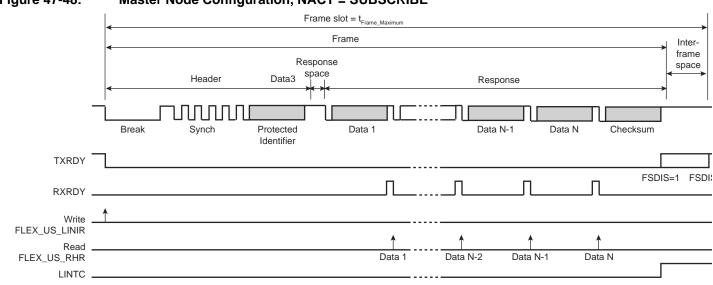

45.6 Pin Name List

Table 45-1: I/O	Lines	Description
-----------------	-------	-------------

Pin Name	Pin Description	Туре
RF	Receive Frame Synchronization	Input/Output
RK	Receive Clock	Input/Output
RD	Receive Data	Input
TF	Transmit Frame Synchronization	Input/Output
ТК	Transmit Clock	Input/Output
TD	Transmit Data	Output

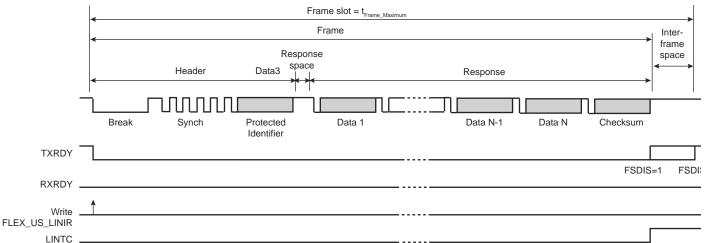

The flowchart shown in Figure 46-35 gives an example of read and write operations in Multimaster mode.

Figure 47-48: Master Node Configuration, NACT = SUBSCRIBE

Master Node Configuration, NACT = IGNORE

- Slave Node Configuration
- Write FLEX_US_CR.TXEN and FLEX_US_CR.RXEN to enable both the transmitter and the receiver.
- Write FLEX_US_MR.USART_MODE to select the LIN mode and the slave node configuration.
- Write FLEX_US_BRGR.CD and FLEX_US_BRGR.FP to configure the baud rate.
- Wait until FLEX_US_CSR.LINID rises.
- Check LINISFE and LINPE errors.
- Read FLEX_US_RHR.IDCHR.
- Write NACT, PARDIS, CHKDIS, CHKTYPE, DLCM and DLC in FLEX_US_LINMR to configure the frame transfer.

IMPORTANT: If the NACT configuration for this frame is PUBLISH, FLEX_US_LINMR must be written with NACT = PUBLISH even if this field is already correctly configured, in order to set the TXREADY flag and the corresponding write transfer request.

What comes next depends on the NACT configuration:

- Case 1: NACT = PUBLISH, the LIN controller sends the response.
 - Wait until FLEX_US_CSR.TXRDY rises.
 - Write FLEX_US_THR.TCHR to send a byte.
 - If all the data have not been written, repeat the two previous steps.
 - Wait until FLEX_US_CSR. LINTC rises.
 - Check the LIN errors.
- Case 2: NACT = SUBSCRIBE, the USART receives the response.

SAMA5D2 SERIES

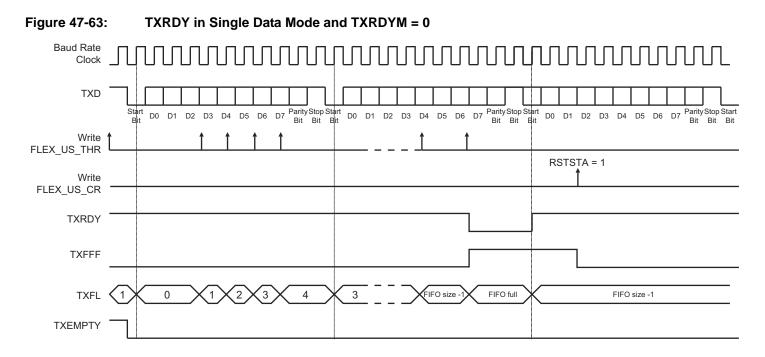
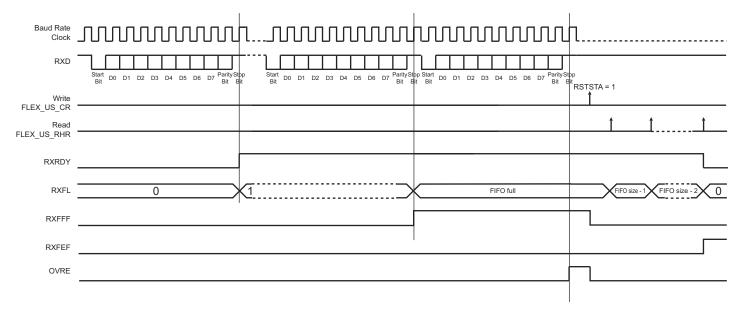



Figure 47-64: RXRDY in Single Data Mode and RXRDYM = 0

47.7.11.6 USART Single Data Mode

In Single Data mode, only one data is written every time FLEX_US_THR is accessed, and only one data is read every time FLEX_US_RHR is accessed.

When FLEX_US_FMR.TXRDYM = 0, the Transmit FIFO operates in Single Data mode.

When FLEX_US_FMR.RXRDYM = 0, the Receive FIFO operates in Single Data mode.

If FLEX_US_MR.MODE9 is set, or if FLEX_US_MR.USART_MODE is set to either LIN_MASTER or LIN_SLAVE, the FIFOs must operate in Single Data mode.

See Section 47.10.20 "USART Receive Holding Register" and Section 47.10.22 "USART Transmit Holding Register".

• DMAC

- When a read transfer is stopped at the block gap initiated by a Stop At Block Gap Request (STPBGR).

The SDMMC stops a read operation at the start of the interrupt cycle by driving the Read Wait (DAT[2] line) or by stopping the SD Clock. If the Read Wait signal is already driven (due to the fact that the data buffer cannot receive data), the SDMMC can continue to stop the read operation by driving the Read Wait signal. It is necessary to support the Read Wait in order to use the Suspend/ Resume operation.

In the case of write transactions:

This status indicates that a write transfer is executing on the bus. A change from 1 to 0 raises the Transfer Complete (TRFC) status flag in SDMMC_NISTR if SDMMC_NISTER.TRFC is set to 1. An interrupt is generated if SDMMC_NISIER.TRFC is set to 1. Refer to section "Write Transaction Wait / Continue Timing" in the "SD Host Controller Simplified Specification V3.00" for details on timing.

This bit is set in either of the following cases:

- After the end bit of the write command.

- When writing 1 to SDMMC_BGCR.CONTR (Continue Request) to continue a write transfer.

This bit is cleared in either of the following cases:

- When the card releases Write Busy of the last data block. If the card does not drive a Busy signal for 8 SDCLK, the SDMMC considers the card drive "Not Busy". In the case of ADMA2, the last block is designated by the last transfer of the Descriptor Table.

- When the card releases Write Busy prior to wait for write transfer as a result of a Stop At Block Gap Request (STPBGR).

Command with Busy:

This status indicates whether a command that indicates Busy (ex. erase command for memory) is executing on the bus. This bit is set to 1 after the end bit of the command with Busy and cleared when Busy is deasserted. A change from 1 to 0 raises the Transfer Complete (TRFC) status flag in SDMMC_NISTR if SDMMC_NISTER.TRFC is set to 1. An interrupt is generated if SDMMC_NISIER.TRFC is set to 1. Refer to Figures 2.11 to 2.13 in the "SD Host Controller Simplified Specification V3.00".

0: DAT line inactive.

1: DAT line active.

WTACT: Write Transfer Active

This bit indicates a write transfer is active. If this bit is 0, it means no valid write data exists in the SDMMC. Refer to section "Write Transaction Wait / Continue Timing" in the "SD Host Controller Simplified Specification V3.00" for more details on the sequence of events.

This bit is set to 1 in either of the following conditions:

- After the end bit of the write command.

- When a write operation is restarted by writing a 1 to SDMMC_BGCR.CONTR (Continue Request).

This bit is cleared to 0 in either of the following conditions:

- After getting the CRC status of the last data block as specified by the transfer count (single and multiple). In case of ADMA2, transfer count is designated by the descriptor table.

- After getting the CRC status of any block where a data transmission is about to be stopped by a Stop At Block Gap Request (STP-BGR) of SDMMC_BGCR.

During a write transaction and as the result of the Stop At Block Gap Request (STPBGR) being set, a change from 1 to 0 raises the Block Gap Event (BLKGE) status flag in SDMMC_NISTR if SDMMC_NISTER.BLKGE is set to 1. An interrupt is generated if BLKGE is set to 1 in SDMMC_NISIER. This status is useful to determine whether nonDAT line commands can be issued during Write Busy.

RTACT: Read Transfer Active

This bit is used to detect completion of a read transfer. Refer to section "Read Transaction Wait / Continue Timing" in the "SD Host Controller Simplified Specification V3.00" for more details on the sequence of events.

This bit is set to 1 in either of the following conditions:

- After the end bit of the read command.

- When a read operation is restarted by writing a 1 to SDMMC_BGCR.CONTR (Continue Request).

This bit is cleared to 0 in either of the following conditions:

- When the last data block as specified by Transfer Block Size (BLKSIZE) is transferred to the system.
- In case of ADMA2, end of read is designated by the descriptor table.

51.13.25 SDMMC Error Interrupt Status Enable Register (SD_SDIO)

Access: Read/Write

15	14	13	12	11	10	9	8
—	-	—	—	_	-	ADMA	ACMD
7	6	5	4	3	2	1	0
CURLIM	DATEND	DATCRC	DATTEO	CMDIDX	CMDEND	CMDCRC	CMDTEO

CMDTEO: Command Timeout Error Status Enable

0 (MASKED): The CMDTEO status flag in SDMMC_EISTR is masked.

1 (ENABLED): The CMDTEO status flag in SDMMC_EISTR is enabled.

CMDCRC: Command CRC Error Status Enable

0 (MASKED): The CMDCRC status flag in SDMMC_EISTR is masked.

1 (ENABLED): The CMDCRC status flag in SDMMC_EISTR is enabled.

CMDEND: Command End Bit Error Status Enable

0 (MASKED): The CMDEND status flag in SDMMC_EISTR is masked.

1 (ENABLED): The CMDEND status flag in SDMMC_EISTR is enabled.

CMDIDX: Command Index Error Status Enable

0 (MASKED): The CMDIDX status flag in SDMMC_EISTR is masked. 1 (ENABLED): The CMDIDX status flag in SDMMC_EISTR is enabled.

DATTEO: Data Timeout Error Status Enable

0 (MASKED): The DATTEO status flag in SDMMC_EISTR is masked.

1 (ENABLED): The DATTEO status flag in SDMMC_EISTR is enabled.

DATCRC: Data CRC Error Status Enable

0 (MASKED): The DATCRC status flag in SDMMC_EISTR is masked.

1 (ENABLED): The DATCRC status flag in SDMMC_EISTR is enabled.

DATEND: Data End Bit Error Status Enable

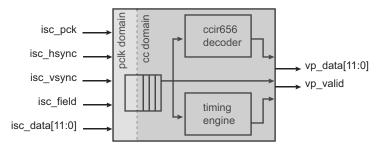
0 (MASKED): The DATEND status flag in SDMMC_EISTR is masked.

1 (ENABLED): The DATEND status flag in SDMMC_EISTR is enabled.

CURLIM: Current Limit Error Status Enable

0 (MASKED): The CURLIM status flag in SDMMC_EISTR is masked.1 (ENABLED): The CURLIM status flag in SDMMC_EISTR is enabled.

ACMD: Auto CMD Error Status Enable


0 (MASKED): The ACMD status flag in SDMMC_EISTR is masked. 1 (ENABLED): The ACMD status flag in SDMMC_EISTR is enabled.

ADMA: ADMA Error Status Enable

0 (MASKED): The ADMA status flag in SDMMC_EISTR is masked.1 (ENABLED): The ADMA status flag in SDMMC_EISTR is enabled.

52.5.5 Parallel Front End (PFE) Module

Figure 52-14: PFE Block Diagram

The Parallel Front End module performs data resampling across clock domain boundary. It includes a CCIR656 decoder used to convert a standard ITU-R BT.656 stream to 24-bit digital video. It also generates pixels, syncs flags and valid signals to the main video pipeline. It ouputs field, video and synchronization signals. The PFE can optionally crop and limit the incoming pixel stream to a predefined horizontal and vertical value. By default, the PFE only relies on the cmos sensor horizontal and vertical reference to sample the incoming pixel stream. A pixel is sampled if, and only if, the vertical and horizontal synchronizations are valid and a pixel clock edge is detected. ISC_PFE_CFG0.BPS shows the number of bits per sample. The PFE module outputs a 12-bit data on the vp_data[11:0] bus, and asserts the vp_valid signal when the data can be sampled.

PFE VP_DATA Mapping	Raw Bayer 12-bit	Raw Bayer 10-bit	YUV422 8-bit	YUV422 10-bit	Mono 12-bit
VP_DATA[11]	RGGB[11]	RGGB[9]	YC422[7]	YC422[9]	Y[11]
VP_DATA[10]	RGGB[10]	RGGB[8]	YC422[6]	YC422[8]	Y[10]
VP_DATA[9]	RGGB[9]	RGGB[7]	YC422[5]	YC422[7]	Y[9]
VP_DATA[8]	RGGB[8]	RGGB[6]	YC422[4]	YC422[6]	Y[8]
VP_DATA[7]	RGGB[7]	RGGB[5]	YC422[3]	YC422[5]	Y[7]
VP_DATA[6]	RGGB[6]	RGGB[4]	YC422[2]	YC422[4]	Y[6]
VP_DATA[5]	RGGB[5]	RGGB[3]	YC422[1]	YC422[3]	Y[5]
VP_DATA[4]	RGGB[4]	RGGB[2]	YC422[0]	YC422[2]	Y[4]
VP_DATA[3]	RGGB[3]	RGGB[1]	YC422[7] or 0	YC422[1]	Y[3]
VP_DATA[2]	RGGB[2]	RGGB[0]	YC422[6] or 0	YC422[0]	Y[2]
VP_DATA[1]	RGGB[1]	RGGB[9] or 0	YC422[5] or 0	YC422[9] or 0	Y[1]
VP_DATA[0]	RGGB[0]	RGGB[8] or 0	YC422[4] or 0	YC422[8] or 0	Y[0]

Note: When ISC_PFE_CFG0.REP is set, missing VP_DATA LSBs are replaced with replicated LSBs of the incoming stream, otherwise they are forced to zero.

The PFE module also includes logic to synchronize capture request with the incoming pixel stream. Two operating modes are available: Single Shot and Continuous Acquisition. When the ISC_PFE_CFG0.CONT field is cleared, the ISC transfers a single image to memory,

52.6.47 ISC Subsampling 4:2:2 to 4:2:0 Control Register

Address: 0xF	_SUB420_CTRL 00083CC d/Write						
31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	_	-	-	-	-
15	14	13	12	11	10	9	8
-	—	Ι	I	Ι	—	—	—
7	6	5	4	3	2	1	0
-	-	_	FILTER	-	_	-	ENABLE

ENABLE: 4:2:2 to 4:2:0 Vertical Subsampling Filter Enable (Center Aligned)

0: Subsampler disabled

1: Subsampler enabled

FILTER: Interlaced or Progressive Chrominance Filter

0: Progressive filter {0.5, 0.5}

1: Field-dependent filter, top field filter is {0.75, 0.25}, bottom field filter is {0.25, 0.75}

60.5 Advanced Encryption Standard (AES) User Interface

Table 60-5:Register Mapping

Offset	Register	Name	Access	Reset
0x00	Control Register	AES_CR	Write-only	_
0x04	Mode Register	AES_MR	Read/Write	0x0
0x08–0x0C	Reserved	-	_	_
0x10	Interrupt Enable Register	AES_IER	Write-only	_
0x14	Interrupt Disable Register	AES_IDR	Write-only	_
0x18	Interrupt Mask Register	AES_IMR	Read-only	0x0
0x1C	Interrupt Status Register	AES_ISR	Read-only	0x0
0x20	Key Word Register 0	AES_KEYWR0	Write-only	_
0x24	Key Word Register 1	AES_KEYWR1	Write-only	_
0x28	Key Word Register 2	AES_KEYWR2	Write-only	_
0x2C	Key Word Register 3	AES_KEYWR3	Write-only	_
0x30	Key Word Register 4	AES_KEYWR4	Write-only	_
0x34	Key Word Register 5	AES_KEYWR5	Write-only	_
0x38	Key Word Register 6	AES_KEYWR6	Write-only	_
0x3C	Key Word Register 7	AES_KEYWR7	Write-only	_
0x40	Input Data Register 0	AES_IDATAR0	Write-only	_
0x44	Input Data Register 1	AES_IDATAR1	Write-only	_
0x48	Input Data Register 2	AES_IDATAR2	Write-only	_
0x4C	Input Data Register 3	AES_IDATAR3	Write-only	_
0x50	Output Data Register 0	AES_ODATAR0	Read-only	0x0
0x54	Output Data Register 1	AES_ODATAR1	Read-only	0x0
0x58	Output Data Register 2	AES_ODATAR2	Read-only	0x0
0x5C	Output Data Register 3	AES_ODATAR3	Read-only	0x0
0x60	Initialization Vector Register 0	AES_IVR0	Write-only	_
0x64	Initialization Vector Register 1	AES_IVR1	Write-only	_
0x68	Initialization Vector Register 2	AES_IVR2	Write-only	_
0x6C	Initialization Vector Register 3	AES_IVR3	Write-only	_
0x70	Additional Authenticated Data Length Register	AES_AADLENR	Read/Write	_
0x74	Plaintext/Ciphertext Length Register	AES_CLENR	Read/Write	_
0x78	GCM Intermediate Hash Word Register 0	AES_GHASHR0	Read/Write	_
0x7C	GCM Intermediate Hash Word Register 1	AES_GHASHR1 Read/Write		_
0x80	GCM Intermediate Hash Word Register 2	AES_GHASHR2	Read/Write	_
0x84	GCM Intermediate Hash Word Register 3	AES_GHASHR3 Read/Write		_
0x88	GCM Authentication Tag Word Register 0	AES_TAGR0	Read-only	_
0x8C	GCM Authentication Tag Word Register 1	AES_TAGR1	Read-only	_

Figure 65-10: Only Last Channel Measurement Triggered at Low Speed (ADC_CHSR[LCI] = 0 and ADC_TRGR.TRGMOD = 0)

ADC_LCTMR.DUALTRIG = 1

Notes: ADC_SEL: Command to the ADC analog cell LCx: Last channel value LCI: Last channel index

65.6.13 Enhanced Resolution Mode and Digital Averaging Function

65.6.13.1 Enhanced Resolution Mode

The Enhanced Resolution mode is enabled if the OSR field is configured to 1 or 2 in ADC_EMR. The enhancement is based on a digital averaging function.

There is no averaging on the last index channel if the measure is triggered by an RTC event.

In this mode, the ADC Controller will trade off conversion speed against accuracy by averaging multiple samples, thus providing a digital low-pass filter function.

The selected oversampling ratio applies to all enabled channels when triggered by an RTC event.

$$ADC_LCDR.LDATA = \frac{1}{M} \times \sum_{k = 0}^{k = N-1} ADC(k)$$

where N and M are given in the table below.

Table 65-5: Digital Averaging Function Configuration versus OSR Values

ADC_EMR.OSR Value	ADC_LCDR.LDATA Length	N Value	M Value	Full Scale Value	Maximum Value
0	12 bits	1	1	4095	4095
1	13 bits	4	2	8191	8190
2	14 bits	16	4	16383	16381

The average result is valid in ADC_CDRx (x corresponds to the index of the channel) only if the EOCn flag is set in ADC_ISR and if the OVREn flag is cleared in ADC_OVER. The average result for all channels is valid in ADC_LCDR only if DRDY is set and GOVRE is cleared in ADC_ISR.

Note that ADC_CDRs are not buffered. Therefore, when an averaging sequence is ongoing, the value in these registers changes after each averaging sample. However, overrun flags in ADC_OVER rise as soon as the first sample of an averaging sequence is received. Thus the previous averaged value is not read, even if the new averaged value is not ready.

Consequently, when an overrun flag rises in ADC_OVER, it means that the previous unread data is lost but it does not mean that this data has been overwritten by the new averaged value as the averaging sequence concerning this channel can still be ongoing.