

#### Welcome to E-XFL.COM

#### Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

## Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details

**E·XF** 

| Product Status                     | Obsolete                                                                                          |
|------------------------------------|---------------------------------------------------------------------------------------------------|
| Core Processor                     | ARM® Cortex®-A5                                                                                   |
| Number of Cores/Bus Width          | 1 Core, 32-Bit                                                                                    |
| Speed                              | 500MHz                                                                                            |
| Co-Processors/DSP                  | Multimedia; NEON™ MPE                                                                             |
| RAM Controllers                    | LPDDR1, LPDDR2, LPDDR3, DDR2, DDR3, DDR3L, QSPI                                                   |
| Graphics Acceleration              | Yes                                                                                               |
| Display & Interface<br>Controllers | Keyboard, LCD, Touchscreen                                                                        |
| Ethernet                           | 10/100Mbps (1)                                                                                    |
| SATA                               | -                                                                                                 |
| USB                                | USB 2.0 + HSIC                                                                                    |
| Voltage - I/O                      | 3.3V                                                                                              |
| Operating Temperature              | -40°C ~ 105°C (TA)                                                                                |
| Security Features                  | ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC |
| Package / Case                     | 289-LFBGA                                                                                         |
| Supplier Device Package            | 289-LFBGA (14x14)                                                                                 |
| Purchase URL                       | https://www.e-xfl.com/product-detail/microchip-technology/atsama5d28b-cu                          |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 18.12.2 Security of APB Slaves

The security type of an APB slave is set at hardware design among the following:

- Peripheral Always Secured (PAS)
- Peripheral Always Non-secured (PNS)
- Peripheral Securable (PS)

To configure the security mode required for accessing a particular APB slave connected to the AHB/APB Bridge, the Bus Matrix features three 32-bit Security Peripheral Select x Registers. Some of these bits may have been set to a Secured or a Non-secured value by design, whereas others are programmed by software (see Section 18.13.15 "Security Peripheral Select x Registers").

Peripheral security state, "Secure" or "Non-secure" is an AND operation between H32MX MATRIX\_SPSELRx and H64MX MATRIX\_SPSELRx for the bit corresponding to the peripheral.

As a general rule:

- The peripheral security state is applied to the corresponding peripheral interrupt line. Exceptions may occur on some peripherals (PIO Controller, etc.). In such case, refer to the peripheral description.
- The peripheral security state is applied to the peripheral master part, if any. Exceptions may occur on some peripherals. In such case, refer to the peripheral description. See Section 18.12.3 "Security Types of AHB Master Peripherals".

MATRIX\_SPSELRx bits in the H32MX or H64MX user interface are respectively read/write or read-only to '1' depending on whether the peripheral is connected or not, on the Matrix.

All bit values in Table 18-9 except those marked 'UD' (User Defined) are read-only and cannot be changed. Values marked 'UD' can be changed. Refer to the following examples.

- · Example for GMAC, Peripheral ID 5, which is connected to the H32MX Matrix
  - H64MX MATRIX\_SPSELR1[5] = 1 (read-only); no influence on the security configuration
  - H32MX MATRIX\_SPSELR1[5] can be written by user to program the security.
- Example for LCDC, Peripheral ID 45, which is connected to the H64MX Matrix
  - H64MX MATRIX\_SPSELR2[13] can be written by user to program the security.
  - H32MX MATRIX\_SPSELR2[13] = 1 (read-only); no influence on the security configuration
- Example for AIC, Peripheral ID 49, which is connected to the H32MX Matrix
  - H64MX MATRIX\_SPSELR2[17] = 1 (read-only); sets the peripheral as Non-secure by hardware, also called "Peripheral Always Non-secured"
  - H32MX MATRIX\_SPSELR2[17] = 1 (read-only); no influence on the security configuration
- · Example for SAIC, Peripheral ID 0, which is connected to the H32MX Matrix
  - H64MX MATRIX\_SPSELR1[0] = 1 (read-only); no influence on the security configuration
  - H32MX MATRIX\_SPSELR1[0] = 0 (read-only); sets the peripheral as Secure by hardware, also called "Peripheral Always Secured"

| ID | Peripheral | Security Type                   | Matrix | MATRIX_SPSELRx Bit | Bit Value in<br>H32MX | Bit Value in<br>H64MX |
|----|------------|---------------------------------|--------|--------------------|-----------------------|-----------------------|
| 0  | SAIC       | Peripheral Always Secured (PAS) | -      | MATRIX_SPSELR1[0]  | 0                     | 1                     |
| 1  | _          | _                               | _      | _                  | _                     | _                     |
| 2  | ARM        | Peripheral Securable (PS)       | H64MX  | MATRIX_SPSELR1[2]  | 1                     | UD                    |
| 3  | PIT        | PS                              | H32MX  | MATRIX_SPSELR1[3]  | UD                    | 1                     |
| 4  | WDT        | PS                              | H32MX  | MATRIX_SPSELR1[4]  | UD                    | 1                     |
| 5  | GMAC       | PS                              | H32MX  | MATRIX_SPSELR1[5]  | UD                    | 1                     |
| 6  | XDMAC0     | PS                              | H64MX  | MATRIX_SPSELR1[6]  | 1                     | UD                    |
| 7  | XDMAC1     | PS                              | H64MX  | MATRIX_SPSELR1[7]  | 1                     | UD                    |
| 8  | ICM        | PS                              | H32MX  | MATRIX_SPSELR1[8]  | UD                    | 1                     |
| 9  | AES        | PS                              | H64MX  | MATRIX_SPSELR1[9]  | 1                     | UD                    |
| 10 | AESB       | PS                              | H64MX  | MATRIX_SPSELR1[10] | 1                     | UD                    |

#### Table 18-9: Peripheral Identifiers

# 19.3.2 OHCI Interrupt Configuration Register

# Address: 0xF8030010

# Access: Read/Write

| 31       | 30 | 29       | 28   | 27       | 26        | 25        | 24        |
|----------|----|----------|------|----------|-----------|-----------|-----------|
| _        | -  | —        | -    | HSIC_SEL | -         | -         | -         |
| 23       | 22 | 21       | 20   | 19       | 18        | 17        | 16        |
| UDPPUDIS | Ι  | —        | Ι    | -        | -         |           | -         |
| 15       | 14 | 13       | 12   | 11       | 10        | 9         | 8         |
| -        | Ι  | —        | Ι    | -        | SUSPEND_C | SUSPEND_B | SUSPEND_A |
| 7        | 6  | 5        | 4    | 3        | 2         | 1         | 0         |
| _        | _  | APPSTART | ARIE | _        | RES2      | RES1      | RES0      |

## **RESx: USB PORTx RESET**

0: Resets USB Port.

1: Usable USB Port.

# **ARIE: OHCI Asynchronous Resume Interrupt Enable**

- 0: Interrupt disabled.
- 1: Interrupt enabled.

# **APPSTART: Reserved**

0: Must write 0.

# SUSPEND\_A: USB PORT A

0: Suspends controlled by EHCI-OCHO.

1: Forces the suspend for PORTA.

#### SUSPEND\_B: USB PORT B

0: Suspend controlled by EHCI-OCHO.

1: Forces the suspend for PORTB.

# SUSPEND\_C: USB PORT C

0: Suspends controlled by EHCI-OCHO.

1: Forces the suspend for PORTC.

# UDPPUDIS: USB DEVICE PULLUP DISABLE

0: USB device pullup connection is enabled.

1: USB device pullup connection is disabled.

# HSIC\_SEL: Reserved

0: Must write 0.

| 13.3.12  | Alo interrupt Redit | conon negion | -           |        |    |    |       |
|----------|---------------------|--------------|-------------|--------|----|----|-------|
| Name:    | SFR_AICREDIR        |              |             |        |    |    |       |
| Address: | 0xF8030054          |              |             |        |    |    |       |
| Access:  | Read/Write          |              |             |        |    |    |       |
| 31       | 30                  | 29           | 28          | 27     | 26 | 25 | 24    |
|          |                     |              | AICRE       | DIRKEY |    |    |       |
| 23       | 22                  | 21           | 20          | 19     | 18 | 17 | 16    |
|          |                     |              | AICRE       | DIRKEY |    |    |       |
| 15       | 14                  | 13           | 12          | 11     | 10 | 9  | 8     |
|          |                     |              | AICRE       | DIRKEY |    |    |       |
| 7        | 6                   | 5            | 4           | 3      | 2  | 1  | 0     |
|          |                     |              | AICREDIRKEY |        |    |    | NSAIC |

# 19.3.12 AIC Interrupt Redirection Register

# NSAIC: Interrupt Redirection to Non-Secure AIC

0: Interrupts are managed by the AIC corresponding to the Secure State of the peripheral (secure AIC or non-secure AIC).

1: All interrupts are managed by the non-secure AIC.

#### AICREDIRKEY: Unlock Key

Value is a XOR between 0xb6d81c4d and SN1[31:0] but only field [31:1] of the result must be written in this field. In case of set in Secure mode by fuse configuration, this register is read\_only 0 (it is not possible to redirect secure interrupts on non-secure AIC for products set in secure mode for security reasons).

Note: After three tries, entering a wrong key results in locking the NSAIC bit. A reset is needed.

# 38.5 Functional Description

# 38.5.1 Basic Definitions

**Source Peripheral:** Slave device, memory mapped on the interconnection network, from where the XDMAC reads data. The source peripheral teams up with a destination peripheral to form a channel. A data read operation is scheduled when the peripheral transfer request is asserted.

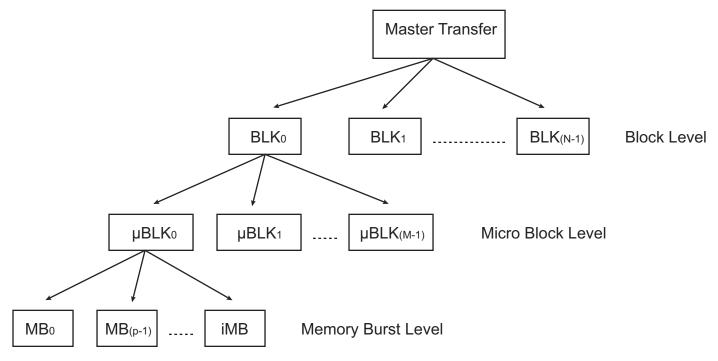
**Destination Peripheral:** Slave device, memory mapped on the interconnection network, to which the XDMAC writes. A write data operation is scheduled when the peripheral transfer request is asserted.

Channel: The data movement between source and destination creates a logical channel.

**Transfer Type:** The transfer is hardware-synchronized when it is paced by the peripheral hardware request, otherwise the transfer is self-triggered (memory to memory transfer).

# 38.5.2 Transfer Hierarchy Diagram

**XDMAC Master Transfer**: The Master Transfer is composed of a linked list of blocks. The channel address, control and configuration registers can be modified at the inter block boundary. The descriptor structure modifies the channel registers conditionally. Interrupts can be generated on a per block basis or when the end of linked list event occurs.


**XDMAC Block**: An XDMAC block is composed of a programmable number of microblocks. The channel configuration registers remain unchanged at the inter microblock boundary. The source and destination addresses are conditionally updated with a programmable signed number.

**XDMAC Microblock**: The microblock is composed of a programmable number of data. The channel configuration registers remain unchanged at the data boundary. The data address may be fixed (a FIFO location, a peripheral transmit or receive register), incrementing (a memory-mapped area) by a programmable signed number.

**XDMAC Burst and Incomplete Burst**: In order to improve the overall performance when accessing dynamic external memory, burst access is mandatory. Each data of the microblock is considered as a part of a memory burst. The programmable burst value indicates the largest memory burst allowed on a per channel basis. When the microblock length is not an integral multiple of the burst size, an incomplete burst is performed to read or write the last trailing bytes.

**XDMAC Chunk and Incomplete Chunk**: When a peripheral synchronized transfer is activated, the microblock splits into a number of data chunks. The chunk size is programmable. The larger the chunk is, the better the performance is. When the transfer size is not a multiple of the chunk size, the last chunk may be incomplete.

# Figure 38-2: XDMAC Memory Transfer Hierarchy



# Table 39-43:4:2:0 Planar Mode Luminance Memory Mapping, Little Endian Organization for Byte 0x4, 0x5, 0x6,<br/>0x7

| Mem addr     | 0x7 | ,  |    |     |      |    |    |    | 0x6 |    |    |     |      |    |    |    | 0x5 |    |    |     |      |    |   |   | 0x4 |   |   |     |      |   |   |   |
|--------------|-----|----|----|-----|------|----|----|----|-----|----|----|-----|------|----|----|----|-----|----|----|-----|------|----|---|---|-----|---|---|-----|------|---|---|---|
| Bit          | 31  | 30 | 29 | 28  | 27   | 26 | 25 | 24 | 23  | 22 | 21 | 20  | 19   | 18 | 17 | 16 | 15  | 14 | 13 | 12  | 11   | 10 | 9 | 8 | 7   | 6 | 5 | 4   | 3    | 2 | 1 | 0 |
| Pixel 12 bpp |     |    |    | Y7[ | 7:0] |    |    |    |     |    |    | Y6[ | 7:0] |    |    |    |     |    |    | Y5[ | 7:0] |    |   |   |     |   |   | Y4[ | 7:0] |   |   |   |

# Table 39-44:4:2:0 Planar Mode Chrominance Memory Mapping, Little Endian Organization for Byte 0x0, 0x1,<br/>0x2, 0x3

| Mem addr     | 0x3 | 3  |    |     |      |    |    |    | 0x2 |    |    |     |      |    |    |    | 0x1 |    |    |     |      |    |   |   | 0x0 | ) |   |     |      |   |   |   |
|--------------|-----|----|----|-----|------|----|----|----|-----|----|----|-----|------|----|----|----|-----|----|----|-----|------|----|---|---|-----|---|---|-----|------|---|---|---|
| Bit          | 31  | 30 | 29 | 28  | 27   | 26 | 25 | 24 | 23  | 22 | 21 | 20  | 19   | 18 | 17 | 16 | 15  | 14 | 13 | 12  | 11   | 10 | 9 | 8 | 7   | 6 | 5 | 4   | 3    | 2 | 1 | 0 |
| Pixel 12 bpp |     |    |    | C3[ | 7:0] |    |    |    |     |    |    | C2[ | 7:0] |    |    |    |     |    |    | C1[ | 7:0] |    |   |   |     |   |   | C0[ | 7:0] |   |   |   |

# Table 39-45:4:2:0 Planar Mode Chrominance Memory Mapping, Little Endian Organization for Byte 0x4, 0x5,<br/>0x6, 0x7

| Mem addr     | 0x7 | 7  |    |     |      |    |    |    | 0x6 |    |    |      |       |    |    |    | 0x5 |    |    |     |      |    |   |   | 0x4 |   |   |     |      |   |   |   |
|--------------|-----|----|----|-----|------|----|----|----|-----|----|----|------|-------|----|----|----|-----|----|----|-----|------|----|---|---|-----|---|---|-----|------|---|---|---|
| Bit          | 31  | 30 | 29 | 28  | 27   | 26 | 25 | 24 | 23  | 22 | 21 | 20   | 19    | 18 | 17 | 16 | 15  | 14 | 13 | 12  | 11   | 10 | 9 | 8 | 7   | 6 | 5 | 4   | 3    | 2 | 1 | 0 |
| Pixel 12 bpp |     |    |    | C7[ | 7:0] |    |    |    |     |    |    | C6:[ | [7:0] |    |    |    |     |    |    | C5[ | 7:0] |    |   |   |     |   |   | C4[ | 7:0] |   |   |   |

39.6.5.6 4:2:0 Semiplanar Frame Buffer Memory Mapping

# Table 39-46: 4:2:0 Semiplanar Mode Luminance Memory Mapping, Little Endian Organization

| Mem addr     | 0x7 | 7  |    |     |      |    |    |    | 0x6 | 5  |    |     |      |    |    |    | 0x5 |    |    |     |      |    |   |   | 0x4 | Ļ |   |     |      |   |   |   |
|--------------|-----|----|----|-----|------|----|----|----|-----|----|----|-----|------|----|----|----|-----|----|----|-----|------|----|---|---|-----|---|---|-----|------|---|---|---|
| Bit          | 31  | 30 | 29 | 28  | 27   | 26 | 25 | 24 | 23  | 22 | 21 | 20  | 19   | 18 | 17 | 16 | 15  | 14 | 13 | 12  | 11   | 10 | 9 | 8 | 7   | 6 | 5 | 4   | 3    | 2 | 1 | 0 |
| Pixel 12 bpp |     |    |    | Y3[ | 7:0] |    |    |    |     |    |    | Y2[ | 7:0] |    |    |    |     |    |    | Y1[ | 7:0] |    |   |   |     |   |   | Y0[ | 7:0] |   |   |   |

# Table 39-47: 4:2:0 Semiplanar Mode Chrominance Memory Mapping, Little Endian Organization

| Mem addr     | 0x3 | 3  |    |    |    |    |    |    | 0x2 | 2     |    |    |    |    |    |    | 0x1 |       |    |    |    |    |   |   | 0x0 | )     |   |   |   |   |   |   |
|--------------|-----|----|----|----|----|----|----|----|-----|-------|----|----|----|----|----|----|-----|-------|----|----|----|----|---|---|-----|-------|---|---|---|---|---|---|
| Bit          | 31  | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23  | 22    | 21 | 20 | 19 | 18 | 17 | 16 | 15  | 14    | 13 | 12 | 11 | 10 | 9 | 8 | 7   | 6     | 5 | 4 | 3 | 2 | 1 | 0 |
| Pixel 12 bpp |     |    |    |    |    |    |    |    | Cr1 | [7:0] |    |    |    |    |    |    | Cb0 | [7:0] |    |    |    |    |   |   | Cr0 | [7:0] |   |   |   |   |   |   |

# 39.6.6 Chrominance Upsampling Unit

Both the 4:2:2 and the 4:2:0 input formats are supported by the LCD module. In 4:2:2, the two chrominance components are sampled at half the luminance sample rate. The horizontal chrominance resolution is halved. When this input format is selected, the chrominance upsampling unit uses two chrominances to interpolate the missing component.

In 4:2:0, Cr and Cb components are subsampled at a factor of two vertically and horizontally. When this input mode is selected, the chrominance upsampling unit uses two and four chroma components to generate the missing horizontal and vertical components.

## REP: Use Replication logic to expand RGB color to 24 bits

0: When the selected pixel depth is less than 24 bpp the pixel is shifted and least significant bits are set to 0.

1: When the selected pixel depth is less than 24 bpp the pixel is shifted and the least significant bit replicates the msb.

## **DSTKEY: Destination Chroma Keying**

0: Source Chroma keying is enabled.

1: Destination Chroma keying is used.

# GA: Blender Global Alpha

Global alpha blender for the current layer.

|          |            | J  | J  |                                            |    |    |    |
|----------|------------|----|----|--------------------------------------------|----|----|----|
| Name:    | GMAC_OTHI  |    |    |                                            |    |    |    |
| Address: | 0xF8008104 |    |    |                                            |    |    |    |
| Access:  | Read-only  |    |    |                                            |    |    |    |
| 31       | 30         | 29 | 28 | 27                                         | 26 | 25 | 24 |
| —        | -          | -  | -  | -                                          | -  | _  | -  |
|          |            |    |    |                                            |    |    |    |
| 23       | 22         | 21 | 20 | 19                                         | 18 | 17 | 16 |
| —        | -          | -  | -  | —                                          | -  | -  | -  |
| 15       | 14         | 13 | 12 | 11                                         | 10 | 9  | 8  |
|          |            |    | T> | <o< th=""><th></th><th></th><th></th></o<> |    |    |    |
| 7        | 0          | _  | 4  | 0                                          | 0  | 4  | 0  |
| /        | 6          | 5  | 4  | 3                                          | 2  | 1  | 0  |
|          |            |    | T  | (O                                         |    |    |    |

# 40.8.48 GMAC Octets Transmitted High Register

When reading the Octets Transmitted and Octets Received Registers, bits 31:0 should be read prior to bits 47:32 to ensure reliable operation.

## **TXO: Transmitted Octets**

Transmitted octets in frame without errors [47:32]. The number of octets transmitted in valid frames of any type. This counter is 48-bits, and is read through two registers. This count does not include octets from automatically generated pause frames.

Figure 46-21: TWIHS Read Operation with Single Data Byte without Internal Address

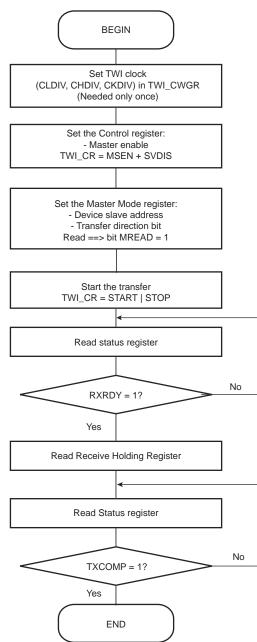
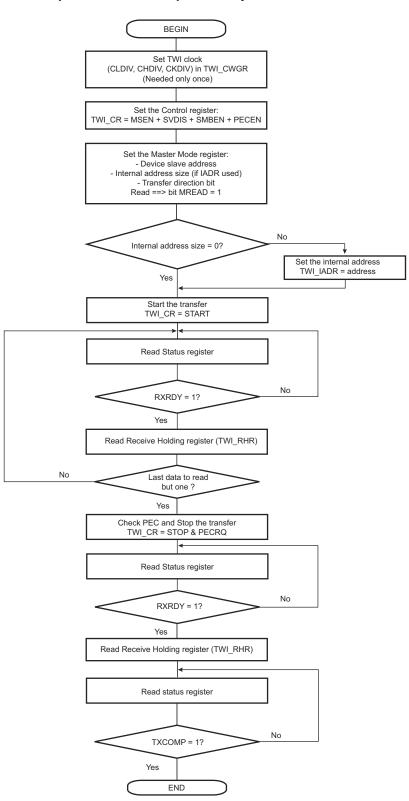




Figure 46-24: TWIHS Read Operation with Multiple Data Bytes with or without Internal Address with PEC



| Address: 0xF8<br>Access: Write | 034624 (0), 0xF8<br>e-only | 038624 (1), 0xF0 | C010624 (2), 0xF | C014624 (3), 0xF | C018624 (4) |        |        |
|--------------------------------|----------------------------|------------------|------------------|------------------|-------------|--------|--------|
| 31                             | 30                         | 29               | 28               | 27               | 26          | 25     | 24     |
| -                              | -                          | -                | -                | -                | -           | -      | -      |
| 23                             | 22                         | 21               | 20               | 19               | 18          | 17     | 16     |
| -                              | -                          | SMBHHM           | SMBDAM           | PECERR           | TOUT        | -      | MCACK  |
| 15                             | 14                         | 13               | 12               | 11               | 10          | 9      | 8      |
| TXBUFE                         | RXBUFF                     | ENDTX            | ENDRX            | EOSACC           | SCL_WS      | ARBLST | NACK   |
| 7                              | 6                          | 5                | 4                | 3                | 2           | 1      | 0      |
| UNRE                           | OVRE                       | GACC             | SVACC            | _                | TXRDY       | RXRDY  | TXCOMP |

# 47.10.68 TWI Interrupt Enable Register

FLEX\_TWI\_IER

The following configuration values are valid for all listed bit names of this register:

0: No effect.

Name:

1: Enables the corresponding interrupt.

TXCOMP: Transmission Completed Interrupt Enable

**RXRDY: Receive Holding Register Ready Interrupt Enable** 

**TXRDY: Transmit Holding Register Ready Interrupt Enable** 

**SVACC: Slave Access Interrupt Enable** 

**GACC: General Call Access Interrupt Enable** 

**OVRE: Overrun Error Interrupt Enable** 

**UNRE: Underrun Error Interrupt Enable** 

NACK: Not Acknowledge Interrupt Enable

**ARBLST: Arbitration Lost Interrupt Enable** 

SCL\_WS: Clock Wait State Interrupt Enable

EOSACC: End Of Slave Access Interrupt Enable

**ENDRX: End of Receive Buffer Interrupt Enable** 

ENDTX: End of Transmit Buffer Interrupt Enable

**RXBUFF: Receive Buffer Full Interrupt Enable** 

TXBUFE: Transmit Buffer Empty Interrupt Enable

MCACK: Master Code Acknowledge Interrupt Enable

**TOUT: Timeout Error Interrupt Enable** 

PECERR: PEC Error Interrupt Enable

SMBDAM: SMBus Default Address Match Interrupt Enable

SMBHHM: SMBus Host Header Address Match Interrupt Enable

# **EXTUN: Execute Tuning**

This bit is set to 1 to start the tuning procedure and is automatically cleared when the tuning procedure is completed. The result of tuning is indicated to Sampling Clock Select (SCLKSEL). The tuning procedure is aborted by writing 0. Refer to Figure 2.29 in the "SD Host Controller Simplified Specification V3.00".

0: Not tuned or tuning completed.

1: Execute tuning.

#### SCLKSEL: Sampling Clock Select

The SDMMC uses this bit to select the sampling clock to receive CMD and DAT.

This bit is set by the tuning procedure and is valid after completion of tuning (when EXTUN is cleared). Setting 1 means that tuning is completed successfully and setting 0 means that tuning has failed.

Writing 1 to this bit is meaningless and ignored. A tuning circuit is reset by writing to 0. This bit can be cleared by setting EXTUN to 1. Once the tuning circuit is reset, it takes time to complete the tuning sequence. Therefore, the user should keep this bit to 1 to perform a retuning sequence to complete a retuning sequence in a short time. Changing this bit is not allowed while the SDMMC is receiving a response or a read data block. Refer to Figure 2.29 in the "SD Host Controller Simplified Specification V3.00".

0: The fixed clock is used to sample data.

1: The tuned clock is used to sample data.

#### **ASINTEN: Asynchronous Interrupt Enable**

This bit can be set to 1 if a card support asynchronous interrupts and Asynchronous Interrupt Support (ASINTSUP) is set to 1 in SDMMC\_CA0R. Asynchronous interrupt is effective when DAT[1] interrupt is used in 4-bit SD mode. If this bit is set to 1, the user can stop the SDCLK during the asynchronous interrupt period to save power. During this period, the SDMMC continues to deliver the Card Interrupt to the host when it is asserted by the card.

- 0: Disabled
- 1: Enabled

#### **PVALEN: Preset Value Enable**

As the operating SDCLK frequency and I/O driver strength depend on the system implementation, it is difficult to determine these parameters in the standard host driver. When Preset Value Enable (PVALEN) is set to 1, automatic SDCLK frequency generation and driver strength selection are performed without considering system-specific conditions. This bit enables the functions defined in SDMMC\_PVR.

if this bit is set to 0, SDCLKFSEL, CLKGSEL in SDMMC\_CCR and DRVSEL in SDMMC\_HC2R are set by the user.

if this bit is set to 1, SDCLKFSEL, CLKGSEL in SDMMC\_CCR and DRVSEL in SDMMC\_HC2R are set by the SDMMC as specified in SDMMC\_PVR.

0: SDCLK and Driver strength are controlled by the user.

1: Automatic selection by Preset Value is enabled.

| Table 52-18: | Register l | Mapping | (Continued)                             |
|--------------|------------|---------|-----------------------------------------|
|              |            |         | (00000000000000000000000000000000000000 |

| Table 52-16: | Register Mapping (Continued)                          |                           | _          | _          |
|--------------|-------------------------------------------------------|---------------------------|------------|------------|
| Offset       | Register                                              | Name                      | Access     | Reset      |
| 0x198        | Gamma Correction Green Entry 0                        | ISC_GAM_GENTRY0           | Read/Write | 0x00000000 |
|              |                                                       |                           |            |            |
| 0x294        | Gamma Correction Green Entry 63                       | ISC_GAM_GENTRY63          | Read/Write | 0x00000000 |
| 0x298        | Gamma Correction Red Entry 0                          | ISC_GAM_RENTRY0           | Read/Write | 0x00000000 |
|              |                                                       |                           |            |            |
| 0x394        | Gamma Correction Red Entry 63                         | ISC_GAM_RENTRY63          | Read/Write | 0x00000000 |
| 0x398        | Color Space Conversion Control Register               | ISC_CSC_CTRL              | Read/Write | 0x00000000 |
| 0x39C        | Color Space Conversion YR, YG Register                | ISC_CSC_YR_YG             | Read/Write | 0x00000000 |
| 0x3A0        | Color Space Conversion YB, OY Register                | ISC_CSC_YB_OY             | Read/Write | 0x00000000 |
| 0x3A4        | Color Space Conversion CBR CBG Register               | ISC_CSC_CBR_CBG           | Read/Write | 0x00000000 |
| 0x3A8        | Color Space Conversion CBB OCB Register               | ISC_CSC_CBB_OCB           | Read/Write | 0x00000000 |
| 0x3AC        | Color Space Conversion CRR CRG Register               | ISC_CSC_CRR_CRG           | Read/Write | 0x00000000 |
| 0x3B0        | Color Space Conversion CRB OCR Register               | ISC_CSC_CRB_OCR           | Read/Write | 0x00000000 |
| 0x3B4        | Contrast and Brightness Control Register              | ISC_CBC_CTRL              | Read/Write | 0x00000000 |
| 0x3B8        | Contrast and Brightness Configuration Register        | ISC_CBC_CFG               | Read/Write | 0x00000000 |
| 0x3BC        | Contrast and Brightness, Brightness Register          | ISC_CBC_BRIGHT Read/Write |            | 0x00000000 |
| 0x3C0        | Contrast and Brightness, Contrast Register            | ISC_CBC_CONTRAST          | Read/Write | 0x00000000 |
| 0x3C4        | Subsampling 4:4:4 to 4:2:2 Control Register           | ISC_SUB422_CTRL           | Read/Write | 0x00000000 |
| 0x3C8        | Subsampling 4:4:4 to 4:2:2 Configuration Register     | ISC_SUB422_CFG            | Read/Write | 0x00000000 |
| 0x3CC        | Subsampling 4:2:2 to 4:2:0 Control Register           | ISC_SUB420_CTRL           | Read/Write | 0x00000000 |
| 0x3D0        | Rounding, Limiting and Packing Configuration Register | ISC_RLP_CFG               | Read/Write | 0x00000000 |
| 0x3D4        | Histogram Control Register                            | ISC_HIS_CTRL              | Read/Write | 0x00000000 |
| 0x3D8        | Histogram Configuration Register                      | ISC_HIS_CFG               | Read/Write | 0x00000000 |
| 0x3DC        | Reserved                                              | -                         | -          | -          |
| 0x3E0        | DMA Configuration Register                            | ISC_DCFG                  | Read/Write | 0x00000000 |
| 0x3E4        | DMA Control Register                                  | ISC_DCTRL                 | Read/Write | 0x00000000 |
| 0x3E8        | DMA Descriptor Address Register                       | ISC_DNDA                  | Read/Write | 0x00000000 |
| 0x3EC        | DMA Address 0 Register                                | ISC_DAD0                  | Read/Write | 0x00000000 |
| 0x3F0        | DMA Stride 0 Register                                 | ISC_DST0                  | Read/Write | 0x00000000 |
| 0x3F4        | DMA Address 1 Register                                | ISC_DAD1                  | Read/Write | 0x00000000 |
| 0x3F8        | DMA Stride 1 Register                                 | ISC_DST1                  | Read/Write | 0x00000000 |
| 0x3FC        | DMA Address 2 Register                                | ISC_DAD2                  | Read/Write | 0x00000000 |
| 0x400        | DMA Stride 2 Register                                 | ISC_DST2                  | Read/Write | 0x00000000 |
| 0x404-0x40C  | Reserved                                              | -                         | -          |            |
|              | 1                                                     | I                         | 1          |            |

| 52.6.4   | ISC Parallel Front End Configuration 0 Register |
|----------|-------------------------------------------------|
| Name:    | ISC_PFE_CFG0                                    |
| Address: | 0xF000800C                                      |

|              | 000000  |       |       |           |          |         |       |
|--------------|---------|-------|-------|-----------|----------|---------|-------|
| Access: Read | I/Write |       |       |           |          |         |       |
| 31           | 30      | 29    | 28    | 27        | 26       | 25      | 24    |
| REP          |         | BPS   |       | CCIR_REP  | _        | _       | -     |
| 23           | 22      | 21    | 20    | 19        | 18       | 17      | 16    |
|              |         |       | SKIF  | PCNT      |          |         |       |
| 15           | 14      | 13    | 12    | 11        | 10       | 9       | 8     |
| _            | _       | ROWEN | COLEN | CCIR10_8N | CCIR_CRC | CCIR656 | GATED |
| 7            | 6       | 5     | 4     | 3         | 2        | 1       | 0     |
| CONT         |         | MODE  |       | FPOL      | PPOL     | VPOL    | HPOL  |

# **HPOL: Horizontal Synchronization Polarity**

0: HSYNC signal is active high, i.e. valid pixels are sampled when HSYNC is asserted.

1: HSYNC signal is active low, i.e. valid pixels are sampled when HSYNC is deasserted.

# **VPOL: Vertical Synchronization Polarity**

0: VSYNC signal is active high, i.e. valid pixels are sampled when VSYNC is asserted.

1: VSYNC signal is active low, i.e. valid pixels are sampled when VSYNC is deasserted.

#### **PPOL: Pixel Clock Polarity**

0: The pixel stream is sampled on the rising edge of the pixel clock.

1: The pixel stream is sampled on the falling edge of the pixel clock.

# **FPOL: Field Polarity**

0: Top field is sampled when F value is 0; Bottom field is sampled when F value is 1

1: Top field is sampled when F value is 1; Bottom field is sampled when F value is 0

#### **MODE: Parallel Front End Mode**

| Value | Name         | Description                                                                       |
|-------|--------------|-----------------------------------------------------------------------------------|
| 0     | PROGRESSIVE  | Video source is progressive.                                                      |
| 1     | DF_TOP       | Video source is interlaced, two fields are captured starting with top field.      |
| 2     | DF_BOTTOM    | Video source is interlaced, two fields are captured starting with bottom field.   |
| 3     | DF_IMMEDIATE | Video source is interlaced, two fields are captured immediately.                  |
| 4     | SF_TOP       | Video source is interlaced, one field is captured starting with the top field.    |
| 5     | SF_BOTTOM    | Video source is interlaced, one field is captured starting with the bottom field. |
| 6     | SF_IMMEDIATE | Video source is interlaced, one field is captured starting immediately.           |

# **CONT: Continuous Acquisition**

0: Single Shot mode

1: Video mode

# 52.6.51 ISC DMA Configuration Register

Address: 0xF00083E0

#### Access: Read/Write

| 31 | 30 | 29  | 28   | 27 | 26    | 25      | 24 |
|----|----|-----|------|----|-------|---------|----|
| -  | -  | —   | -    | —  | -     | _       | -  |
| 23 | 22 | 21  | 20   | 19 | 18    | 17      | 16 |
| -  | -  | —   | -    | —  | -     | -       | -  |
| 15 | 14 | 13  | 12   | 11 | 10    | 9       | 8  |
| -  | -  | _   | -    | _  | _     | CMBSIZE |    |
| 7  | 6  | 5   | 4    | 3  | 2     | 1       | 0  |
| -  | _  | YMB | SIZE | _  | IMODE |         |    |

## **IMODE: DMA Input Mode Selection**

| Value | Name     | Description                   |  |  |  |  |
|-------|----------|-------------------------------|--|--|--|--|
| 0     | PACKED8  | 8 bits, single channel packed |  |  |  |  |
| 1     | PACKED16 | bits, single channel packed   |  |  |  |  |
| 2     | PACKED32 | 2 bits, single channel packed |  |  |  |  |
| 3     | YC422SP  | 32 bits, dual channel         |  |  |  |  |
| 4     | YC422P   | 32 bits, triple channel       |  |  |  |  |
| 5     | YC420SP  | 32 bits, dual channel         |  |  |  |  |
| 6     | YC420P   | 32 bits, triple channel       |  |  |  |  |

# YMBSIZE: DMA Memory Burst Size Y channel

| Value | Name    | Description          |
|-------|---------|----------------------|
| 0     | SINGLE  | DMA single access    |
| 1     | BEATS4  | 4-beat burst access  |
| 2     | BEATS8  | 8-beat burst access  |
| 3     | BEATS16 | 16-beat burst access |

# CMBSIZE: DMA Memory Burst Size C channel

| Value | Name    | Description          |
|-------|---------|----------------------|
| 0     | SINGLE  | DMA single access    |
| 1     | BEATS4  | 4-beat burst access  |
| 2     | BEATS8  | 8-beat burst access  |
| 3     | BEATS16 | 16-beat burst access |

# 53.6.45 MCAN Transmit Event FIFO Configuration

| Name:    | MCAN_TXEFC                           |    |    |    |    |    |    |  |  |  |  |
|----------|--------------------------------------|----|----|----|----|----|----|--|--|--|--|
| Address: | ress: 0xF80540F0 (0), 0xFC0500F0 (1) |    |    |    |    |    |    |  |  |  |  |
| Access:  | : Read/Write                         |    |    |    |    |    |    |  |  |  |  |
| 31       | 30                                   | 29 | 28 | 27 | 26 | 25 | 24 |  |  |  |  |
| -        | -                                    |    |    | EF | WM |    |    |  |  |  |  |
| 23       | 22                                   | 21 | 20 | 19 | 18 | 17 | 16 |  |  |  |  |
| _        | _                                    |    |    | El | FS |    |    |  |  |  |  |
| 15       | 14                                   | 13 | 12 | 11 | 10 | 9  | 8  |  |  |  |  |
|          | EFSA                                 |    |    |    |    |    |    |  |  |  |  |
| 7        | 6                                    | 5  | 4  | 3  | 2  | 1  | 0  |  |  |  |  |
|          | EFSA – –                             |    |    |    |    |    |    |  |  |  |  |

This register can only be written if the bits CCE and INIT are set in MCAN CC Control Register.

## **EFSA: Event FIFO Start Address**

Start address of Tx Event FIFO in Message RAM (32-bit word address, see Figure 53-12).

Write EFSA with the bits [15:2] of the 32-bit address.

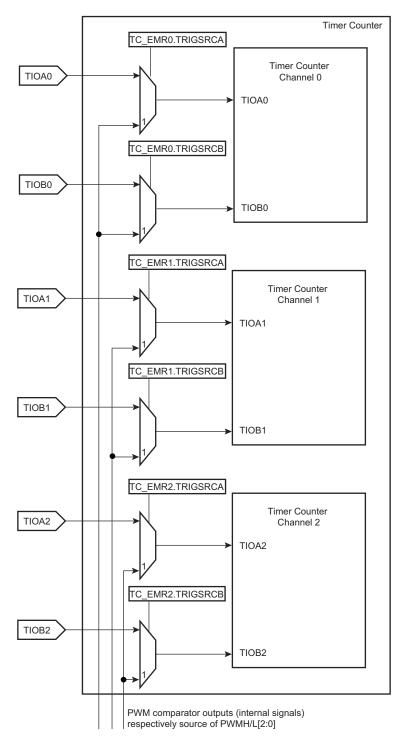
## **EFS: Event FIFO Size**

0: Tx Event FIFO disabled.

1-32: Number of Tx Event FIFO elements.

>32: Values greater than 32 are interpreted as 32.

The Tx Event FIFO elements are indexed from 0 to EFS - 1.

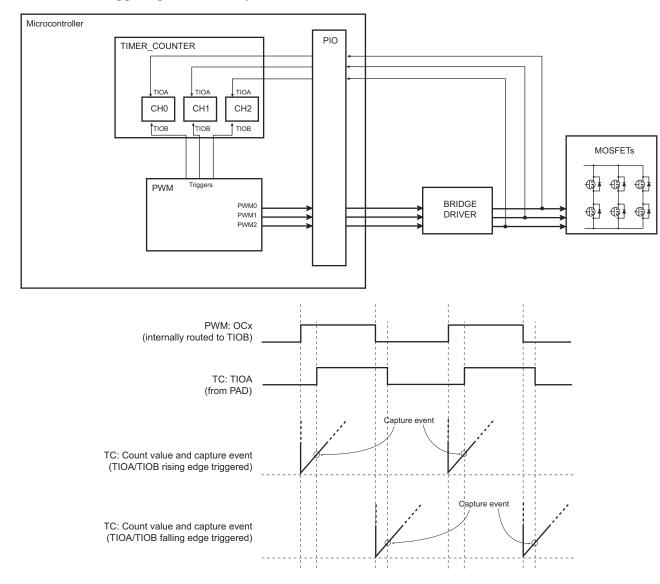

# EFWM: Event FIFO Watermark

0: Watermark interrupt disabled.

1-32: Level for Tx Event FIFO watermark interrupt (MCAN\_IR.TEFW).

>32: Watermark interrupt disabled.

# Figure 54-16: Synchronization with PWM




## 56.6.2.3 Trigger Selection for Timer Counter

The PWM controller can be used as a trigger source for the Timer Counter (TC) to achieve the two application examples described below.

#### • Delay Measurement

To measure the delay between the channel x comparator output (OCx) and the feedback from the bridge driver of the MOSFETs (see Figure 56-6), the bit TCTS in the PWM Channel Mode Register must be at 0. This defines the comparator output of the channel x as the TC trigger source. The TIOB trigger (TC internal input) is used to start the TC; the TIOA input (from PAD) is used to capture the delay.



## Figure 56-6: Triggering the TC: Delay Measurement

• Cumulated ON Time Measurement

To measure the cumulated "ON" time of MOSFETs (see Figure 56-7), the bit TCTS of the PWM Channel Mode Register must be set to 1 to define the counter event (see Figure 56-5) as the Timer Counter trigger source.

# SAMA5D2 SERIES

# 57.5.2 SFC Mode Register

| Address: 0x | <sup>-</sup> C_MR<br>F804C004<br>ead/Write |    |       |    |    |    |     |
|-------------|--------------------------------------------|----|-------|----|----|----|-----|
| 31          | 30                                         | 29 | 28    | 27 | 26 | 25 | 24  |
| _           | -                                          | _  | —     | —  | -  | —  | -   |
| 23          | 22                                         | 21 | 20    | 19 | 18 | 17 | 16  |
| —           | —                                          | —  | —     | —  | —  | —  | —   |
| 15          | 14                                         | 13 | 12    | 11 | 10 | 9  | 8   |
| _           | -                                          | -  | —     | —  | -  | _  | —   |
| 7           | 6                                          | 5  | 4     | 3  | 2  | 1  | 0   |
| -           | -                                          | —  | SASEL | —  | -  | _  | MSK |

# **MSK: Mask Data Registers**

0: No effect

1: The data registers from SFC\_DR20 to SFC\_DR23 are always read at 0x00000000.

Note: The MSK bit is set-only. Only a hardware reset can disable fuse masking.

# SASEL: Sense Amplifier Selection

0: Comparator type sense amplifier selected

1: Latch type sense amplifier selected

- 2. Set the AES Key Register and wait for AES\_ISR.DATRDY to be set (GCM hash subkey generation complete); use interrupt if needed. After the GCM hash subkey generation is complete the GCM hash subkey can be read or overwritten with specific value in AES\_GCMHRx. See Section 60.4.6.2 "Key Writing and Automatic Hash Subkey Calculation".
- 3. Calculate the  $J_0$  value as described in NIST documentation  $J_0 = IV || 0^{31} || 1$  when len(IV) = 96 and  $J_0 = GHASH_{H}(IV || 0^{s+64} || [len(IV)]_{64})$  if  $len(IV) \neq 96$ . See Processing a Message with only AAD (GHASHH) for  $J_0$  generation example when  $len(IV) \neq 96$ .
- 4. Set AES\_IVRx.IV with  $inc32(J_0)$  ( $J_0$  + 1 on 32 bits).
- 5. Configure AES\_AADLENR.AADLEN and AES\_CLENR.CLEN according to the length of the first fragment, or set the fields with the full message length (both configurations work).
- 6. Fill AES\_IDATARx.IDATA with the first fragment of the message to process (aligned on 16-byte boundary) according to the SMOD configuration used. If Manual Mode or Auto Mode is used the DATRDY bit indicates when the data have been processed (however, no output data are generated when processing *AAD*).
- 7. Make sure the last output data have been read if the fragment ends in C phase (or wait for DATRDY if the fragment ends in *AAD* phase), then read AES\_GHASHRx.GHASH to obtain the value of the hash after the last processed data and finally read AES\_CTR.CTR to obtain the value of the CTR encryption counter (not needed when the fragment ends in *AAD* phase).
- Next fragment (or last fragment):
- 1. Set AES\_MR.OPMOD to GCM and AES\_MR.GTAGEN to '0'.
- Set the AES Key Register and wait until AES\_ISR.DATRDY is set (GCM hash subkey generation complete); use interrupt if needed. After the GCM hash subkey generation is complete the GCM hash subkey can be read or overwritten with specific value in AES\_GCMHRx. See Section 60.4.6.2 "Key Writing and Automatic Hash Subkey Calculation".
- 3. Set AES\_IVRx.IV as follows:
  - If the first block of the fragment is a block of Additional Authenticated data, set AES\_IVRx.IV with the J0 initial value
- If the first block of the fragment is a block of Plaintext data, set AES\_IVRx.IV with a value constructed as follows: 'LSB96(J0) || CTR' value, (96 bit LSB of J0 concatenated with saved CTR value from previous fragment).
- 4. Configure AES\_AADLENR.AADLEN and AES\_CLENR.CLEN according to the length of the current fragment, or set the fields with the remaining message length, both configurations work.
- 5. Fill AES\_GHASHRx.GHASH with the value stored after the previous fragment.
- 6. Fill AES\_IDATARx.IDATA with the current fragment of the message to process (aligned on 16 byte boundary) according to the SMOD configuration used. If Manual Mode or Auto Mode is used, the DATRDY bit indicates when the data have been processed (however, no output data are generated when processing *AAD*).
- 7. Make sure the last output data have been read if the fragment ends in C phase (or wait for DATRDY if the fragment ends in AAD phase), then read AES\_GHASHRx.GHASH to obtain the value of the hash after the last processed data and finally read AES\_CTR.CTR to obtain the value of the CTR encryption counter (not needed when the fragment ends in AAD phase).

Note: Step 1 and 2 are required only if the value of the concerned registers has been modified.

Once the last fragment has been processed, the GHASH value will allow manual generation of the GCM tag. See Manual GCM Tag Generation.

• Manual GCM Tag Generation

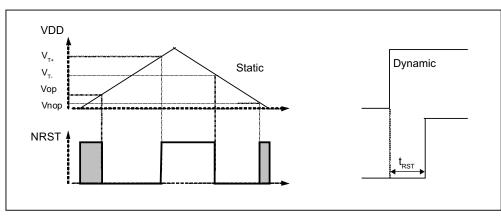
This section describes the last steps of the GCM Tag generation.

The Manual GCM Tag Generation is used to complete the GCM Tag Generation when the message has been processed without Tag Generation.

**Note:** The Message Processing without Tag Generation must be finished before processing the Manual GCM Tag Generation.

To generate a GCM Tag manually, the sequence is as follows:

Processing  $S = GHASH_H (AAD || 0_V || C || 0_u || [len(AAD)]_{64} || [len(C)]_{64})$ :


- 1. Set AES\_MR.OPMOD to GCM and AES\_MR.GTAGEN to '0'.
- 2. Set the AES Key Register and wait for AES\_ISR.DATRDY to be set (GCM hash subkey generation complete); use interrupt if needed. After the GCM hash subkey generation is complete the GCM hash subkey can be read or overwritten with specific value in AES\_GCMHRx. See Section 60.4.6.2 "Key Writing and Automatic Hash Subkey Calculation".
- 3. Configure AES\_AADLENR.AADLEN to 0x10 (16 bytes) and AES\_CLENR.CLEN to '0'. This will allow running a single GHASHH on a 16-byte input data (see Figure 60-7).
- 4. Fill AES\_GHASHRx.GHASH with the state of the GHASH field stored at the end of the message processing.
- 5. Fill AES\_IDATARx.IDATA according to the SMOD configuration used with 'len(*AAD*)64 || len(*C*)64' value as described in the NIST documentation and wait for DATRDY to be set; use interrupt if needed.
- 6. Read AES\_GHASHRx.GHASH to obtain the current value of the hash.

Processing  $T = \text{GCTR}\kappa(J_0, S)$ :

# 66.13 POR Characteristics

Figure 66-9 provides a general presentation of Power-On-Reset (POR) characteristics.

# Figure 66-9: General Presentation of POR Behavior



When a very slow (versus  $t_{RST}$ ) supply rising slope is applied on the POR VDD pin, the reset time becomes negligible and the reset signal is released when VDD raises higher than  $V_{T+}$ .

When a very fast (versus  $t_{RST}$ ) supply rising slope is applied on the POR VDD pin, the voltage threshold becomes negligible and the reset signal is released after  $t_{RST}$ . It is the smallest possible reset time.

#### Table 66-40: VDDBU Power-On Reset Characteristics

| Symbol           | Parameter                 | Conditions | Min  | Тур | Max  | Unit |
|------------------|---------------------------|------------|------|-----|------|------|
| V <sub>T+</sub>  | Threshold Voltage Rising  | _          | 1.3  | _   | 1.5  | V    |
| V <sub>T</sub> . | Threshold Voltage Falling | -          | 1.22 | -   | 1.4  | V    |
| V <sub>hys</sub> | Hysteresis Voltage        | -          | 50   | -   | 160  | mV   |
| t <sub>RST</sub> | Reset Timeout Period      | -          | 890  | Ι   | 5100 | μs   |

# Table 66-41: VDDCORE Power-On Reset Characteristics

| Symbol           | Parameter                 | Conditions | Min   | Тур | Max   | Unit |
|------------------|---------------------------|------------|-------|-----|-------|------|
| V <sub>T+</sub>  | Threshold Voltage Rising  | -          | 0.927 | -   | 1.075 | V    |
| V <sub>T-</sub>  | Threshold Voltage Falling | -          | 0.848 | -   | 1.025 | V    |
| V <sub>hys</sub> | Hysteresis Voltage        | -          | 38    | -   | 109   | mV   |
| t <sub>RST</sub> | Reset Timeout Period      | -          | 150   | _   | 650   | μs   |

#### Table 66-42: VDDANA Power-On Reset Characteristics

| Symbol           | Parameter                 | Conditions | Min  | Тур | Max | Unit |
|------------------|---------------------------|------------|------|-----|-----|------|
| V <sub>T+</sub>  | Threshold Voltage Rising  | -          | 1.3  | -   | 1.5 | V    |
| V <sub>T</sub> . | Threshold Voltage Falling | -          | 1.22 | -   | 1.4 | V    |
| V <sub>hys</sub> | Hysteresis Voltage        | -          | 50   | -   | 160 | mV   |
| t <sub>RST</sub> | Reset Timeout Period      | -          | 130  | _   | 650 | μs   |