

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	16MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	32
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	
RAM Size	236 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8609316fsc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Z86093

ROMLESS CMOS 8-BIT Z8® MCU

FEATURES

Device	ROM	RAM*	Speed
	(KB)	(Bytes)	(MHz)
Z86093	N/A	236	16

Note: *General-Purpose

- 40-Pin DIP, 44-Pin PLCC and QFP Packages
- 3.0- to 5.5-Volt Operating Range
- Available Temperature Ranges:S = 0°C to 70°C

 $E = -40^{\circ}C$ to $+105^{\circ}C$

- 32 Input/Output Lines
- Six Vectored, Prioritized Interrupts from Six Different Sources
- Two On-Chip Analog Comparators

- Two Programmable 8-Bit Counter/Timers,
 Each with Two 6-Bit Programmable Prescaler
- Power-On Reset (POR)
- Low-Power Consumption
- Expanded Register File (ERF)
- Programmable Interrupt Polarity
- Optional Features Required Selections:
 - ROM Protect Disabled
 - RAM Protect Disabled
 - WDT Enabled by Software Only
 - Autolatches Enabled
 - Clock Source Crystal, Ceramic Resonator, LC, or External Clock Drive

GENERAL DESCRIPTION

The Z86093 is a ROMless member of Zilog's Z8® MCU single-chip family with 236 bytes of general purpose RAM. It is available in a 40-pin DIP package, 44-pin PLCC package, and 44-pin QFP package. The Z86093 offers the use of external memory which enables this Z8® MCU to be used where code flexibility is required. Zilog's CMOS MCUs offer fast execution, efficient use of memory, sophisticated interrupts, input/output bit manipulation capabilities, and easy hardware/software system expansion along with low cost and low power consumption.

The Z86093 features an Expanded Register File (ERF) to allow access to register-mapped peripheral and I/O circuits. Four basic address spaces are available to support this wide range of configurations: Program Memory, Register File, Data Memory, and ERF. The Register File is composed of 236 bytes of general-purpose registers, four

I/O port registers, and 15 control and status registers. The ERF consists of three control registers.

For applications demanding powerful I/O capabilities, the Z86093's 32 input and output lines are grouped into four ports, and are configurable under software control to provide timing, status signals, parallel I/O with or without handshake, and address/data bus for interfacing external memory.

Two on-chip counter/timers, with a large number of user selectable modes, off-load the system of administering real-time tasks such as counting/timing and I/O data communications. Additionally, two on-chip comparators process analog signals with a common reference voltage (Figure 1).

GENERAL DESCRIPTION (Continued)

Notes: All signals with a preceding front slash, "/", are active Low. For example, B//W (WORD is active Low); /B/W (BYTE is active Low, only).

Power connections follow conventional descriptions below:

Connection	Circuit	Device
Power	V _{CC}	V _{DD}
Ground	GND	V _{SS}

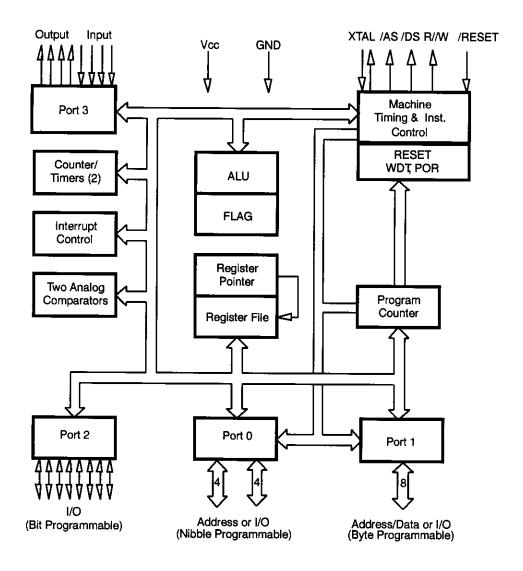


Figure 1. Functional Block Diagram

PIN DESCRIPTION

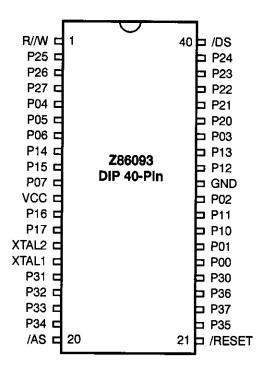


Figure 2. 40-Pin DIP Assignments

Table 1. 40-Pin Dual-in-Line Package Pin Identification

Pin#	Symbol	Function	Direction
1	R//W	Read/Write	Output
2-4	P25-27	Port 2, Pins 5,6,7	In/Output
5-7	P04-06	Port 0, Pins 4,5,6	In/Output
8-9	P14-15	Port 1, Pins 4,5	In/Output
10	P07	Port 0, Pin 7	In/Output
11	V _{CC}	Power Supply	
12-13	P16-17	Port 1, Pins 6,7	In/Output
14	XTAL2	Crystal, Oscillator Clock	Output
15	XTAL1	Crystal, Oscillator Clock	Input
16-18	P31-33	Port 3, Pins 1,2,3	Input
19	P34	Port 3, Pin 4	Output
20	/AS	Address Strobe	Output

Table 1. 40-Pin Dual-In-Line Package Pin Identification

Pin#	Symbol	Function	Direction
21	/RESET	Reset	Input
22	P35	Port 3, Pin 5	Output
23	P37	Port 3, Pin 7	Output
24	P36	Port 3, Pin 6	Output
25	P30	Port 3, Pin 0	Input
26-27	P00-01	Port 0, Pin 0,1	In/Output
28-29	P10-11	Port 1, Pin 0,1	In/Output
30	P02	Port 0, Pin 2	In/Output
31	GND	Ground	
32-33	P12-13	Port 1, Pin 2,3	In/Output
34	P03	Port 0, Pin 3	In/Output
35-39	P20-24	Port 2, Pin 0,1,2,3,4	In/Output
40	/DS	Data Strobe	Output

PIN DESCRIPTION (Continued)

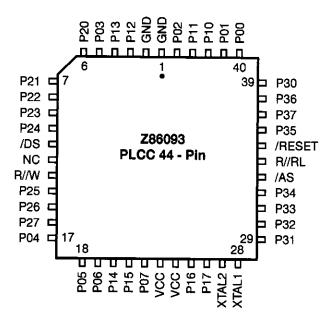


Figure 3. 44-Pin PLCC Pin Assignments

Table 2. 44-Pin PLCC Pin Identification

Pin#	Symbol	Function	Direction
1-2	GND	Ground	
3-4	P12-13	Port 1, Pins 2,3	In/Output
5	P03	Port 0, Pin 3	In/Output
6-10	P20-24	Port 2, Pins 0,1,2,3,4	In/Output
11	/DS	Data Strobe	Output
12	N/C	Not Connected	18 12 .
13	R//W	Read/Write	Output
14-16	P25-27	Port 2, Pins 5,6,7	In/Output
17-19	P04-06	Port 0, Pins 4,5,6	In/Output
20-21	P14-15	Port 1, Pins 4,5	In/Output
22	P07	Port 0, Pin 7	In/Output
23,24	V _{CC}	Power Supply	
25-26	P16-17	Port 1, Pins 6,7	In/Output

Table 2. 44-Pin PLCC Pin Identification

Pin#	Symbol	Function	Direction
27	XTAL2	Crystal, Oscillator Clock	Output
28	XTAL1	Crystal, Oscillator Clock	Input
29-31	P31-33	Port 3, Pins 1,2,3	Input
32	P34	Port 3, Pin 4	Output
33	/AS	Address Strobe	Output
34	R//RL	ROM/ROMless Control	Input
35	/RESET	Reset	Input
36	P35	Port 3, Pin 5	Output
37	P37	Port 3, Pin 7	Output
38	P36	Port 3, Pin 6	Output
39	P30	Port 3, Pin 0	Input
40-41	P00-01	Port 0, Pins 0,1	In/Output
42-43	P10-11	Port 1, Pins 0,1	In/Output
44	P02	Port 0, Pin 2	In/Output

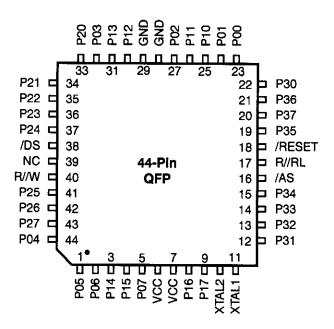


Figure 4. 44-Pin QFP Pin Assignments

Table 3. 44-Pin QFP Pin Identification

Pin #	Symbol	Function	Direction
1-2	P05-06	Port 0, Pins 5,6	In/Output
3-4	P14-15	Port 1, Pins 4,5	In/Output
5	P07	Port 0, Pin 7	In/Output
6-7	V _{CC}	Power Supply	
8-9	P16-17	Port 1 Pins 6,7	In/Output
10	XTAL2	Crystal, Oscillator Clock	Output
11	XTAL1	Crystal, Oscillator Clock	Input
12-14	P31-33	Port 3, Pins 1,2,3	Input
15	P34	Port 3, Pin 4	Output
16	/AS	Address Strobe	Output
17	R//RL	ROM/ROMless Control	Input
18	/RESET	Reset	Input
19	P35	Port 3, Pin 5	Output
20	P37	Port 3, Pin 7	Output

Table 3. 44-Pin QFP Pln Identification

Pin#	Symbol	Function	Direction
21	P36	Port 3, Pin 6	Output
22	P30	Port 3, Pin 0	Input
23-24	P00-01	Port 0, Pins 0,1	In/Output
25-26	P10-11	Port 1, Pins 0,1	In/Output
27	P02	Port 0, Pin 2	In/Output
28-29	GND	Ground	
30-31	P12-13	Port 1, Pins 2,3	In/Output
32	P03	Port 0, Pin 3	In/Output
33-37	P20-24	Port 2, Pins 0,1,2,3,4	In/Output
38	/DS	Data Strobe	Output
39	N/C	Not Connected	
40	R//W	Read/Write	Output
41-43	P25-27	Port 2, Pins 5,6,7	In/Output
44	P04	Port 0, Pin 4	In/Output

ABSOLUTE MAXIMUM RATINGS

Min	Max	Units	Notes
-40	+105	С	
-65	+150	С	
-0.6	+7	V	1
-0.3	+7	٧	<u>.</u>
-0.6	V _{DD} +1		2
· · · · · · · · · · · · · · · · · · ·	1.21	W	
	220	mA	-
	180	mA	
-600	+600	<u>μ</u> Α	3
-600	+600	μA	4
	25	mA	· ·
	25	mA	
	-40 -65 -0.6 -0.3 -0.6	-40 +105 -65 +150 -0.6 +7 -0.3 +7 -0.6 V _{DD} +1 1.21 220 180 -600 +600 -600 +600 25	-40 +105 C -65 +150 C -0.6 +7 V -0.3 +7 V -0.6 V _{DD} +1 V 1.21 W 220 mA 180 mA -600 +600 μA -600 +600 μA 25 mA

Notes:

- 1. This applies to all pins except XTAL pins and where otherwise noted.
- 2. There is no input protection diode from pin to V_{DD} and current into pin is limited to $\pm 600~\mu A$
- 3. This excludes XTAL pins.
- 4. Device pin is not at an output Low state.

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability.

Total power dissipation should not exceed 1.21 W for the package. Power dissipation is calculated as follows:

Total Power Dissipation =
$$V_{DD} \times [I_{DD} - (sum of I_{OH})]$$

+ sum of $[(V_{DD} - V_{OH}) \times I_{OH}]$
+ sum of $(V_{0L} \times I_{0L})$

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (see Figure 7.)

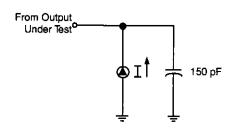


Figure 5. Test Load Diagram

CAPACITANCE

 $T_A = 25$ °C, $V_{CC} = GND = 0V$, f = 1.0 MHz, Unmeasured pins to GND

Parameter	Min	Max
Input capacitance	0	12 pF
Output capacitance	0	12 pF
I/O capacitance	0	12 pF

DC ELECTRICAL CHARACTERISTICS

			T _A =	0° C	$T_A = $	-40°C				
Sym	Parameter	V _{CC} Note [3]	to + M in	70°C Max	to + Min	105°C Max	Typical [1] @ 25°C	 Units	Conditions	Notes
V _{CH}	Clock Input High Voltage	3.0V	0.7 V _{CC}	V _{CC} +0.3	0.7 V _{CC}	V _{CC} +0.3	1.8	V	Driven by External Clock Generator	-
		5.5V	0.7 V _{CC}	V _{CC} +0.3	0.7 V _{CC}	V _{CC} +0.3	2.6	V	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	3.0V	GND-0.3	0.2 V _{CC}	GND-0.3	0.2 V _{CC}	1.2	V	Driven by External Clock Generator	
		5.5V	GND-0.3	0.2 V _{CC}	GND-0.3	0.2 V _{CC}	2.1	V	Driven by External Clock Generator	
V_{IH}	Input High	3.0V	0.7 V _{CC}	V _{CC} +0.3	0.7 V _{CC}	V _{CC} +0.3	1.8	V		
	Voltage	5.5V	0.7 V _{CC}	V _{CC} +0.3	0.7 V _{CC}	V _{CC} +0.3	2.6	V		
$\overline{V_{1L}}$	Input Low	3.0V	GND-0.3	0.2 V _{CC}	GND-0.3	0.2 V _{CC}	1.1	V		
	Voltage	5.5V	GND-0.3	0.2 V _{CC}	GND-0.3	0.2 V _{CC}	1.6	V		
V _{OH1}	Output High Voltage	3.0V	V _{CC} -0.4		V _{CC} -0.4		3.1	V	l _{OH} = -2.0 mA	8
,		5.5V	V _{CC} -0.4	749), 11	V _{CC} -0.4		4.8	V	I _{OH} = -2.0 mA	8
$\overline{V_{OL1}}$	Output Low	3.0V		0.6		0.6	0.2	٧	$I_{OL} = +4.0 \text{ mA}$	8
	Voltage	5.5V		0.4		0.4	0.1	V	$I_{OL} = +4.0 \text{ mA}$	- 8
$\overline{V_{OL2}}$	Output Low Voltage	3.0V		1.2		1.2	0.3	V	I _{OL} = +6 mA	8
		5.5V		1.2		1.2	0.4	V	I _{OL} = +12 mA	8
$\overline{V_{RH}}$	Reset Input	3.0V	.8 V _{CC}	V _{CC}	.8 V _{CC}	V _{CC}	1.8	V		13
	High Voltage	5.5V	.8 V _{CC}	V _{CC}	.8 V _{CC}	V _{CC}	2.6	V		13
V _{RI}	Reset Input	3.0V	GND-0.3	0.2 V _{CC}	GND-0.3	0.2 V _{CC}	1.1	V		13
	Low Voltage	5.5V	GND-0.3	0.2 V _{CC}	GND-0.3	0.2 V _{CC}	1.6	V		13
$\overline{V_{OLR}}$	Reset Output	3.0V		0.6		0.6	0.3	V	$I_{OL} = +1.0 \text{ mA}$	13
	Low Voltage	5.5V		0.6		0.6	0.3	V	$I_{OL} = +1.0 \text{ mA}$	13
V _{OFFSET}	Comparator	3.0V		25		25	10	mV		10
	Input Offset Voltage	5.5V		25		25	10	mV		10
I _{IL}	Input Leakage	3.0V	-1	2	-1	2	0.004	μА	$V_{IN} = 0V, V_{CC}$	
		5.5V	-1	2	-1	2	0.004	μА	$V_{IN} = 0V, V_{CC}$	
I _{OL}	Output	3.0V	-1	1	-1	2	0.004	μА	$V_{IN} = 0V, V_{CC}$	
	Leakage	5.5V	-1	1	-1	2	0.004	μА	V _{IN} = 0V, V _{CC}	
l _{IR}	Reset Input	3.0V	-20	-130	-18	-130	-60	μA		
	Current	5.5V	-20	-180	-18	-180	-85	μА		
Icc	Supply Current	3.0V		20		20	7		@ 16 MHz	4
		5.5V		25		25	20		@ 16 MHz	4
		3.0V		15		15	5		@ 12 MHz	4
		5.5V		20		20	15	mA	@ 12 MHz	4

DC ELECTRICAL CHARACTERISTICS (Continued)

			TA	= 0° C	T _A :	= -40°C			-	
Sym	Parameter	V _{CC} Note [3]	to Min	+70°C Max	to Min	+105°C Max	Typical [1] @ 25°C	Units	s Conditions	Notes
I _{CC1}	Standby Current	3.0V		4.5		4.5	2.0	mA	V _{IN} = 0V, V _{CC} @ 16 MHz	4
	(HALT Mode)	5.5V		8		8	3.7	mA	V _{IN} = 0V, V _{CC} @ 16 MHz	4
		3.0V		3.4		3.4	1.5	mA	Clock Divide- by-16 @ 16 MHz	4
		5.5V		7.0	-	7.0	2.9	mA	Clock Divide- by-16 @ 16 MHz	4
I _{CC2}	Standby Current (STOP Mode)	3.0V		8		8	2	μА	V _{IN} = 0V, V _{CC} WDT is not Running	6,11
		5.5V		10		10	4	μА	V _{IN} = 0V, V _{CC} WDT is not Running	6,11
		3.0V		500		600	310		V _{IN} = 0V, V _{CC} WDT is Running	6,11, 14
		5.5V		800		1000	600	μА	V _{IN} = 0V, V _{CC} WDT is Running	6,11, 14
V _{ICR}	Input Common	3.0V	0	V _{CC} -1.0V	0	V _{CC} -1.5V		٧		10
	Mode Voltage Range	5.5V	0	V _{CC} -1.0V	0	V _{CC} -1.5V		٧		10

		V _{CC}	T _A = 0° C to +70°C		T _A = -		Typical [1]]	
Sym	Parameter	Note [3]	Min	Max	Min	Max	@ 25°C	Units	Conditions Notes
I _{ALL}	Auto Latch	3.0V	0.7	8	0.7	10	3	μА	0V < V _{IN} < V _{CC} 9
	Low Current	5.5V	1.4	15	1.4	20	5	μА	0V < V _{IN} < V _{CC} 9
I _{ALH}	Auto Latch High Current	3.0V	-0.6	-5	-0.6	-7	-3	μА	0V < V _{IN} < V _{CC} 9
		5.5V	-1.0	-8	-1.0	-10	-6	μА	0V < V _{IN} < V _{CC} 9
$\overline{V_{LV}}$	V _{CC} Low Voltage Protection Voltage				2.0	3.3	2.8	V	4 MHz max 7,15 Int. CLK Freq.
			2.2	3.1	·		2.8		6 MHz max 7,14 Int. CLK Freq.
$\overline{V_{OH}}$	Output High	3.0V	V _{CC} -0.4		V _{CC} -0.4		3.1	٧	I _{OH} = -0.5 mA
	Voltage (Low EMI Mode)	5.0V	V _{CC} -0.4		V _{CC} -0.4		4.8	V	I _{OH} = -0.5 mA
V _{OL}	Output Low	3.0V		0.6		0.6	0.2	V	I _{OL} = 1.0 mA
	Voltage (Low EMI Mode)	5.0V		0.4		0.4	0.1	V	I _{OL} = 1.0 mA

Notes:

- 1. Typicals are at $V_{CC} = 5.0V$ and 3.3V.
- 2. GND = 0V.
- 3. The V_{DD} voltage specification of 3.0V guarantees 3.3V \pm 0.3V with typicals at V_{CC} =3.3V, and the V_{DD} voltage specification of 5.5V guarantees 5.0V \pm 0.5V with typicals at V_{CC} -5.0V.
- 4. All outputs unloaded, I/O pins floating, inputs at rail.
- 5. CL1 = CL2 = 10 pF.
- Same as note [4] except inputs at V_{CC}.
- 7. The V_{LV} voltage increases as the temperature decreases and will overlap lower V_{CC} operating region.
- 8. Standard Mode (not Low EMI).
- 9. Auto Latch (Mask Option) selected.
- 10. For analog comparator, inputs when analog comparators are enabled.
- 11. Clock must be forced Low, when XTAL 1 is clock-driven and XTAL2 is floating.
- 12. Excludes clock pins.
- 13. Z86093 only.
- 14. 0°C to 70°C (standard temperature).
- 15. -40°C to 150°C (extended temperature).

AC ELECTRICAL CHARACTERISTICS

External I/O or Memory Read and Write Timing Table

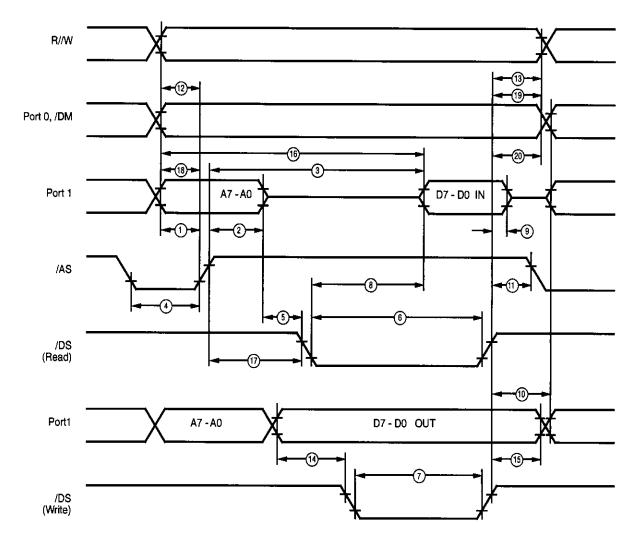


Figure 6. External I/O or Memory Read and Write Timing Table

AC CHARACTERISTICS

External I/O or Memory Read and Write Timing Table (SCLK/TCLK = XTAL/2)

			Note	٦	A=0°C	to 70°	C	T _A =	-40°C	to +1	05°C		·
			[3]	12	MHz	16	MHz	12	MHz	16	MHz		
No	Symbol	Parameter	Vcc	Min	Max	Min	Max	Min	Max	Min	Max	Units	Notes
1	TdA(AS)	Address Valid to /AS	3.0	35		25		35		25		ns	2
		Rise Delay	5.5	35		25		35		25		-	2
2	TdAS(A)	/AS Rise to Address	3.0	45		35	•	45		35		ns	
		Float Delay	5.5	45		35		45		35		ns	2
3	TdAS(DR)	/AS Rise to Read	3.0	-	250		180		250		180	ns	1,2
		Data Req'd Valid	5.5		250		180		250		180	ns	2
4	TwAS	/AS Low Width	3.0	55		40		55		40		ns	2
			5.5	55		40		55		40	1-1	ns	2
5	TdAS(DS)	Address Float to	3.0	0		0		0		0		ns	
		/DS Fall	5.5	0		0	•	0		0		ns	
6	TwDSR	/DS (Read) Low	3.0	200		135		200		135		ns	1,2
		Width	5.5	200		135		200	··-	135		ns	1,2
7	7 TwDSW	/DS (Write) Low	3.0	110		80		110		80		ns	1,2
		Width	5.5	110	11	80		110		80		ns	1,2
8	Req'd Val	/DS Fall to Read Data	3.0		150		75		150	-	75	ns	1,2
		Req'd Valid	5.5		150		75		150		75	ns	1,2
9	ThDR(DS)	Read Data to /DS Rise	3.0	0		0		0		0		ns	2
		Hold Time	5.5	0		0		0	<u> </u>	0		ns	2
10	TdDS(A)	/DS Rise to Address	3.0	45		50		45		50		ns	2
		Active Delay	5.5	55		50		55		50	-	ns	2
11	TdDS(AS)	/DS Rise to /AS Fall	3.0	30		35		30		35		ns	2
		Delay	5.5	45		35		45	***	55		ns	2
12	TdR/W(AS)	R//W Valid to /AS Rise	3.0	45		25		45		25		ns	2
		Delay	5.5	45		25		45		25		ns	2
13	TdDS(R/W)	/DS Rise to R//W	3.0	45		35		45		35		ns	2
		Not Valid	5.5	45		35		45		35		ns	2
14	TdDW(DSW)	Write Data Valid to /DS	3.0	55		25		55	- truta	25		ns	2
		Fall (Write) Delay	5.5	55		25		55		25		ns	2
15	TdDS(DW)	/DS Rise to Write	3.0	45		35		45		35		ns	2
		Data Not Valid Delay	5.5	45		35		45		35		ns	2
16	TdA(DR)	Address Valid to Read	3.0		310		230		310		230	ns	1,2
		Data Req'd Valid	5.5		310		230		310		230	ns	1,2
17	TdAS(DS)	/AS Rise to /DS	3.0	65	*	45		65		45		ns	2
		Fall Delay	5.5	65		45		65		45		ns	2
18	TdDM(AS)	/DM Valid to /AS	3.0	35		30		35		30		ns	2
		Fall Delay	5.5	35		30		35		30		ns	2

AC CHARACTERISTICS (Continued)

No			Note [3]	T _A =0°C to 70°C			$T_A = -40^{\circ}C \text{ to } +105^{\circ}C$						
				12 MHz		16 MHz		12 MHz		16 MHz			
	Symbol	Parameter	Vcc	Min	Max	Min	Max	Min	Max	Min	Max	Units	Notes
19	TdDs(DM)	/DS Rise to DM Valid Delay	3.0 5.5	45 45		35 35		45 45		35		ns	2
20	ThDS(AS)	/DS Valid to Address	3.0	45	***	35		45 45		35 35		ns ns	2
20	11120(110)	Valid Home Time	5.5	45		35		45		35		ns	2

Notes:

- 1. When using extended memory timing add 2 TpC.
- 2. Timing numbers given are for minimum TpC.
- 3. The V_{CC} voltage specification of 3.0V guarantees 3.3V \pm 0.3V, and the V_{DD} voltage specification of 5.5V guarantees 5.0V \pm 0.5V.

Standard Test Load

All timing references use 0.7 V_{CC} for a logic 1 and 0.2 V_{CC} for a logic 0.

AC ELECTRICAL CHARACTERISTICS

Additional Timing Diagram

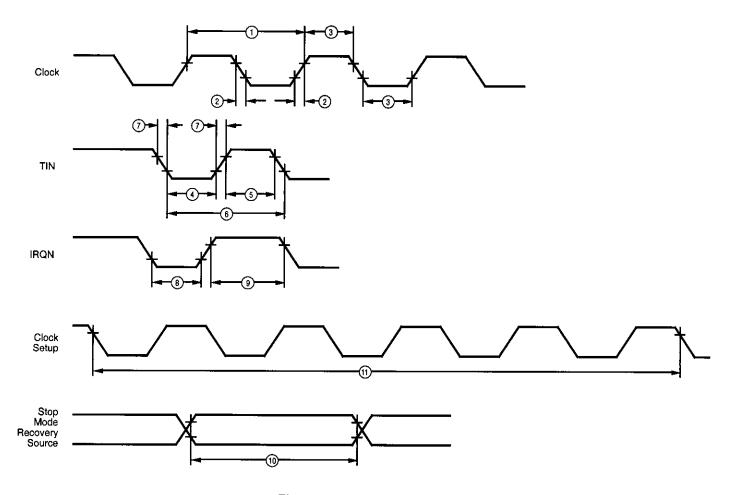


Figure 7. Additional Timing

AC CHARACTERISTICS

Additional Timing Table (SCLK/TCLK = XTAL/2)

			Note $T_A = 0^{\circ}C$ to +70°C					TA	=-4 0°C)5°C			
			[3]	12	MHz	16	MHz	12	MHz	161	MHz		
No	Symbol	Parameter	V _{CC}	Min	Max	Min	Max	Min	Max	Min	Max	Units	Notes
1	ТрС	Input Clock Period	3.0V	83	DC	62.5	DC	83	DC	62.5	DC	ns	1,7
			5.5V	83	DC	62.5	DC	83	DC	62.5	DC	ns	1,7
			3.0V	250	DC	250	DC	250	DC	250	DC	ns	1,8
			5.5V	250	DC	250	DC	250	DC	250	DC	ns	1,8
2	TrC,TfC	Clock Input Rise &	3.0V		15		15		15		15	ns	1
		Fall Times	5.5V		15		15		15		15	ns	1
3	TwC	Input Clock Width	3.0V	41		31	•••	41		31		ns	1
			5.5V	41		31	•	41		31		ns	1
			3.0V	125		125		125		125		ns	1,8
			5.5V	125		125		125		125		ns	1,8
4	TwTinL	Timer Input Low	3.0V	100		100		100		100		ns	1
		Width	5.5V	70		70		70		70		ns	1
5	TwTinH	Timer Input High	3.0V	5TpC		5TpC		5TpC		5TpC			1
		Width	5.5V	5TpC		5TpC		5TpC		5TpC			1
6	TpTin	Timer Input Period	3.0V	8TpC		8TpC		8TpC		8TpC			1
			5.5V	8TpC		8TpC		8TpC		8TpC			1
7	TrTin,	Timer Input Rise &	3.0V		100		100		100	-	100	ns	1
	TfTin	Fall Timer	5.5V		100		100	-	100		100	ns	1
8A	TwlL	Int. Request Low	3.0V	100		100		100		100		ns	1,2
		Time	5.5V	70		70		70		70		ns	1,2
8B	TwlL	Int. Request Low	3.0V	5TpC		5TpC		5TpC		5TpC			1,3
		Time	5.5V	5TpC		5TpC		5TpC		5TpC	••••		1,3
9	TwlH	Int. Request Input	3.0V	5TpC		5TpC		5TpC		5TpC			1,2
		High Time	5.5V	5TpC		5TpC		5TpC		5TpC		·	1,2
10	Twsm	Stop-Mode	3.0V	12		12		12		12		ns	
		Recovery Width Spec	5.5V	12		12		12		12		ns	
11	Tost	Oscillator Startup	3.0V		5TpC		5TpC		5TpC	-	5TpC		4
		Time	5.5V		5TpC		5TpC		5TpC		5TpC		4
													D1, D0 [Note]
12	Twdt	Watch-Dog Timer	3.0V	7		7		7		7		ms	0, 0 [5]
		Delay Time	5.5V	3.5		3.5		3.5		3.5		ms	0, 0 [5]
		before time-out	3.0V	14		14		14		14		ms	0, 1 [5]
			5.5V	7		7		7		7		ms	0, 1 [5]
			3.0V	28		28		28		28		ms	1, 0 [5]
			5.5V	14		14		14		14		ms	1, 0 [5]
			3.0V	112		112		112		112		ms	1, 1 [5]
			5.5V	56		56		56		56		ms	1, 1 [5]

No		Parameter	Note	T _A = 0°C to +70°C				T _A =-4 0°C to +105°C					
			л ^{сс} [3]	12 MHz		16 MHz		12 MHz		16 MHz			
	Symbol			Min	Max	Min	Max	Min	Max	Min	Max	Units	Notes
13	TPOR	Power-On Reset	3.0V	3	24	3	24	3	25	3	25	ms	
		Delay	5.5V	1.5	13	1.5	13	1	14	1	14	ms	

Notes::

- 1. Timing Reference uses 0.7 V_{CC} for a logic 1 and 0.2 V_{CC} for a logic 0.
- 2. Interrupt request via Port 3 (P31-P33).
- 3. Interrupt request via Port 3 (P30).
- 4. SMR-D5 = 0.
- 5. Reg. WDTMR.
- 6. The V_{CC} voltage specification of 3.0V guarantees 3.3V \pm 0.3V, and the V_{DD} voltage specification of 5.5V guarantees 5.0V \pm 0.5V.
- 7. Standard Oscillator mode, Pcon RegD7=1.
- 8. Maximum frequency for external XTAL Clock is 4MHz when using low EMI oscillator mode, Pcon Reg D7=0.

AC ELECTRICAL CHARACTERISTICS

Additional Timing Table (Divide-By-One Mode, SCLK/TCLK = XTAL)

					0°C to 0°C		10°C to		
			V _{CC}	8 #	ИHz	8 N	MHz		
No	Symbol	Parameter	Note [6]	Min	Max	Min	Max	Units	Notes
1	TpC	Input Clock Period	3.0V	250	DC	250	DC	ns	1,7,8
			5.5V	250	DC	250	DC	ns	1,7,8
			3.0V	125	DC	125	DC	ns	1,7
			5.5V	125	DC	125	DC	ns	1,7
2	TrC,TfC	Clock Input Rise	3.0V	.	25		25	ns	1,7
		& Fall Times	5.5V		25		25	ns	1,7
3	TwC	Input Clock Width	3.0V	125		125		ns	1,7,8
			5.5V	125		125		ns	1,7,8
			3.0V	62		62	•	ns	1,7
			5.5V	62		62		ns	1,7
4	TwTinL	Timer Input Low Width	3.0V	100	-	100		ns	1,7
			5.5V	70		70		ns	1,7
5	TwTinH Timer Input High Width		3.0V	3TpC		ЗТрС	_		1,7
			5.5V	3TpC		3TpC			1,7
6	TpTin	Timer Input Period	3.0V	4TpC		4TpC			1,7
			5.5V	4TpC		4TpC			1,7
7	TrTin,	Timer Input Rise	3.0V		100		100	ns	1,7
	TfTin	& Fall Timer	5.5V		100	* .* .	100	ns	1,7
8A	TwlL	Int. Request Low Time	3.0V	100		100		ns	1,2,7
			5.5V	70		70	****	ns	1,2,7
8B	TwlL	Int. Request Low Time	3.0V	3TpC		ЗТрС			1,3,7
			5.5V	3TpC		3TpC			1,3,7
9	TwIH	Int. Request Input	3.0V	3TpC		3TpC			1,2,7
		High Time	5.5V	3TpC	-1	2TpC			1,2,7
10	Twsm	Stop-Mode Recovery	3.0V	12		12	***	ns	4
		Width Spec	5.5V	12	•	12		ns	4
11	Tost Oscillator Startup Time		3.0V		5TpC		5TpC		4,9
			5.5V		5TpC		5TpC		4,9

Notes:

- 1. Timing Reference uses 0.7 V_{CC} for a logic 1 and 0.2 V_{CC} for a logic 0.
- 2. Interrupt request via Port 3 (P31-P33).
- 3. Interrupt request via Port 3 (P30).
- 4. SMR-D5 = 1, POR STOP Mode Delay is on.
- 5. Reg. WDTMR.
- 6. The V_{CC} voltage specification of 3.0V guarantees 3.3V \pm 0.3V, and the V_{DD} voltage specification of 5.5V guarantees 5.0V \pm 0.5V.
- 7. SMR D1 = 0.
- 8. Maximum frequency for external XTAL clock is 4 MHz when using low EMI Oscillator mode Pcon Reg.D7=0.
- 9. For RC and LC oscillator, and for oscillator driven by clock driver.

Handshake Timing Diagrams

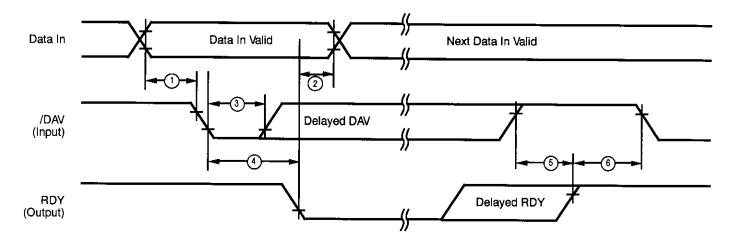


Figure 8. Input Handshake Timing

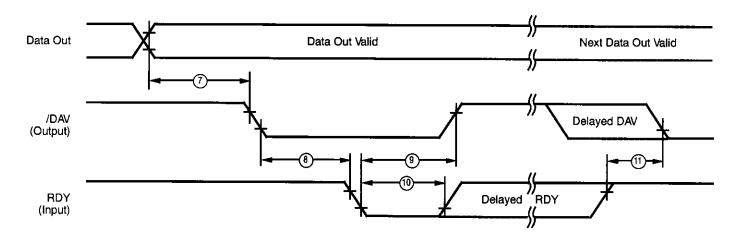


Figure 9. Output Handshake Timing

Pre-Characterization Product:

The product represented by this CPS is newly introduced and Zilog has not completed the full characterization of the product. The CPS states what Zilog knows about this product at this time, but additional features or nonconformance with some aspects of the CPS may be found, either by Zilog or its customers in the course of further application and characterization work. In addition, Zilog cautions that delivery may be uncertain at times, due to start-up yield issues.

© 1997 by Zilog, Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Zilog, Inc. The information in this document is subject to change without notice. Devices sold by Zilog, Inc. are covered by warranty and patent indemnification provisions appearing in Zilog, Inc. Terms and Conditions of Sale only. Zilog, Inc. makes no warranty, express, statutory, implied or by description, regarding the information set forth herein or regarding the freedom of the described devices from intellectual property infringement. Zilog, Inc. makes no warranty of merchantability or fitness for any purpose. Zilog, Inc. shall not be responsible for any errors that may appear in this document. Zilog, Inc. makes no commitment to update or keep current the information contained in this document.

Zilog's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is executed between the customer and Zilog prior to use. Life support devices or systems are those which are intended for surgical implantation into the body, or which sustains life whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave. Campbell, CA 95008-6600 Telephone (408) 370-8000 FAX 408 370-8056

Internet: http://www.zilog.com