
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	130
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	169-UFBGA
Supplier Device Package	169-UFBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f427agh6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Description

The STM32F427xx and STM32F429xx devices are based on the high-performance ARM[®] Cortex[®]-M4 32-bit RISC core operating at a frequency of up to 180 MHz. The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all ARM[®] single-precision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security.

The STM32F427xx and STM32F429xx devices incorporate high-speed embedded memories (Flash memory up to 2 Mbyte, up to 256 kbytes of SRAM), up to 4 Kbytes of backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.

All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose 16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers. They also feature standard and advanced communication interfaces.

- Up to three I²Cs
- Six SPIs, two I²Ss full duplex. To achieve audio class accuracy, the I²S peripherals can be clocked via a dedicated internal audio PLL or via an external clock to allow synchronization.
- Four USARTs plus four UARTs
- An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the ULPI),
- Two CANs
- One SAI serial audio interface
- An SDIO/MMC interface
- Ethernet and camera interface
- LCD-TFT display controller
- Chrom-ART Accelerator™.

Advanced peripherals include an SDIO, a flexible memory control (FMC) interface, a camera interface for CMOS sensors. Refer to *Table 2: STM32F427xx and STM32F429xx features and peripheral counts* for the list of peripherals available on each part number.

The STM32F427xx and STM32F429xx devices operates in the -40 to +105 °C temperature range from a 1.7 to 3.6 V power supply.

The supply voltage can drop to 1.7 V with the use of an external power supply supervisor (refer to *Section 3.17.2: Internal reset OFF*). A comprehensive set of power-saving mode allows the design of low-power applications.

The STM32F427xx and STM32F429xx devices offer devices in 8 packages ranging from 100 pins to 216 pins. The set of included peripherals changes with the device chosen.

FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). 256 bytes of SRAM are allocated for each CAN.

3.33 Universal serial bus on-the-go full-speed (OTG_FS)

The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The major features are:

- Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 4 bidirectional endpoints
- 8 host channels with periodic OUT support
- HNP/SNP/IP inside (no need for any external resistor)
- For OTG/Host modes, a power switch is needed in case bus-powered devices are connected

3.34 Universal serial bus on-the-go high-speed (OTG_HS)

The devices embed a USB OTG high-speed (up to 480 Mb/s) device/host/OTG peripheral. The USB OTG HS supports both full-speed and high-speed operations. It integrates the transceivers for full-speed operation (12 MB/s) and features a UTMI low-pin interface (ULPI) for high-speed operation (480 MB/s). When using the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required.

The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator.

The major features are:

- Combined Rx and Tx FIFO size of 1 Kbit × 35 with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 6 bidirectional endpoints
- 12 host channels with periodic OUT support
- Internal FS OTG PHY support
- External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the 60 MHz output.
- Internal USB DMA
- HNP/SNP/IP inside (no need for any external resistor)
- for OTG/Host modes, a power switch is needed in case bus-powered devices are connected

3.42 Embedded Trace Macrocell™

The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F42x through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.

The Embedded Trace Macrocell operates with third party debugger software tools.

Pin name	CF	NOR/PSRAM/	NOR/PSRAM	NAND16	SDRAM
		SRAM	Mux		
PF6	NIORD				
PF7	NREG				
PF8	NIOWR				
PF9	CD				
PF10	INTR				
PG6				INT2	
PG7				INT3	
PE0		NBL0	NBL0		NBL0
PE1		NBL1	NBL1		NBL1
PI4		NBL2			NBL2
PI5		NBL3			NBL3
PG8					SDCLK
PC0					SDNWE
PF11					SDNRAS
PG15					SDNCAS
PH2					SDCKE0
PH3					SDNE0
PH6					SDNE1
PH7					SDCKE1
PH5					SDNWE
PC2					SDNE0
PC3					SDCKE0
PB5					SDCKE1
PB6					SDNE1

Table 11. FMC pin definition (continued)

|--|

AF0

SYS

-

Port

PJ8

AF1

TIM1/2

_

DocID024030 Rev 9

84/238

		PJ9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_G2
		PJ10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_G3
	Port J	PJ11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_G4
	FUILJ	PJ12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B0
		PJ13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B1
		PJ14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B2
		PJ15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B3
		PK0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_G5
		PK1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_G6
		PK2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_G7
	Port K	PK3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B4
ſ		PK4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B5
		PK5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B6
		PK6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B7
		PK7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_DE

Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)

AF7

SPI3/

USART1/

2/3

-

AF8

USART6/

UART4/5/7

/8

-

AF9

CAN1/2/

TIM12/13/14

/LCD

.

AF6

SPI2/3/

SAI1

.

AF11

ETH

-

AF13

DCMI

_

AF12

FMC/SDIO

/OTG2_FS

_

AF14

LCD

LCD_G1

AF15

SYS

EVEN TOUT

EVEN TOUT

EVEN

TOUT EVEN TOUT

EVEN TOUT

EVEN TOUT

EVEN TOUT

EVEN TOUT

EVEN TOUT

EVEN TOUT

EVEN TOUT

EVEN TOUT

EVEN

TOUT EVEN TOUT

EVEN TOUT

EVEN TOUT

AF10

OTG2_HS /OTG1_

FS

-

1. The DCMI_VSYNC alternate function on PG9 is only available on silicon revision 3.

AF3

TIM8/9/

10/11

-

AF2

TIM3/4/5

_

AF4

I2C1/

2/3

-

AF5

SPI1/2/

3/4/5/6

-

			•		,	
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{RUSH} ⁽¹⁾	InRush current on voltage regulator power- on (POR or wakeup from Standby)		-	160	200	mA
E _{RUSH} ⁽¹⁾	InRush energy on voltage regulator power- on (POR or wakeup from Standby)	V _{DD} = 1.7 V, T _A = 105 °C, I _{RUSH} = 171 mA for 31 μs	-	-	5.4	μC

 Table 22. reset and power control block characteristics (continued)

1. Guaranteed by design.

2. The reset temporization is measured from the power-on (POR reset or wakeup from V_{BAT}) to the instant when first instruction is read by the user application code.

6.3.6 Over-drive switching characteristics

When the over-drive mode switches from enabled to disabled or disabled to enabled, the system clock is stalled during the internal voltage set-up.

The over-drive switching characteristics are given in *Table 23*. They are sbject to general operating conditions for T_A .

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
Tod_swen		HSI	-	45	-	
	Over_drive switch enable time	HSE max for 4 MHz and min for 26 MHz	45	-	100	
		External HSE 50 MHz	-	40	-	116
	Over_drive switch disable time	HSI	-	20	-	μs
Tod_swdis		HSE max for 4 MHz and min for 26 MHz.	20	-	80	
		External HSE 50 MHz	-	15	-	

Table 23. Over-drive switching characteristics⁽¹⁾

1. Guaranteed by design.

Table 24. Typical and maximum current consumption in Run mode, code with data processing	
running from Flash memory (ART accelerator enabled except prefetch) or RAM ⁽¹⁾	

						Max ⁽²⁾				
Symbol	Parameter	Conditions	Conditions f _{HCLK} (MHz)	Тур	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit		
			180	98	104 ⁽⁵⁾	123	141 ⁽⁵⁾			
			168	89	98 ⁽⁵⁾	116	133 ⁽⁵⁾			
			150	75	84	100	115			
			144	72	81	96	112			
			120	54	58	72	85			
		All	90	43	45	56	66			
		Peripherals	60	29	30	38	45			
		enabled ⁽³⁾⁽⁴⁾	30	16	20	34	46			
			25	13	16	30	43			
	Supply current in RUN mode				16	11	13	27	39	
				8	5	9	23	36		
						4	4	8	21	34
1			2	2	7	20	33			
I _{DD}			180	44	47 ⁽⁵⁾	69	87 ⁽⁵⁾	mA		
				168	41	45 ⁽⁵⁾	66	83 ⁽⁵⁾		
			150	36	39	57	73			
			144	33	37	56	72			
			120	25	29	43	56			
		All	90	20	21	32	41			
		Peripherals	60	14	15	22	28			
		disabled ⁽³⁾	30	8	8	12	26			
			25	7	7	10	24			
			16	7	9	22	35			
			8	3	7	21	34			
			4	3	6	20	33			
			2	2	6	20	33			

1. Code and data processing running from SRAM1 using boot pins.

2. Guaranteed by characterization.

3. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

5. Guaranteed by test in production.

DocID024030 Rev 9

0		Parameter Conditions		VDD=	=3.3 V	VDD:	=1.7 V	
Symbol	Parameter	Conditions	f _{HCLK} (MHz)	I _{DD12}	I _{DD}	I _{DD12}	I _{DD}	- Unit
			168	77.8	1.3	76.8	1.0	
			150	70.8	1.3	69.8	1.0	
			144	64.5	1.3	63.6	1.0	
		All Peripherals	120	49.9	1.2	49.3	0.9	
		enabled	90	39.2	39.2 1.3 3	38.7	1.0	
			60	27.2	1.2	26.8	0.9	- mA
	Supply current in RUN mode from V ₁₂ and V _{DD} supply		30	15.6	1.2	15.4	0.9	
			25	13.6	1.2	13.5	0.9	
I _{DD12} / I _{DD}		168 38.2 150 34.6 144 31.3 All Peripherals 120 24.0	168	38.2	1.3	37.0	1.0	
			150	34.6	1.3	33.4	1.0	
			144	31.3	1.3	30.3	1.0	
			All Peripherals 120 24.0 1.2	1.2	23.2	0.9		
		disabled	90	18.1	1.4	18.0	1.0	-
			60	12.9	1.2	12.5	0.9	
			30	7.2	1.2	6.9	0.9]
			25	6.3	1.2	6.1	0.9	1

Table 31.Typical current consumption in Run mode, code with data processing running
from Flash memory, regulator OFF (ART accelerator enabled except prefetch)

1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC, or DAC) is not included.

			I consumption	(l l mit
P	eripheral	Scale 1	Scale 2	Scale 3	Unit
	SDIO	8.11	8.75	7.83	
	TIM1	17.11	15.97	14.17	
	TIM8	17.33	16.11	14.33	
	TIM9	7.22	6.67	6.00	
	TIM10	4.56	4.31	3.83	
	TIM11	4.78	4.44	4.00	
	ADC1 ⁽⁵⁾	4.67	4.31	3.83	
	ADC2 ⁽⁵⁾ ADC3 ⁽⁵⁾	4.78	4.44	4.00	
APB2		4.56	4.17	3.67	
(up to 90 MHz)	SPI1	1.44	1.39	1.17	μA/MHz
	USART1	4.00	3.75	3.33	
	USART6	4.00	3.75	3.33	
	SPI4	1.44	1.39	1.17	
	SPI5	1.44	1.39	1.17	
ļ	SPI6	1.44	1.39	1.17	
Ī	SYSCFG	0.78	0.69	0.67	
ļ	LCD_TFT	39.89	37.22	33.17	
	SAI1	3.78	3.47	3.17	

Table 35. Perip	pheral current consum	ption (continued)
-----------------	-----------------------	-------------------

1. When the I/O compensation cell is ON, I_{DD} typical value increases by 0.22 mA.

2. The BusMatrix is automatically active when at least one master is ON.

3. To enable an I2S peripheral, first set the I2SMOD bit and then the I2SE bit in the SPI_I2SCFGR register.

4. When the DAC is ON and EN1/2 bits are set in DAC_CR register, add an additional power consumption of 0.8 mA per DAC channel for the analog part.

5. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

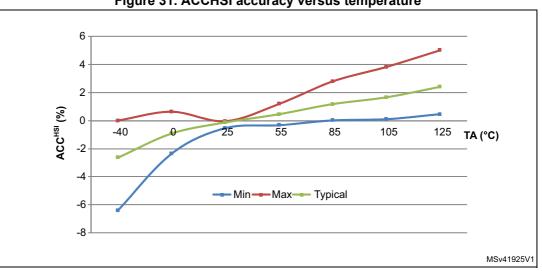


Figure 31. ACCHSI accuracy versus temperature

1. Guaranteed by characterization results.

Low-speed internal (LSI) RC oscillator

Table 42. LS	l oscillator	characteristics	(1)
--------------	--------------	-----------------	-----

Symbol	Parameter	Min	Тур	Мах	Unit
f _{LSI} ⁽²⁾	Frequency	17	32	47	kHz
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	15	40	μs
I _{DD(LSI)} ⁽³⁾	(3) LSI oscillator power consumption		0.4	0.6	μA

1. V_{DD} = 3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by characterization results.

3. Guaranteed by design.

Symbol	Parameter	Conditions	Value Min ⁽¹⁾	Unit
N _{END}	Endurance	$T_A = -40$ to +85 °C (6 suffix versions) $T_A = -40$ to +105 °C (7 suffix versions)	10	kcycles
		1 kcycle ⁽²⁾ at T _A = 85 °C	30	
t _{RET} Data retenti	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	Years
		10 kcycles ⁽²⁾ at T _A = 55 °C	20	

 Table 50. Flash memory endurance and data retention

1. Guaranteed by characterization results.

2. Cycling performed over the whole temperature range.

6.3.14 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 51*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V _{DD} = 3.3 V, LQFP176, T _A = +25 °C, f _{HCLK} = 168 MHz, conforms to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD} = 3.3 \text{ V}, \text{LQFP176}, \text{T}_{\text{A}} = +25 \text{ °C}, \text{f}_{\text{HCLK}} = 168 \text{ MHz}, \text{ conforms to} \text{IEC 61000-4-2}$	4A

Table 51. EMS characteristics

When the application is exposed to a noisy environment, it is recommended to avoid pin exposition to disturbances. The pins showing a middle range robustness are: PA0, PA1, PA2, PH2, PH3, PH4, PH5, PA3, PA4, PA5, PA6, PA7, PC4, and PC5.

As a consequence, it is recommended to add a serial resistor (1 k Ω) located as close as possible to the MCU to the pins exposed to noise (connected to tracks longer than 50 mm on PCB).

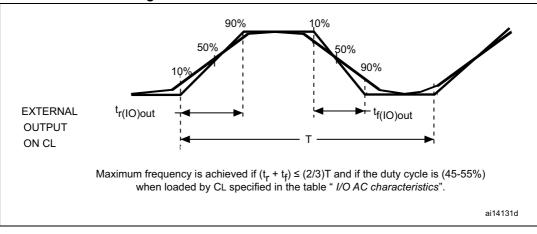
6.3.17 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 56: I/O static characteristics* are derived from tests performed under the conditions summarized in *Table 17*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
	FT, TTa and NRST I/O input	1.7 V≤V _{DD} ≤3.6 V	-	_	0.35V _{DD} - 0.04		
	low level voltage				0.3V _{DD} ⁽²⁾		
V _{IL}	BOOT0 I/O input low level	1.75 V≤V _{DD} ≤3.6 V, – 40 °C≤T _A ≤105 °C			- 0.1V _{DD} +0.1 ⁽¹⁾	V	
	voltage	1.7 V≤V _{DD} ≤3.6 V, 0 °C≤T _A ≤105 °C	-	-	0.1VDD+0.1		
high lev V _{IH}	FT, TTa and NRST I/O input	1.7 V≤V _{DD} ≤3.6 V	0.45V _{DD} +0.3 ⁽¹⁾				
	high level voltage ⁽⁵⁾	1.7 v≤v _{DD} ≤3.0 v	0.7V _{DD} ⁽²⁾	-	_	V	
	BOOT0 I/O input high level	1.75 V≤V _{DD} ≤3.6 V, – 40 °C≤T _A ≤105 °C	0.17V _{DD} +0.7 ⁽¹⁾		-		
	voltage	1.7 V≤V _{DD} ≤3.6 V, 0 °C≤T _A ≤105 °C	0.17 V _{DD} +0.7 V	-			
	FT, TTa and NRST I/O input hysteresis	1.7 V≤V _{DD} ≤3.6 V	10%V _{DD} ⁽³⁾	-	-		
V _{HYS}	BOOT0 I/O input hysteresis	1.75 V≤V _{DD} ≤3.6 V, – 40 °C≤T _A ≤105 °C	0.1			V	
		1.7 V≤V _{DD} ≤3.6 V, 0 °C≤T _A ≤105 °C	0.1	-			
	I/O input leakage current ⁽⁴⁾	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1		
l _{lkg}	I/O FT input leakage current ⁽⁵⁾	$V_{IN} = 5 V$	-	-	3	μA	

OSPEEDRy [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
			$C_L = 30 \text{ pF}, V_{DD} \ge 2.7 \text{ V}$	-	-	100 ⁽⁴⁾	
			C _L = 30 pF, V _{DD} ≥ 1.8 V	-	-	50	
	f	Maximum frequency ⁽³⁾	C _L = 30 pF, V _{DD} ≥ 1.7 V	-	-	42.5	MHz
	† _{max(IO)out}		C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	180 ⁽⁴⁾	
			C _L = 10 pF, V _{DD} ≥ 1.8 V	-	-	100	
11			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	72.5	
11	lf(IO)out/		C _L = 30 pF, V _{DD} ≥ 2.7 V	-	-	4	- ns
			C _L = 30 pF, V _{DD} ≥1.8 V	-	-	6	
			C _L = 30 pF, V _{DD} ≥1.7 V	-	-	7	
			C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	2.5	
			C _L = 10 pF, V _{DD} ≥1.8 V	-	-	3.5	
			C _L = 10 pF, V _{DD} ≥1.7 V	-	-	4	
-	tEXTIpw	Pulse width of external signals detected by the EXTI controller	-	10	-	-	ns


Table 58. I/O AC characteristics⁽¹⁾⁽²⁾ (continued)

1. Guaranteed by design.

2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of the GPIOx_SPEEDR GPIO port output speed register.

3. The maximum frequency is defined in *Figure 36*.

4. For maximum frequencies above 50 MHz and V_{DD} > 2.4 V, the compensation cell should be used.

Figure 36. I/O AC characteristics definition

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{w(SCKH)}	SCK high and low time	Master mode, SPI presc = 2, 2.7 V≤V _{DD} ≤3.6 V	T _{PCLK} -0.5	T _{PCLK}	T _{PCLK} +0.5	
t _{w(SCKL)}		Master mode, SPI presc = 2, 1.7 V≤V _{DD} ≤3.6 V	T _{PCLK} – 2	T _{PCLK}	T _{PCLK} +2	
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	4T _{PCLK}			
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2T _{PCLK}	-	-	
t _{su(MI)}	Data input setup time	Master mode	3	-	-	
t _{su(SI)}		Slave mode	0	-	-	ns
t _{h(MI)}	Data input hold time	Master mode	0.5	-	-	
t _{h(SI)}		Slave mode	2	-	-	
t _{a(SO})	Data output access time	Slave mode, SPI presc = 2	0	-	4T _{PCLK}	
+	Data output disable time	Slave mode, SPI1/4/5/6, 2.7 V≤V _{DD} ≤3.6 V	0	-	8.5	
^L dis(SO)	t _{dis(SO)} Data output disable time	Slave mode, SPI1/2/3/4/5/6 and 1.7 V≤V _{DD} ≤3.6 V	0	-	16.5	
		Slave mode (after enable edge), SPI1/4/5/6 and 2.7V $\leq V_{DD} \leq 3.6V$	-	11	13	
t _{v(SO)}	Data output valid/hold	Slave mode (after enable edge), SPI2/3, 2.7 V≤V _{DD} ≤3.6 V	-	14	15	
t _{h(SO)}	time	Slave mode (after enable edge), SPI1/4/5/6, 1.7 V≤V _{DD} ≤3.6 V	-	15.5	19	
		Slave mode (after enable edge), SPI2/3, 1.7 V≤V _{DD} ≤3.6 V	-	15.5	17.5	ns
t _{v(MO)}	Data output valid time	Master mode (after enable edge), SPI1/4/5/6, 2.7 V≤V _{DD} ≤3.6 V	-	-	2.5	
	Data output valid time	Master mode (after enable edge), SPI1/2/3/4/5/6, 1.7 V≤V _{DD} ≤3.6 V	-	-	4.5	
t _{h(MO)}	Data output hold time	Master mode (after enable edge)	0	-	-	

Table 62. SPI c	lynamic characteristics ⁽¹⁾	(continued)
-----------------	--	-------------

1. Guaranteed by characterization results.

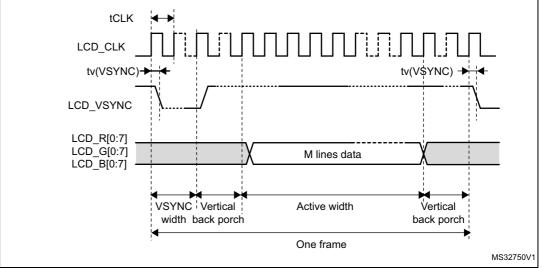

2. Maximum frequency in Slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty(SCK) = 50%

Figure 76. LCD-TFT horizontal timing diagram

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 LQFP100 package information

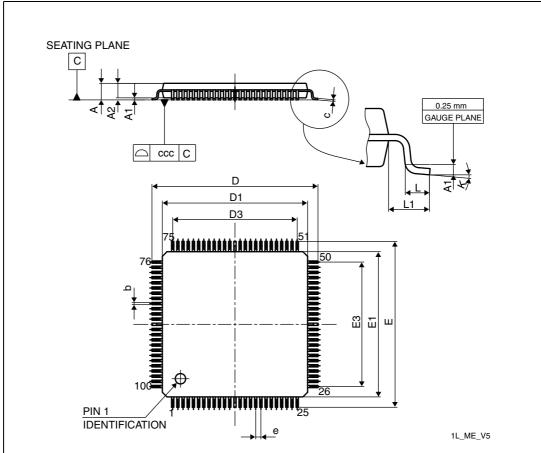
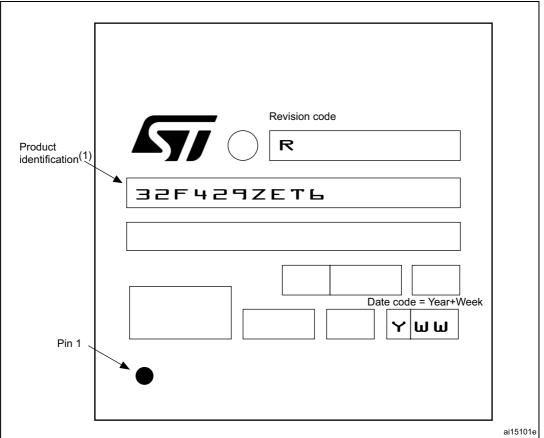


Figure 80. LQFP100 -100-pin, 14 x 14 mm low-profile quad flat package outline

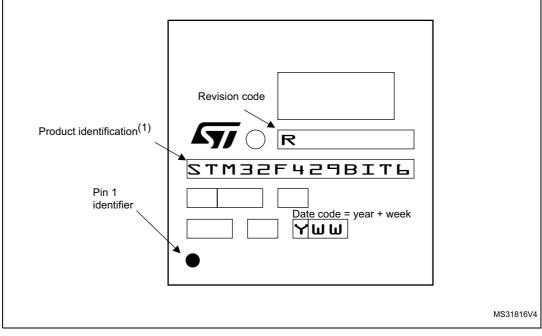

1. Drawing is not to scale.

Device marking for LQFP144

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which depends assembly location, are not indicated below.

Figure 88. LQFP144 marking example (package top view)


 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Device marking for LQFP208

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which depends assembly location, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

9 Revision history

Date	Revision	Changes
19-Mar-2013	1	Initial release.
10-Sep-2013	2	Added STM32F429xx part numbers and related informations. STM32F427xx part numbers: Replaced FSMC by FMC added Chrom-ART Accelerator and SAI interface. Increased core, timer, GPIOs, SPI maximum frequencies Updated <i>Figure 8</i> .Updated <i>Figure 9</i> . Removed note in <i>Section :: Standby mode</i> . Updated <i>Table 10: STM32F427xx and STM32F429xx pin and ball</i> definitions and Table 12: STM32F427xx and STM32F429xx alternate function mapping Modified <i>Figure 19: Memory map</i> . Updated Table 17: General operating conditions, Table 18: Limitations depending on the operating power supply range. Removed note 1 in Table 22: reset and power control block characteristics. Added Table 23: Over-drive switching characteristics. Updated Section : Typical and maximum current consumption, Table 34: Switching output I/O current consumption, Table 35: Peripheral current consumption and Section : On-chip peripheral current consumption. Updated Table 36: Low-power mode wakeup timings. Modified Section : High-speed external user clock generated from an external source, Section : Low-speed external user clock generated from an external source, and Section 6.3.10: Internal clock source characteristics. Updated Table 43: Main PLL characteristics and Table 45: PLLISAI (audio and LCD-TFT PLL) characteristics. Updated Table 57: Output voltage characteristics and Table 58: I/O AC characteristics. Updated Table 60: TIMx characteristics, Table 61: I ² C characteristics, Table 62: SPI dynamic characteristics, Section : SAI characteristics. Updated Table 102: SDRAM read timings and Table 104: SDRAM write timings.

Table 124. Document revision history

STM32F427xx STM32F429xx

Date	Revision	Changes
21-Jan-2016	8	Updated <i>Figure 22: Power supply scheme</i> . Added t _{d(TXD)} values corresponding to 1.71 V < V _{DD} < 3.6 V in <i>Table 72: Dynamics characteristics: Ethernet MAC signals for RMII</i> .
18-Jul-2016	9	Updated Figure 1: Compatible board design STM32F10xx/STM32F2xx/STM32F4xx for LQFP100 package. Added mission profile compliance with JEDEC JESD47 in Section 6.2: Absolute maximum ratings. Changed Figure 31 HSI deviation versus temperature to ACCHSI versus temperature. Updated R _{LOAD} in Table 85: DAC characteristics. Added note 2. related to the position of the 0.1 µF capacitor below Figure 37: Recommended NRST pin protection. Updated Figure 40: SPI timing diagram - master mode. Added reference to optional marking or inset/upset marks in all package device marking sections. Updated Figure 85: WLCSP143 marking example (package top view), Figure 88: LQFP144 marking example (package top view), Figure 91: LQFP176 marking (package top view). Updated Figure 98: UFBGA176+25 - ball 10 x 10 mm, 0.65 mm pitch ultra thin fine pitch ball grid array package outline and Table 118: UFBGA176+25 - ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array package mechanical data.

Table 124. Document revision history

