

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

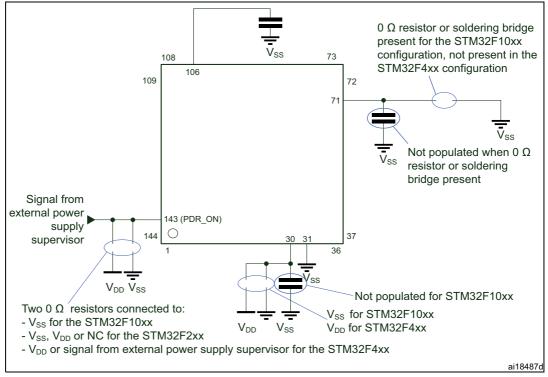
Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	140
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	201-UFBGA
Supplier Device Package	176+25UFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f427igh7

Email: info@E-XFL.COM

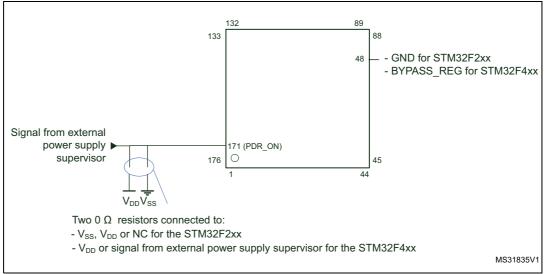
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Peripherals		STM32F427 Vx	STM32F429Vx	STM32F427 Zx	STM32F429Zx	STM32F427 Ax	STM32F429 Ax	STM32F427 Ix	STM32F429lx	STM32F429Bx	STM32F429N
SPI / I ² S		4/2 (ful	l duplex) ⁽²⁾				6/2	(full duplex) ⁽²⁾			
	l ² C			•			3				
	USART/ UART						4/4				
Communication interfaces	USB OTG FS		Yes								
Interfaces	USB OTG HS		Yes								
	CAN		2								
	SAI		1								
	SDIO	Yes									
Camera interface	9						Yes				
LCD-TFT (STM3 only)	2F429xx	No	Yes	No	Yes	No	Yes	No		Yes	
Chrom-ART Acc	elerator™						Yes				
GPIOs		82		114		130			140 168		58
12-bit ADC			3								
Number of chanr	nels		16 24								
12-bit DAC Number of chanr	12-bit DAC Number of channels		Yes 2								
Maximum CPU frequency		180 MHz									
Operating voltag	Operating voltage		1.8 to 3.6 V ⁽³⁾								
Operating tempe	raturos				Ambient te	emperatures: -	40 to +85 °C /-	40 to +105 °C			
	aures				Ju	nction tempera	ture: -40 to + 1	125 °C			
Packages		LQ	FP100		CSP143 0FP144	UFBO	GA169		BGA176 QFP176	LQFP208	TFBGA216


Table 2. STM32F427xx and STM32F429xx features and peripheral counts (continued)

 For the LQFP100 package, only FMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package. For UFBGA169 package, only SDRAM, NAND and multiplexed static memories are supported.

2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.


16/238

3. V_{DD}/V_{DDA} minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset OFF).

Figure 2. Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx for LQFP144 package

Figure 3. Compatible board design between STM32F2xx and STM32F4xx for LQFP176 and UFBGA176 packages

Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes, hours, day, and date.

Like backup SRAM, the RTC and backup registers are supplied through a switch that is powered either from the V_{DD} supply when present or from the V_{BAT} pin.

3.20 Low-power modes

The devices support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

• Stop mode

The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled.

The voltage regulator can be put either in main regulator mode (MR) or in low-power mode (LPR). Both modes can be configured as follows (see *Table 5: Voltage regulator modes in stop mode*):

- Normal mode (default mode when MR or LPR is enabled)
- Under-drive mode.

The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup / tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup).

Voltage regulator configuration	Main regulator (MR)	Low-power regulator (LPR)
Normal mode	MR ON	LPR ON
Under-drive mode MR in under-drive mode		LPR in under-drive mode

Table 5. Voltage regulator modes in stop mode

• Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected.

The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event occurs.

The standby mode is not supported when the embedded voltage regulator is bypassed and the 1.2 V domain is controlled by an external power.

Symbol	Ratings	Max.	Unit
ΣI_{VDD}	Total current into sum of all V_{DD_x} power lines (source) ⁽¹⁾	270	
ΣI_{VSS}	SS Total current out of sum of all V _{SS_x} ground lines (sink) ⁽¹⁾		
I _{VDD}	Maximum current into each V _{DD_x} power line (source) ⁽¹⁾	100	
I _{VSS}	Maximum current out of each V_{SS_x} ground line (sink) ⁽¹⁾	- 100	
1	Output current sunk by any I/O and control pin	25	
Ι _{ΙΟ}	Output current sourced by any I/Os and control pin	- 25	
ΣI	Total output current sunk by sum of all I/O and control pins ⁽²⁾	120	mA
ΣI_{IO}	Total output current sourced by sum of all I/Os and control pins ⁽²⁾	- 120	
	Injected current on FT pins ⁽⁴⁾	5/10	
I _{INJ(PIN)} ⁽³⁾	Injected current on NRST and BOOT0 pins ⁽⁴⁾	- 5/+0	
	Injected current on TTa pins ⁽⁵⁾	±5	
$\Sigma I_{\rm INJ(PIN)}^{(5)}$	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	±25	

1. All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.

3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.21: 12-bit ADC characteristics.

4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.

5. A positive injection is induced by $V_{IN} > V_{DDA}$ while a negative injection is induced by $V_{IN} < V_{SS}$. $I_{INJ(PIN)}$ must never be exceeded. Refer to *Table 14* for the values of the maximum allowed input voltage.

6. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Table 16. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	– 65 to +150	°C
TJ	Maximum junction temperature	125	°C

			Typ ⁽¹⁾							
Symbol	Parameter	arameter Conditions		tions T _A = 25 °C		T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit	
				V _{DD} = 2.4 V	V _{DD} = 3.3 V	v	_{DD} = 3.6	v		
	Backup SRAM ON, low-speed oscillator (LSE) and RTC ON	2.80	3.00	3.60	7.00	19.00	36.00			
I _{DD_STBY}	Supply current	Backup SRAM OFF, low- speed oscillator (LSE) and RTC ON	2.30	2.60	3.10	6.00	16.00	31.00	μA	
mode	mode	Backup SRAM ON, RTC and LSE OFF	2.30	2.50	2.90	6.00 ⁽³⁾	18.00 ⁽³⁾	35.00 ⁽³⁾		
		Backup SRAM OFF, RTC and LSE OFF	1.70	1.90	2.20	5.00 ⁽³⁾	15.00 ⁽³⁾	30.00 ⁽³⁾		

Table 28. Typical and maximum current consumptions in Standby mode

The typical current consumption values are given with PDR OFF (internal reset OFF). When the PDR is OFF (internal reset OFF), the typical current consumption is reduced by additional 1.2 μA.

2. Based on characterization, not tested in production unless otherwise specified.

3. Based on characterization, tested in production.

Table 29. Typical and maximum current consumptions in $\mathrm{V}_{\mathrm{BAT}}$ mode

				Тур			Max ⁽²⁾		
Symbol	Parameter Conditions ⁽¹⁾		т	a = 25 °	5 °C $T_A = 85 °C \begin{bmatrix} T_A \\ 105 \end{bmatrix}$			Unit	
				V _{BAT} = 2.4 V	V _{BAT} = 3.3 V	V _{BAT} =	= 3.6 V		
		Backup SRAM ON, low-speed oscillator (LSE) and RTC ON	1.28	1.40	1.62	6	11		
	Backup	Backup SRAM OFF, low-speed oscillator (LSE) and RTC ON	0.66	0.76	0.97	3	5	μA	
I _{DD_VBAT} domain supply current	Backup SRAM ON, RTC and LSE OFF	0.70	0.72	0.74	5	10	μΛ		
		Backup SRAM OFF, RTC and LSE OFF	0.10	0.10	0.10	2	4		

1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a C_L of 6 pF for typical values.

2. Guaranteed by characterization results.

Figure 33 and *Figure 34* show the main PLL output clock waveforms in center spread and down spread modes, where:

F0 is f_{PLL_OUT} nominal.

 T_{mode} is the modulation period.

md is the modulation depth.

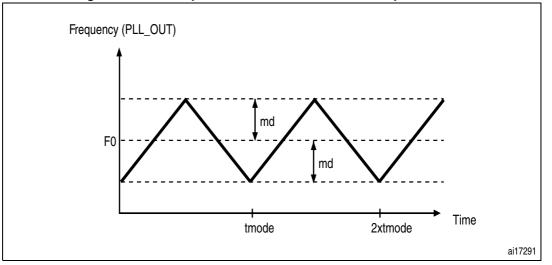
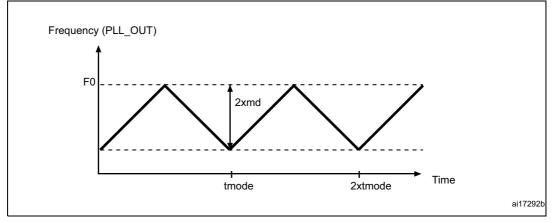



Figure 34. PLL output clock waveforms in down spread mode

6.3.16 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibilty to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of – 5 μ A/+0 μ A range), or other functional failure (for example reset, oscillator frequency deviation).

Negative induced leakage current is caused by negative injection and positive induced leakage current by positive injection.

The test results are given in Table 55.

		Functional s		
Symbol	Description	Negative injection	Positive injection	Unit
	Injected current on BOOT0 pin		NA	
	Injected current on NRST pin	- 0	NA	
I _{INJ}	Injected current on PA0, PA1, PA2, PA3, PA6, PA7, PB0, PC0, PC1, PC2, PC3, PC4, PC5, PH1, PH2, PH3, PH4, PH5	- 0	NA	mA
	Injected current on TTa pins: PA4 and PA5	- 0	+5	
	Injected current on any other FT pin	- 5	NA	

Table 55. I/O current injection susceptibility⁽¹⁾

1. NA = not applicable.

Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

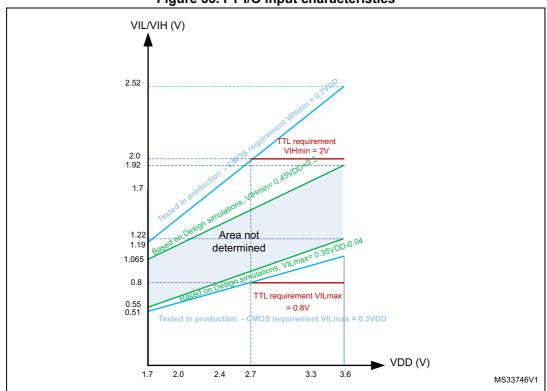


Figure 35. FT I/O input characteristics

Output driving current

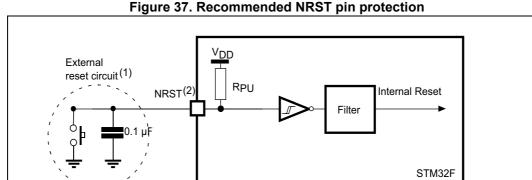
The GPIOs (general purpose input/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 20 mA (with a relaxed V_{OL}/V_{OH}) except PC13, PC14, PC15 and PI8 which can sink or source up to ± 3 mA. When using the PC13 to PC15 and PI8 GPIOs in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF.

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*. In particular:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 15*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 15*).

6.3.18 **NRST** pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see Table 56: I/O static characteristics).


Unless otherwise specified, the parameters given in Table 59 are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in Table 17.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{PU}	Weak pull-up equivalent resistor ⁽¹⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ
V _{F(NRST)} ⁽²⁾	NRST Input filtered pulse		-	-	100	ns
V _{NF(NRST)} ⁽²⁾	NRST Input not filtered pulse	V _{DD} > 2.7 V	300	-	-	ns
T _{NRST_OUT}	Generated reset pulse duration	Internal Reset source	20	-	-	μs

Table 59. NRST pin characteristics

The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order). 1

2. Guaranteed by design.

Figure 37. Recommended NRST pin protection

1. The reset network protects the device against parasitic resets.

- 2. The external capacitor must be placed as close as possible to the device.
- 3. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 59. Otherwise the reset is not taken into account by the device.

ai14132c

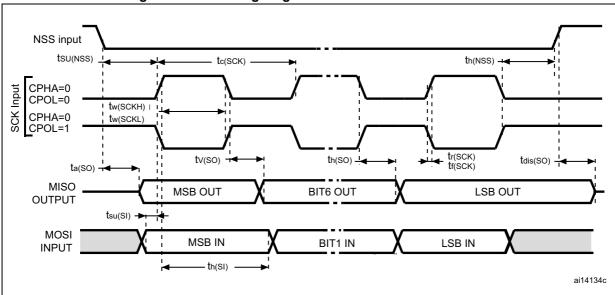
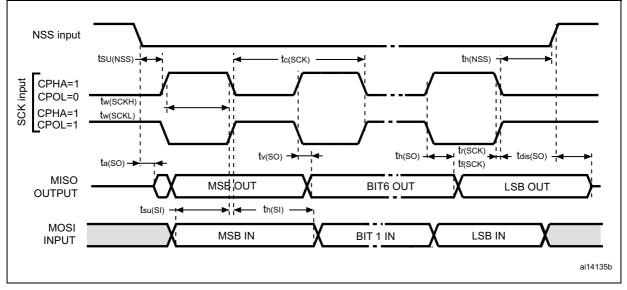



Figure 38. SPI timing diagram - slave mode and CPHA = 0

SAI characteristics

Unless otherwise specified, the parameters given in *Table 64* for SAI are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and VDD supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C=30 pF
- Measurement points are performed at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (SCK,SD,WS).

Symbol	Parameter	Conditions	Min	Мах	Unit
f _{MCKL}	SAI Main clock output	-	256 x 8K	256xFs ⁽²⁾	MHz
E	SAL clock frequency	Master data: 32 bits	-	64xFs	MHz
F _{SCK}	SAI clock frequency	Slave data: 32 bits	-	64xFs	IVITZ
D _{SCK}	SAI clock frequency duty cycle	Slave receiver	30	70	%
t _{v(FS)}	FS valid time	Master mode	8	22	
t _{su(FS)}	FS setup time	Slave mode	2	-	
4	FS hold time	Master mode	8	-	
t _{h(FS)}	FS hold little	Slave mode	0	-	
t _{su(SD_MR)}	Data innut actus tima	Master receiver	5	-	
t _{su(SD_SR)}	Data input setup time	Slave receiver	3	-	
t _{h(SD_MR)}	Data input hold time	Master receiver	0	-	ns
t _{h(SD_SR)}	Data input hold time	Slave receiver	0	-	
t _{v(SD_ST)} t _{h(SD_ST)}	Data output valid time	Slave transmitter (after enable edge)	-	22	
t _{v(SD_MT)}		Master transmitter (after enable edge)	-	20	
t _{h(SD_MT)}	Data output hold time	Master transmitter (after enable edge)	8	-	

Table 64	I. SAI	characteristics ⁽¹⁾
----------	--------	--------------------------------

1. Guaranteed by characterization results.

2. 256xFs maximum corresponds to 45 MHz (APB2 xaximum frequency)

	(0011010			
Symbol	Parameter Min		Max	Unit
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	0	-	ns
t _{d(CLKL-NWEL)}	FMC_CLK low to FMC_NWE low	-	0	ns
t _{d(CLKH-NWEH)}	FMC_CLK high to FMC_NWE high	T _{HCLK} -0.5	-	ns
t _{d(CLKL-Data)}	FMC_D[15:0] valid data after FMC_CLK low	-	2.5	ns
t _{d(CLKL-NBLL)}	FMC_CLK low to FMC_NBL low	0	-	ns
t _{d(CLKH-NBLH)}	FMC_CLK high to FMC_NBL high	T _{HCLK} -0.5	-	ns
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	4		
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	0		

Table 97. Synchronous non-multiplexed PSRAM write timings⁽¹⁾⁽²⁾ (continued)

1. C_L = 30 pF.

2. Guaranteed by characterization results.

PC Card/CompactFlash controller waveforms and timings

Figure 63 through *Figure 68* represent synchronous waveforms, and *Table 98* and *Table 99* provide the corresponding timings. The results shown in this table are obtained with the following FMC configuration:

- COM.FMC_SetupTime = 0x04;
- COM.FMC_WaitSetupTime = 0x07;
- COM.FMC_HoldSetupTime = 0x04;
- COM.FMC_HiZSetupTime = 0x00;
- ATT.FMC_SetupTime = 0x04;
- ATT.FMC_WaitSetupTime = 0x07;
- ATT.FMC_HoldSetupTime = 0x04;
- ATT.FMC_HiZSetupTime = 0x00;
- IO.FMC_SetupTime = 0x04;
- IO.FMC WaitSetupTime = 0x07;
- IO.FMC_HoldSetupTime = 0x04;
- IO.FMC_HiZSetupTime = 0x00;
- TCLRSetupTime = 0;
- TARSetupTime = 0.

In all timing tables, the T_{HCLK} is the HCLK clock period.

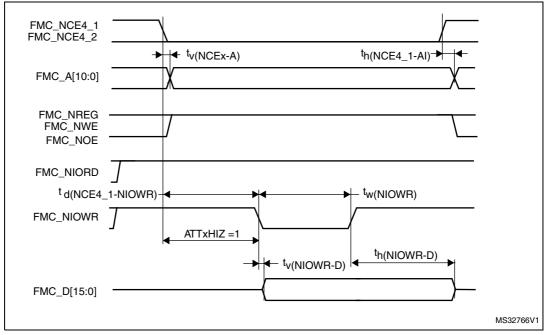


Figure 68. PC Card/CompactFlash controller waveforms for I/O space write access

Table 98. Switching characteristics for PC Card/CF read and write cycles in attribute/common space $^{(1)(2)}$

Symbol	Parameter	Min	Мах	Unit
t _{v(NCEx-A)}	FMC_Ncex low to FMC_Ay valid	-	0	ns
t _{h(NCEx_AI)}	FMC_NCEx high to FMC_Ax invalid	0	-	ns
t _{d(NREG-NCEx)}	FMC_NCEx low to FMC_NREG valid	-	1	ns
t _{h(NCEx-NREG)}	FMC_NCEx high to FMC_NREG invalid	T _{HCLK} – 2	-	ns
t _{d(NCEx-NWE)}	FMC_NCEx low to FMC_NWE low	-	5T _{HCLK}	ns
t _{w(NWE)}	FMC_NWE low width	8T _{HCLK} – 0.5	8T _{HCLK} +0.5	ns
t _{d(NWE_NCEx)}	FMC_NWE high to FMC_NCEx high	5T _{HCLK} +1	-	ns
t _{V(NWE-D)}	FMC_NWE low to FMC_D[15:0] valid	-	0	ns
t _{h(NWE-D)}	FMC_NWE high to FMC_D[15:0] invalid	9T _{HCLK} – 0.5	-	ns
t _{d(D-NWE)}	FMC_D[15:0] valid before FMC_NWE high	13T _{HCLK} – 3		ns
t _{d(NCEx-NOE)}	FMC_NCEx low to FMC_NOE low	-	5T _{HCLK}	ns
t _{w(NOE)}	FMC_NOE low width	8 T _{HCLK} – 0.5	8 T _{HCLK} +0.5	ns
t _{d(NOE_NCEx)}	FMC_NOE high to FMC_NCEx high	5T _{HCLK} – 1	-	ns
t _{su (D-NOE)}	FMC_D[15:0] valid data before FMC_NOE high	T _{HCLK}	-	ns
t _{h(NOE-D)}	FMC_NOE high to FMC_D[15:0] invalid	0	-	ns

1. C_L = 30 pF.

2. Guaranteed by characterization results.

Table 99. Switching characteristics for PC Card/CF read and write cycles	
in I/O space ⁽¹⁾⁽²⁾	

Symbol	Parameter	Min	Мах	Unit
tw(NIOWR)	FMC_NIOWR low width	8T _{HCLK} – 0.5	-	ns
tv(NIOWR-D)	FMC_NIOWR low to FMC_D[15:0] valid	-	0	ns
th(NIOWR-D)	FMC_NIOWR high to FMC_D[15:0] invalid	9T _{HCLK} – 2	-	ns
td(NCE4_1-NIOWR)	FMC_NCE4_1 low to FMC_NIOWR valid	-	5T _{HCLK}	ns
th(NCEx-NIOWR)	FMC_NCEx high to FMC_NIOWR invalid	5T _{HCLK}	-	ns
td(NIORD-NCEx)	FMC_NCEx low to FMC_NIORD valid	-	5T _{HCLK}	ns
th(NCEx-NIORD)	FMC_NCEx high to FMC_NIORD) valid	6T _{HCLK} +2	-	ns
tw(NIORD)	FMC_NIORD low width	8T _{HCLK} – 0.5	8T _{HCLK} +0.5	ns
tsu(D-NIORD)	FMC_D[15:0] valid before FMC_NIORD high	T _{HCLK}	-	ns
td(NIORD-D)	FMC_D[15:0] valid after FMC_NIORD high	0	_	ns

1. C_L = 30 pF.

2. Guaranteed by characterization results.

NAND controller waveforms and timings

Figure 69 through *Figure 72* represent synchronous waveforms, and *Table 100* and *Table 101* provide the corresponding timings. The results shown in this table are obtained with the following FMC configuration:

- COM.FMC_SetupTime = 0x01;
- COM.FMC_WaitSetupTime = 0x03;
- COM.FMC_HoldSetupTime = 0x02;
- COM.FMC_HiZSetupTime = 0x01;
- ATT.FMC_SetupTime = 0x01;
- ATT.FMC_WaitSetupTime = 0x03;
- ATT.FMC_HoldSetupTime = 0x02;
- ATT.FMC_HiZSetupTime = 0x01;
- Bank = FMC_Bank_NAND;
- MemoryDataWidth = FMC_MemoryDataWidth_16b;
- ECC = FMC_ECC_Enable;
- ECCPageSize = FMC_ECCPageSize_512Bytes;
- TCLRSetupTime = 0;
- TARSetupTime = 0.

In all timing tables, the T_{HCLK} is the HCLK clock period.

Symbol	Parameter	Min	Мах	Unit		
t _{w(SDCLK)}	FMC_SDCLK period	2T _{HCLK} – 0.5	2T _{HCLK} +0.5			
t _{d(SDCLKL_Data})	Data output valid time	-	3.5			
t _{h(SDCLKL} _Data)	Data output hold time	0	-			
$t_{d(SDCLKL_Add)}$	Address valid time	-	1.5			
t _{d(SDCLKL_SDNWE)}	SDNWE valid time	-	1			
t _{h(SDCLKL_SDNWE)}	SDNWE hold time	0	-			
t _{d(SDCLKL_SDNE)}	Chip select valid time	-	0.5	ns		
t _{h(SDCLKLSDNE)}	Chip select hold time	0	-	115		
t _{d(SDCLKL_SDNRAS)}	SDNRAS valid time	-	2			
t _{h(SDCLKL_SDNRAS)}	SDNRAS hold time	0	-			
t _{d(SDCLKL_SDNCAS)}	SDNCAS valid time	-	0.5			
td(SDCLKL_SDNCAS)	SDNCAS hold time	0	-			
t _{d(SDCLKL_NBL)}	NBL valid time	-	0.5			
t _{h(SDCLKL_NBL)}	NBLoutput time	0	-			

Table 104. SDRAM write timings⁽¹⁾⁽²⁾

1. CL = 30 pF on data and address lines. CL=15pF on FMC_SDCLK.

2. Guaranteed by characterization results.

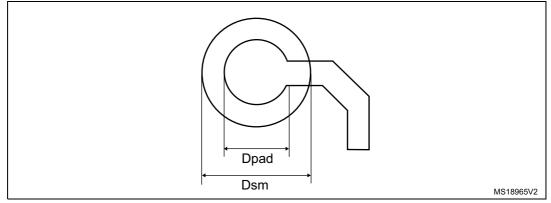
Table 105. LPSDR SDRAM write timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{HCLK} – 0.5	2T _{HCLK} +0.5	
t _{d(SDCLKL_Data})	Data output valid time	-	5	
t _{h(SDCLKL} _Data)	Data output hold time	2	-	
t _{d(SDCLKL_Add)}	Address valid time	-	2.8	
t _{d(SDCLKL-SDNWE)}	SDNWE valid time	-	2	
t _{h(SDCLKL-SDNWE)}	SDNWE hold time	1	-	
t _{d(SDCLKL} - SDNE)	Chip select valid time	-	1.5	
t _{h(SDCLKL} - SDNE)	Chip select hold time	1	-	ns
td(SDCLKL-SDNRAS)	SDNRAS valid time	-	1.5	
t _{h(SDCLKL-SDNRAS)}	SDNRAS hold time	1.5	-	
td(SDCLKL-SDNCAS)	SDNCAS valid time	-	1.5	
t _{d(SDCLKL-SDNCAS)} SDNCAS hold time		1.5	-	
$t_{d(SDCLKL_NBL)}$	NBL valid time	-	1.5]
t _{h(SDCLKL-NBL)}	NBL output time	1.5	-	

1. CL = 10 pF.

2. Guaranteed by characterization results.

Symbol		millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Max		
A	0.525	0.555	0.585	0.0207	0.0219	0.0230		
A1	0.155	0.175	0.195	-	0.0069	-		
A2	-	0.380	-	-	0.0150	-		
A3 ⁽²⁾	-	0.025	-	-	0.0010	-		
b ⁽³⁾	0.220	0.250	0.280	0.0087	0.0098	0.0110		
D	4.486	4.521	4.556	0.1766	0.1780	0.1794		
E	5.512	5.547	5.582	0.2170	0.2184	0.2198		
е	-	0.400	-	-	0.0157	-		
e1	-	4.000	-	-	0.1575	-		
e2	-	4.800	-	-	0.1890	-		
F	-	0.2605	-	-	0.0103	-		
G	-	0.3735	-	-	0.0147	-		
aaa	-	-	0.100	-	-	0.0039		
bbb	-	-	0.100	-	-	0.0039		
CCC	-	-	0.100	-	-	0.0039		
ddd	-	-	0.050	-	-	0.0020		
eee	-	-	0.050	-	-	0.0020		


Table 111. WLCSP143 - 143-ball, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scalepackage mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Back side coating.

3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Figure 84. WLCSP143 - 143-ball, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale recommended footprint

7.7 UFBGA176+25 package information

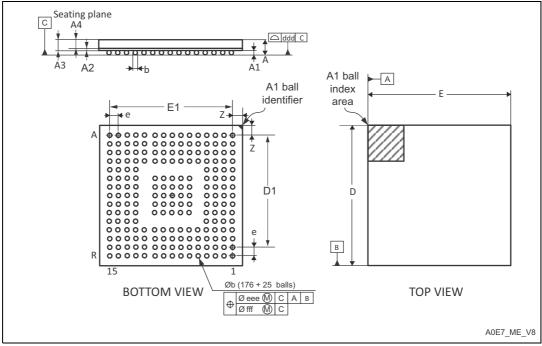


Figure 98. UFBGA176+25 - ball 10 x 10 mm, 0.65 mm pitch ultra thin fine pitch ball grid array package outline

1. Drawing is not to scale.

Table 118. UFBGA176+25 - ball, 10 x 10 mm, 0.65 mm pitch,
ultra fine pitch ball grid array package mechanical data

Gumbal	millimeters			inches ⁽¹⁾			
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	-	-	0.600	-	-	0.0236	
A1	-	-	0.110	-	-	0.0043	
A2	-	0.130	-	-	0.0051	-	
A3	-	0.450	-	-	0.0177	-	
A4	-	0.320	-	-	0.0126	-	
b	0.240	0.290	0.340	0.0094	0.0114	0.0134	
D	9.850	10.000	10.150	0.3878	0.3937	0.3996	
D1	-	9.100	-	-	0.3583	-	
E	9.850	10.000	10.150	0.3878	0.3937	0.3996	
E1	-	9.100	-	-	0.3583	-	
е	-	0.650	-	-	0.0256	-	
Z	-	0.450	-	-	0.0177	-	
ddd	-	-	0.080	-	-	0.0031	

8 Part numbering

Table 122. Ordering inform	mation sc	heme			
Example:	STM32	F	429 V I	Т	6 xxx
Device family					
STM32 = ARM-based 32-bit microcontroller					
Product type					
F = general-purpose					
Device subfamily					
427= STM32F427xx, USB OTG FS/HS, camera interface, Ethernet					
429= STM32F429xx, USB OTG FS/HS, camera interface, Ethernet, LCD-TFT					
Pin count					
V = 100 pins					
Z = 143 and 144 pins					
A = 169 pins					
I = 176 pins					
B = 208 pins					
N = 216 pins					
Flash memory size					
E = 512 Kbytes of Flash memory					
G = 1024 Kbytes of Flash memory					
I = 2048 Kbytes of Flash memory					
Package					
T = LQFP					
H = BGA					
Y = WLCSP					
Temperature range					
6 = Industrial temperature range, -40 to 85 °C.					_
7 = Industrial temperature range, -40 to 105 °C.					
Options					

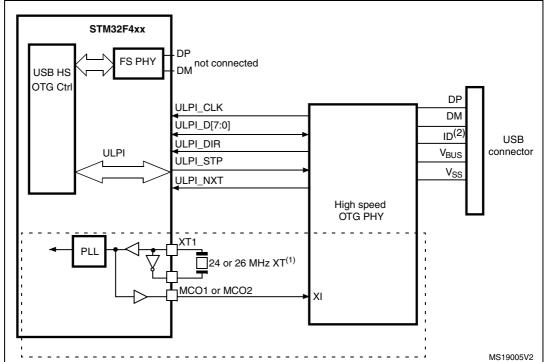
xxx = programmed parts

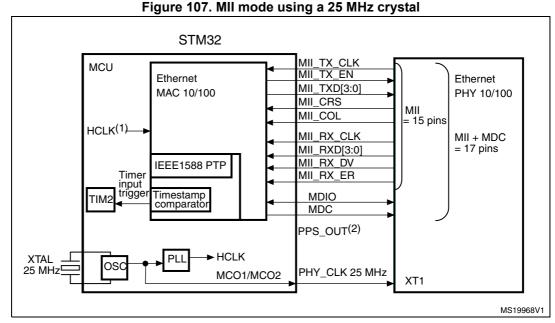
TR = tape and reel

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

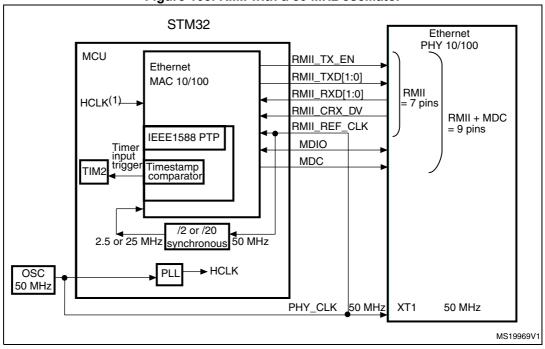
DocID024030 Rev 9

B.2 USB OTG high speed (HS) interface solutions




Figure 106. USB controller configured as peripheral, host, or dual-mode and used in high speed mode

 It is possible to use MCO1 or MCO2 to save a crystal. It is however not mandatory to clock the STM32F42x with a 24 or 26 MHz crystal when using USB HS. The above figure only shows an example of a possible connection.


^{2.} The ID pin is required in dual role only.

B.3 Ethernet interface solutions

1. f_{HCLK} must be greater than 25 MHz.

2. Pulse per second when using IEEE1588 PTP optional signal.

Figure 108. RMII with a 50 MHz oscillator

1. f_{HCLK} must be greater than 25 MHz.

