STMicroelectronics - STM32F427VGT6TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Det	ta	i	s

E·XF

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	82
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f427vgt6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of figures

Figure 1.	Compatible board design STM32F10xx/STM32F2xx/STM32F4xx	
	for LQFP100 package	17
Figure 2.	Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx	
	for LQFP144 package	18
Figure 3.	Compatible board design between STM32F2xx and STM32F4xx	
	for LQFP176 and UFBGA176 packages	18
Figure 4.	STM32F427xx and STM32F429xx block diagram	19
Figure 5.	STM32F427xx and STM32F429xx Multi-AHB matrix	22
Figure 6.	Power supply supervisor interconnection with internal reset OFF	26
Figure 7.	PDR_ON control with internal reset OFF	27
Figure 8.	Regulator OFF	29
Figure 9.	Startup in regulator OFF: slow V _{DD} slope	
-	- power-down reset risen after V _{CAP 1} /V _{CAP 2} stabilization	30
Figure 10.	Startup in regulator OFF mode: fast V _{DD} slope	
-	- power-down reset risen before V _{CAP 1} /V _{CAP 2} stabilization	30
Figure 11.	STM32F42x LQFP100 pinout	44
Figure 12.	STM32F42x WLCSP143 ballout	45
Figure 13.	STM32F42x LQFP144 pinout	46
Figure 14.	STM32F42x LQFP176 pinout	47
Figure 15.	STM32F42x LQFP208 pinout	48
Figure 16.	STM32F42x UFBGA169 ballout	49
Figure 17.	STM32F42x UFBGA176 ballout	50
Figure 18.	STM32F42x TFBGA216 ballout	51
Figure 19.	Memory map	85
Figure 20.	Pin loading conditions	90
Figure 21.	Pin input voltage	90
Figure 22.	Power supply scheme	91
Figure 23.	Current consumption measurement scheme	92
Figure 24.	External capacitor CEVT	96
Figure 25.	Typical V_{BAT} current consumption (LSE and RTC ON/backup RAM OFF)	106
Figure 26.	Typical V_{BAT} current consumption (LSE and RTC ON/backup RAM ON)	
Figure 27.	High-speed external clock source AC timing diagram	
Figure 28.	Low-speed external clock source AC timing diagram	
Figure 29.	Typical application with an 8 MHz crystal.	120
Figure 30.	Typical application with a 32.768 kHz crystal	121
Figure 31.	ACCHSI accuracy versus temperature	122
Figure 32.	ACC ₁ versus temperature	123
Figure 33.	PLL output clock waveforms in center spread mode	
Figure 34.	PLL output clock waveforms in down spread mode	
Figure 35	FT I/O input characteristics	136
Figure 36	I/O AC characteristics definition	139
Figure 37	Recommended NRST pin protection	140
Figure 38	SPI timing diagram - slave mode and CPHA = 0	143
Figure 39	SPI timing diagram - slave mode and CPHA = 1	144
Figure 40	SPI timing diagram - master mode	1 <u>4</u> 4
Figure 41	I^2 S slave timing diagram (Philins protocol) ⁽¹⁾	1 <u>4</u> 6
Figure 42	I^2S master timing diagram (Philling protocol) ⁽¹⁾	146
Figure 12	SAI master timing wayeforms	0 ب ا 1/10
i iguie 1 0.		170

2 Description

The STM32F427xx and STM32F429xx devices are based on the high-performance ARM[®] Cortex[®]-M4 32-bit RISC core operating at a frequency of up to 180 MHz. The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all ARM[®] single-precision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security.

The STM32F427xx and STM32F429xx devices incorporate high-speed embedded memories (Flash memory up to 2 Mbyte, up to 256 kbytes of SRAM), up to 4 Kbytes of backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.

All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose 16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers. They also feature standard and advanced communication interfaces.

- Up to three I²Cs
- Six SPIs, two I²Ss full duplex. To achieve audio class accuracy, the I²S peripherals can be clocked via a dedicated internal audio PLL or via an external clock to allow synchronization.
- Four USARTs plus four UARTs
- An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the ULPI),
- Two CANs
- One SAI serial audio interface
- An SDIO/MMC interface
- Ethernet and camera interface
- LCD-TFT display controller
- Chrom-ART Accelerator™.

Advanced peripherals include an SDIO, a flexible memory control (FMC) interface, a camera interface for CMOS sensors. Refer to *Table 2: STM32F427xx and STM32F429xx features and peripheral counts* for the list of peripherals available on each part number.

The STM32F427xx and STM32F429xx devices operates in the -40 to +105 °C temperature range from a 1.7 to 3.6 V power supply.

The supply voltage can drop to 1.7 V with the use of an external power supply supervisor (refer to *Section 3.17.2: Internal reset OFF*). A comprehensive set of power-saving mode allows the design of low-power applications.

The STM32F427xx and STM32F429xx devices offer devices in 8 packages ranging from 100 pins to 216 pins. The set of included peripherals changes with the device chosen.

3.42 Embedded Trace Macrocell™

The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F42x through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.

The Embedded Trace Macrocell operates with third party debugger software tools.

			Pin nu	ımbeı	r								
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
38	58	N7	R8	68	L5	79	R8	PE7	I/O	FT	-	TIM1_ETR, UART7_Rx, FMC_D4, EVENTOUT	-
39	59	J8	P8	69	M5	80	N9	PE8	I/O	FT	-	TIM1_CH1N, UART7_Tx, FMC_D5, EVENTOUT	-
40	60	K8	P9	70	N5	81	P9	PE9	I/O	FT	-	TIM1_CH1, FMC_D6, EVENTOUT	-
-	61	J6	M9	71	H3	82	K8	V _{SS}	S		-		-
-	62	G10	N9	72	J5	83	L9	V _{DD}	S		-		-
41	63	L8	R9	73	J4	84	R9	PE10	I/O	FT	-	TIM1_CH2N, FMC_D7, EVENTOUT	-
42	64	M8	P10	74	K4	85	P10	PE11	I/O	FT	-	TIM1_CH2, SPI4_NSS, FMC_D8, LCD_G3, EVENTOUT	-
43	65	N8	R10	75	L4	86	R10	PE12	I/O	FT	-	TIM1_CH3N, SPI4_SCK, FMC_D9, LCD_B4, EVENTOUT	-
44	66	H9	N11	76	N4	87	R12	PE13	I/O	FT	-	TIM1_CH3, SPI4_MISO, FMC_D10, LCD_DE, EVENTOUT	-
45	67	J9	P11	77	M4	88	P11	PE14	I/O	FT	-	TIM1_CH4, SPI4_MOSI, FMC_D11, LCD_CLK, EVENTOUT	-
46	68	K9	R11	78	L3	89	R11	PE15	I/O	FT	-	TIM1_BKIN, FMC_D12, LCD_R7, EVENTOUT	-
47	69	L9	R12	79	M3	90	P12	PB10	I/O	FT	-	TIM2_CH3, I2C2_SCL, SPI2_SCK/I2S2_CK, USART3_TX, OTG_HS_ULPI_D3, ETH_MII_RX_ER, LCD_G4, EVENTOUT	-
48	70	M9	R13	80	N3	91	R13	PB11	I/O	FT	-	TIM2_CH4, I2C2_SDA, USART3_RX, OTG_HS_ULPI_D4, ETH_MII_TX_EN/ETH_ RMII_TX_EN, LCD_G5, EVENTOUT	-

Table 10.	STM32F427xx and	STM32F429xx	pin and ball	definitions	(continued)
-----------	-----------------	-------------	--------------	-------------	-------------

			Pin nu	ımbeı	r								
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
49	71	N9	M10	81	N2	92	L11	V _{CAP_1}	S	-	-	_	-
-	-	-	-	-	H2	93	K9	V _{SS}	S	-	-	-	-
50	72	F8	N10	82	J6	94	L10	V _{DD}	S	-	-	-	-
-	-	-	-	-	-	95	M14	PJ5	I/O	-	-	LCD_R6, EVENTOUT	-
-	-	N10	M11	83	-	96	P13	PH6	I/O	FT	-	I2C2_SMBA, SPI5_SCK, TIM12_CH1, ETH_MII_RXD2, FMC_SDNE1, DCMI_D8, EVENTOUT	-
-	-	M10	N12	84	-	97	N13	PH7	I/O	FT	-	I2C3_SCL, SPI5_MISO, ETH_MII_RXD3, FMC_SDCKE1, DCMI_D9, EVENTOUT	-
-	-	L10	M12	85	-	98	P14	PH8	I/O	FT	-	I2C3_SDA, FMC_D16, DCMI_HSYNC, LCD_R2, EVENTOUT	-
-	-	K10	M13	86	-	99	N14	PH9	I/O	FT	-	I2C3_SMBA, TIM12_CH2, FMC_D17, DCMI_D0, LCD_R3, EVENTOUT	-
-	-	N11	L13	87	-	100	P15	PH10	I/O	FT	-	TIM5_CH1, FMC_D18, DCMI_D1, LCD_R4, EVENTOUT	-
-	-	M11	L12	88	-	101	N15	PH11	I/O	FT	-	TIM5_CH2, FMC_D19, DCMI_D2, LCD_R5, EVENTOUT	-
-	-	L11	K12	89	-	102	M15	PH12	I/O	FT	-	TIM5_CH3, FMC_D20, DCMI_D3, LCD_R6, EVENTOUT	-
-	-	E7	H12	90	-	-	K10	V _{SS}	S	-	-	-	-
-	-	H8	J12	91	-	103	K11	V _{DD}	S	-	-	-	-

Table 10.	STM32F427xx and	STM32F429xx pin	and ball defini	tions (continued)
-----------	-----------------	-----------------	-----------------	-------------------

Pinouts and pin description

- 4. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F4xx reference manual, available from the STMicroelectronics website: www.st.com.
- 5. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).
- If the device is delivered in an WLCSP143, UFBGA169, UFBGA176, LQFP176 or TFBGA216 package, and the BYPASS_REG pin is set to V_{DD} (Regulator OFF/internal reset ON mode), then PA0 is used as an internal Reset (active low).
- 7. PI0 and PI1 cannot be used for I2S2 full-duplex mode.
- 8. The DCMI_VSYNC alternate function on PG9 is only available on silicon revision 3.

\neg	
Q	
Ñ	
ω	
∞	

DocID024030 Rev 9

577

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/ 10/11	l2C1/ 2/3	SPI1/2/ 3/4/5/6	SPI2/3/ SAI1	SPI3/ USART1/ 2/3	USART6/ UART4/5/7 /8	CAN1/2/ TIM12/13/14 /LCD	OTG2_HS /OTG1_ FS	ЕТН	FMC/SDIO /OTG2_FS	DCMI	LCD	SYS
	PB11	-	TIM2_ CH4	-	-	I2C2_ SDA	-	-	USART3_ RX	-	-	OTG_HS_ ULPI_D4	ETH_MII_ TX_EN/ ETH_RMII _TX_EN	-	-	LCD_G5	EVEN TOUT
	PB12	-	TIM1_ BKIN	-	-	I2C2_ SMBA	SPI2_ NSS/I2 S2_WS	-	USART3_ CK	-	CAN2_RX	OTG_HS_ ULPI_D5	ETH_MII_ TXD0/ETH _RMII_ TXD0	OTG_HS_ ID	-	-	EVEN TOUT
Port B	PB13	-	TIM1_ CH1N	-	-	-	SPI2_ SCK/I2 S2_CK	-	USART3_ CTS	-	CAN2_TX	OTG_HS_ ULPI_D6	ETH_MII_ TXD1/ETH _RMII_TX _D1	-	-	-	EVEN TOUT
	PB14	-	TIM1_ CH2N	-	TIM8_ CH2N	-	SPI2_ MISO	I2S2ext_ SD	USART3_ RTS	-	TIM12_CH1	-	-	OTG_HS_ DM	-	-	EVEN TOUT
	PB15	RTC_ REFIN	TIM1_ CH3N	-	TIM8_ CH3N	-	SPI2_ MOSI/I2 S2_SD	-	-	-	TIM12_CH2	-	-	OTG_HS_ DP	-	-	EVEN TOUT
	PC0	-	-	-	-	-	-	-	-	-	-	OTG_HS_ ULPI_STP	-	FMC_SDN WE	-	-	EVEN TOUT
	PC1	-	-	-	-	-	-	-	-	-	-	-	ETH_MDC	-	-	-	EVEN TOUT
	PC2	-	-	-	-	-	SPI2_ MISO	I2S2ext_ SD	-	-	-	OTG_HS_ ULPI_DIR	ETH_MII_ TXD2	FMC_ SDNE0	-	-	EVEN TOUT
	PC3	-	-	-	-	-	SPI2_ MOSI/I2 S2_SD	-	-	-	-	OTG_HS_ ULPI_NXT	ETH_MII_ TX_CLK	FMC_ SDCKE0	-	-	EVEN TOUT
Port C	PC4	-	-	-	-	-	-	-	-	-	-	-	ETH_MII_ RXD0/ETH _RMII_ RXD0	-	-	-	EVEN TOUT
	PC5	-	-	-	-	-	-	-	-	-	-	-	ETH_MII_ RXD1/ETH _RMII_ RXD1	-	-	-	EVEN TOUT
	PC6	-	-	TIM3_ CH1	TIM8_ CH1	-	I2S2_ MCK	-	-	USART6_ TX	-	-	-	SDIO_D6	DCMI_ D0	LCD_ HSYNC	EVEN TOUT
	PC7	-	-	TIM3_ CH2	TIM8_ CH2	-	-	I2S3_ MCK	-	USART6_ RX	-	-	-	SDIO_D7	DCMI_ D1	LCD_G6	EVEN TOUT

Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)

K	

8		Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)																
/238			AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	Po	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/ 10/11	l2C1/ 2/3	SPI1/2/ 3/4/5/6	SPI2/3/ SAI1	SPI3/ USART1/ 2/3	USART6/ UART4/5/7 /8	CAN1/2/ TIM12/13/14 /LCD	OTG2_HS /OTG1_ FS	ETH	FMC/SDIO /OTG2_FS	DCMI	LCD	SYS
		PG9	-	-	-	-	-	-	-	-	USART6_ RX	-	-	-	FMC_NE2/ FMC_ NCE3	DCMI_ VSYNC (1)	-	EVEN TOUT
		PG10	-	-	-	-	-	-	-	-	-	LCD_G3	-	-	FMC_ NCE4_1/ FMC_NE3	DCMI_ D2	LCD_B2	EVEN TOUT
		PG11	-	-	-	-	-	-	-	-	-	-	-	ETH_MII_ TX_EN/ ETH_RMII _TX_EN	FMC_ NCE4_2	DCMI_ D3	LCD_B3	EVEN TOUT
	Port G	PG12	-	-	-	-	-	SPI6_ MISO	-	-	USART6_ RTS	LCD_B4	-	-	FMC_NE4	-	LCD_B1	EVEN TOUT
DocID02		PG13	-	-	-	-	-	SPI6_ SCK	-	-	USART6_ CTS	-	-	ETH_MII_ TXD0/ ETH_RMII _TXD0	FMC_A24	-	-	EVEN TOUT
4030 Rev		PG14	-	-	-	-	-	SPI6_ MOSI	-	-	USART6_ TX	-	-	ETH_MII_ TXD1/ ETH_RMII _TXD1	FMC_A25	-	-	EVEN TOUT
9		PG15	-	-	-	-	-	-	-	-	USART6_ CTS	-	-	-	FMC_ SDNCAS	DCMI_ D13	-	EVEN TOUT
		PH0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT
		PH1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT
		PH2	-	-	-	-	-	-	-	-	-	-	-	ETH_MII_ CRS	FMC_ SDCKE0	-	LCD_R0	EVEN TOUT
	Port H	PH3	-	-	-	-	-	-	-	-	-	-	-	ETH_MII_ COL	FMC_SDN E0	-	LCD_R1	EVEN TOUT
		PH4	-	-	-	-	I2C2_ SCL	-	-	-	-	-	OTG_HS_ ULPI_NXT	-	-	-	-	EVEN TOUT
		PH5	-	-	-	-	I2C2_ SDA	SPI5_N SS	-	-	-	-	-	-	FMC_SDN WE	-	-	EVEN TOUT
1		PH6	-	-	-	-	I2C2_ SMBĀ	SPI5_ SCK	-	-	-	TIM12_CH1	-	-	FMC_ SDNE1	DCMI_ D8	-	-

 Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)

6.3.5 Reset and power control block characteristics

The parameters given in *Table 22* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		PLS[2:0]=000 (rising edge)	2.09	2.14	2.19	V
		PLS[2:0]=000 (falling edge)	1.98	2.04	2.08	V
		PLS[2:0]=001 (rising edge)	2.23	2.30	2.37	V
		PLS[2:0]=001 (falling edge)	2.13	2.19	2.25	V
		PLS[2:0]=010 (rising edge)	2.39	2.45	2.51	V
		PLS[2:0]=010 (falling edge)	2.29	2.35	2.39	V
		PLS[2:0]=011 (rising edge)	2.54	2.60	2.65	V
M	Programmable voltage	PLS[2:0]=011 (falling edge)	2.44	2.51	2.56	V
V _{PVD}	detector level selection	PLS[2:0]=100 (rising edge)	2.70	2.76	2.82	V
		PLS[2:0]=100 (falling edge)	2.59	2.66	2.71	V
		PLS[2:0]=101 (rising edge)	2.86	2.93	2.99	V
		PLS[2:0]=101 (falling edge)	2.65	2.84	2.92	V
		PLS[2:0]=110 (rising edge)	2.96	3.03	3.10	V
		PLS[2:0]=110 (falling edge)	2.85	2.93	2.99	V
		PLS[2:0]=111 (rising edge)	3.07	3.14	3.21	V
		PLS[2:0]=111 (falling edge)	2.95	3.03	3.09	V
V _{PVDhyst} ⁽¹⁾	PVD hysteresis		-	100	-	mV
M	Power-on/power-down	Falling edge	1.60	1.68	1.76	V
♥ POR/PDR	reset threshold	Rising edge	1.64	1.72	1.80	V
V _{PDRhyst} ⁽¹⁾	PDR hysteresis		-	40	-	mV
M	Brownout level 1	Falling edge	2.13	2.19	2.24	V
VBOR1	threshold	Rising edge	2.23	2.29	2.33	V
M	Brownout level 2	Falling edge	2.44	2.50	2.56	V
VBOR2	threshold	Rising edge	2.53	2.59	2.63	V
M	Brownout level 3	Falling edge	2.75	2.83	2.88	V
VBOR3	threshold	Rising edge	2.85	2.92	2.97	V
V _{BORhyst} ⁽¹⁾	BOR hysteresis		-	100	-	mV
T _{RSTTEMPO}	POR reset temporization		0.5	1.5	3.0	ms

Table 22.	reset and	power	control block	characteristics
-----------	-----------	-------	---------------	-----------------

				Typ ⁽¹⁾						
Symbol	Parameter	Conditions	Т	A = 25 °0	C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit	
			V _{DD} = 1.7 V	V _{DD} = 2.4 V	V _{DD} = 3.3 V	v	, _{DD} = 3.6	v		
I _{DD_STBY}	Supply current in Standby mode	Backup SRAM ON, low-speed oscillator (LSE) and RTC ON	2.80	3.00	3.60	7.00	19.00	36.00		
		Backup SRAM OFF, low- speed oscillator (LSE) and RTC ON	2.30	2.60	3.10	6.00	16.00	31.00	μA	
		Backup SRAM ON, RTC and LSE OFF	2.30	2.50	2.90	6.00 ⁽³⁾	18.00 ⁽³⁾	35.00 ⁽³⁾		
		Backup SRAM OFF, RTC and LSE OFF	1.70	1.90	2.20	5.00 ⁽³⁾	15.00 ⁽³⁾	30.00 ⁽³⁾		

Table 28. Typical and maximum current consumptions in Standby mode

The typical current consumption values are given with PDR OFF (internal reset OFF). When the PDR is OFF (internal reset OFF), the typical current consumption is reduced by additional 1.2 μA.

2. Based on characterization, not tested in production unless otherwise specified.

3. Based on characterization, tested in production.

Table 29. Typical and maximum current consumptions in $\ensuremath{\mathsf{V}_{\mathsf{BAT}}}$ mode

		Parameter Conditions ⁽¹⁾		Тур		Ма		
Symbol	Parameter			_ _A = 25 °	с	T _A = 85 °C	T _A = 105 °C	Unit
				V _{BAT} = 2.4 V	V _{BAT} = 3.3 V	V _{BAT} =	= 3.6 V	
	Backup domain supply current	Backup SRAM ON, low-speed oscillator (LSE) and RTC ON	1.28	1.40	1.62	6	11	
		Backup SRAM OFF, low-speed oscillator (LSE) and RTC ON	0.66	0.76	0.97	3	5	
IDD_VBAT		Backup SRAM ON, RTC and LSE OFF	0.70	0.72	0.74	5	10	μΛ
		Backup SRAM OFF, RTC and LSE OFF	0.10	0.10	0.10	2	4	

1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a C_L of 6 pF for typical values.

2. Guaranteed by characterization results.

On-chip peripheral current consumption

The MCU is placed under the following conditions:

- At startup, all I/O pins are in analog input configuration.
- All peripherals are disabled unless otherwise mentioned.
- I/O compensation cell enabled.
- The ART accelerator is ON.
- Scale 1 mode selected, internal digital voltage V12 = 1.32 V.
- HCLK is the system clock. f_{PCLK1} = f_{HCLK}/4, and f_{PCLK2} = f_{HCLK}/2.
 The given value is calculated by measuring the difference of current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
 - f_{HCLK} = 180 MHz (Scale1 + over-drive ON), f_{HCLK} = 144 MHz (Scale 2), f_{HCLK} = 120 MHz (Scale 3)"
- Ambient operating temperature is 25 °C and V_{DD} =3.3 V.

Perinheral			I _{DD} (Тур) ⁽¹⁾					
F	reripheral	Scale 1	Scale 2	Scale 3	onit			
	GPIOA	2.50	2.36	2.08				
	GPIOB	2.56	2.36	2.08				
	GPIOC	2.44	2.29	2.00				
	GPIOD	2.50	2.36	2.08				
	GPIOE	2.44	2.29	2.00				
	GPIOF	2.44	2.29	2.00				
	GPIOG	2.39	2.22	2.00				
	GPIOH	2.33	2.15	1.92				
	GPIOI	2.39	2.22	2.00				
AHB1	GPIOJ	2.33	2.15	1.92				
(up to 180 MHz)	GPIOK	2.33	2.15	1.92	µA/MHz			
100 111 12)	OTG_HS+ULPI	27.00	24.86	21.92				
	CRC	0.44	0.42	0.33				
	BKPSRAM	0.78	0.69	0.58				
	DMA1	25.33	23.26	20.50				
	DMA2	24.72	22.71	20.00				
t	DMA2D	28.50	26.32	23.33				
	ETH_MAC ETH_MAC_TX ETH_MAC_RX ETH_MAC_PTP	21.56	20.07	17.75				

Table 35. Peripheral current consumption

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC[?] code, is running. This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading.

Symbol Parameter		Conditions	Monitored	Max vs. [f _{HSE} /f _{CPU}]	Max vs. [f _{HSE} /f _{CPU}]	Unit
				25/168 MHz	25/180 MHz	
		V = 3.3 V T = 25 °C + 0 EP 176	0.1 to 30 MHz	16	19	
		$v_{DD} = 3.3 \text{ V}, T_A = 25 \text{ C}, LQFF176$ package, conforming to SAE J1752/3EEMBC, ART ON, all peripheralclocks enabled, clock ditheringdisabled.Peak level $V_{DD} = 3.3 \text{ V}, T_A = 25 \text{ °C}, LQFP176$ package, conforming to SAE J1752/3EEMBC, ART ON, all peripheralclocks enabled, clock ditheringenabled	30 to 130 MHz	23	23	dBµV
			130 MHz to 1GHz	25	22	
S	Peak level		SAE EMI Level	4	4	-
SEWI			0.1 to 30 MHz	17	16	
			30 to 130 MHz	8	10	dBuV
			130 MHz to 1GHz	11	16	
			SAE EMI level	3.5	3.5	-

Table 52. EMI characteristics

6.3.17 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 56: I/O static characteristics* are derived from tests performed under the conditions summarized in *Table 17*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
	FT, TTa and NRST I/O input	1.7 V≤V _{DD} ≤3.6 V	-	-	0.35V _{DD} - 0.04	
	low level voltage				0.3V _{DD} ⁽²⁾	
V _{IL}	BOOT0 I/O input low level	1.75 V≤V _{DD} ≤3.6 V, – 40 °C≤T _A ≤105 °C	-	-	$0.11(\pm 0.1^{(1)})$	V
	voltage	1.7 V≤V _{DD} ≤3.6 V, 0 °C≤T _A ≤105 °C	-	-	0.1VDD+0.1	
	FT, TTa and NRST I/O input		0.45V _{DD} +0.3 ⁽¹⁾			
	high level voltage ⁽⁵⁾	1.7 v≤v _{DD} ≤3.0 v	0.7V _{DD} ⁽²⁾	-	-	
V _{IH}	BOOT0 I/O input high level	1.75 V≤V _{DD} ≤3.6 V, – 40 °C≤T _A ≤105 °C	$0.171(\pm 0.7^{(1)})$			V
	voltage	1.7 V≤V _{DD} ≤3.6 V, 0 °C≤T _A ≤105 °C	0.17 V _{DD} +0.7 V	-	-	
	FT, TTa and NRST I/O input hysteresis	1.7 V≤V _{DD} ≤3.6 V	10%V _{DD} ⁽³⁾	-	-	
V _{HYS}	BOOTO I/O input hysteresis	1.75 V≤V _{DD} ≤3.6 V, – 40 °C≤T _A ≤105 °C	0.1	_	_	V
		1.7 V≤V _{DD} ≤3.6 V, 0 °C≤T _A ≤105 °C	0.1	_		
	I/O input leakage current ⁽⁴⁾	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	
'lkg	I/O FT input leakage current ⁽⁵⁾	$V_{IN} = 5 V$	-	-	3	μΑ

Table	56	1/0	static	characteri	stics
Table	50.	"	Static	Characteri	31163

6.3.25 DAC electrical characteristics

Symbol	Parameter	Cond	litions	Min	Тур	Max	Unit	Comments
V _{DDA}	Analog supply voltage		-	1.7 ⁽¹⁾	-	3.6	V	-
V _{REF+}	Reference supply voltage		-	1.7 ⁽¹⁾	-	3.6	v	V _{REF+} ≤V _{DDA}
V _{SSA}	Ground		-	0	-	0	V	-
RLOAD ⁽²⁾	Resistive load	DAC output	R _{LOAD} connected to V _{SSA}	5	-	-	kQ.	-
I LOAD		buffer ON	R _{LOAD} connected to V _{DDA}	25				-
R ₀ ⁽²⁾	Impedance output with buffer OFF		-	-	-	15	kΩ	When the buffer is OFF, the Minimum resistive load between DAC_OUT and V_{SS} to have a 1% accuracy is 1.5 M Ω
C _{LOAD} ⁽²⁾	Capacitive load		-	-	-	50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON).
DAC_O UT min ⁽²⁾	Lower DAC_OUT voltage with buffer ON		-	0.2	-	-	v	It gives the maximum output excursion of the DAC. It corresponds to 12-bit input
DAC_O UT max ⁽²⁾	Higher DAC_OUT voltage with buffer ON		-	-	-	V _{DDA} - 0.2	v	code (0x0E0) to (0xF1C) at V _{REF+} = 3.6 V and (0x1C7) to (0xE38) at V _{REF+} = 1.7 V
DAC_O UT min ⁽²⁾	Lower DAC_OUT voltage with buffer OFF		-	-	0.5	-	mV	It gives the maximum output
DAC_O UT max ⁽²⁾	Higher DAC_OUT voltage with buffer OFF		-	-	-	V _{REF+} – 1LSB	V	excursion of the DAC.
(4)	DAC DC V _{REF} current consumption in		-	-	170	240		With no load, worst code (0x800) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs
VREF+`´	quiescent mode (Standby mode)			-	50	75	μA	With no load, worst code (0xF1C) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs

Table 85. DAC characteristics

Figure 56. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms

1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.

	(4)(0)
Table 88. Asynchronous non-multi	plexed SRAM/PSRAM/NOR write timings ⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	3T _{HCLK}	3T _{HCLK} +1	ns
t _{v(NWE_NE)}	FMC_NEx low to FMC_NWE low	T _{HCLK} – 0.5	T _{HCLK} + 0.5	ns
t _{w(NWE)}	FMC_NWE low time	T _{HCLK}	T _{HCLK} + 0.5	ns
t _{h(NE_NWE)}	FMC_NWE high to FMC_NE high hold time	T _{HCLK} +1.5	-	ns
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	0	ns
t _{h(A_NWE)}	Address hold time after FMC_NWE high	T _{HCLK} +0.5	-	ns
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	1.5	ns
t _{h(BL_NWE)}	FMC_BL hold time after FMC_NWE high	T _{HCLK} +0.5	-	ns
t _{v(Data_NE)}	Data to FMC_NEx low to Data valid	-	T _{HCLK} + 2	ns
t _{h(Data_NWE)}	Data hold time after FMC_NWE high	T _{HCLK} +0.5	-	ns
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	-	0.5	ns
t _{w(NADV)}	FMC_NADV low time	-	T _{HCLK} + 0.5	ns

1. C_L = 30 pF.

2. Guaranteed by characterization results.

Figure 71. NAND controller waveforms for common memory read access

Figure 72. NAND controller waveforms for common memory write access

Table 100. Switching characteristics for NAND Flash read cycles⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(N0E)}	FMC_NOE low width	4T _{HCLK} – 0.5	4T _{HCLK} +0.5	ns
t _{su(D-NOE)}	FMC_D[15-0] valid data before FMC_NOE high	9	-	ns
t _{h(NOE-D)}	FMC_D[15-0] valid data after FMC_NOE high	0	-	ns
t _{d(ALE-NOE)}	FMC_ALE valid before FMC_NOE low	-	3T _{HCLK} – 0.5	ns
t _{h(NOE-ALE)}	FMC_NWE high to FMC_ALE invalid	3T _{HCLK} – 2	-	ns

1. C_L = 30 pF.

		-		
Symbol	Parameter	Min	Max	Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{HCLK} – 0.5	2T _{HCLK} +0.5	
t _{d(SDCLKL_Data})	Data output valid time	-	3.5	
t _{h(SDCLKL} _Data)	Data output hold time	0	-	
t _{d(SDCLKL_Add)}	Address valid time	-	1.5	
t _{d(SDCLKL_SDNWE)}	SDNWE valid time	-	1	
t _{h(SDCLKL_SDNWE)}	SDNWE hold time	0	-	
t _{d(SDCLKL_SDNE)}	Chip select valid time	-	0.5	
t _{h(SDCLKLSDNE)}	Chip select hold time	0	-	115
t _{d(SDCLKL_SDNRAS)}	SDNRAS valid time	-	2	
t _{h(SDCLKL_SDNRAS)}	SDNRAS hold time	0	-	
t _{d(SDCLKL_SDNCAS)}	SDNCAS valid time	-	0.5	
td(SDCLKL_SDNCAS)	SDNCAS hold time	0	-	
t _{d(SDCLKL_NBL)}	NBL valid time	-	0.5	
t _{h(SDCLKL_NBL)}	NBLoutput time	0	-	1

Table 104. SDRAM write timings⁽¹⁾⁽²⁾

1. CL = 30 pF on data and address lines. CL=15pF on FMC_SDCLK.

2. Guaranteed by characterization results.

Table 105. LPSDR SDRAM write timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{HCLK} – 0.5	2T _{HCLK} +0.5	
t _{d(SDCLKL_Data})	Data output valid time	-	5	
t _{h(SDCLKL} _Data)	Data output hold time	2	-	
t _{d(SDCLKL_Add)}	Address valid time	-	2.8	
t _{d(SDCLKL-SDNWE)}	SDNWE valid time	-	2	
t _{h(SDCLKL-SDNWE)}	SDNWE hold time	1	-	
t _{d(SDCLKL-SDNE)}	Chip select valid time	-	1.5	
t _{h(SDCLKL} - SDNE)	Chip select hold time	1	-	ns
t _{d(SDCLKL-SDNRAS)}	SDNRAS valid time	-	1.5	
t _{h(SDCLKL-SDNRAS)}	SDNRAS hold time	1.5	-	
t _{d(SDCLKL-SDNCAS)}	SDNCAS valid time	-	1.5	
t _{d(SDCLKL-SDNCAS)}	SDNCAS hold time	1.5	-	
t _{d(SDCLKL_NBL)}	NBL valid time	-	1.5	
t _{h(SDCLKL-NBL)}	NBL output time	1.5	-	

1. CL = 10 pF.

2. Guaranteed by characterization results.

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 LQFP100 package information

Figure 80. LQFP100 -100-pin, 14 x 14 mm low-profile quad flat package outline

1. Drawing is not to scale.

Device marking for LQFP144

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which depends assembly location, are not indicated below.

Figure 88. LQFP144 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

STM32F427xx STM32F429xx

Date	Revision	Changes		
24-Jan-2014	3	Added STM32F429xE part numbers featuring 512 Mbytes of Flash memory and UFBGA169 package. Added LPSDR SDRAM. Changed INTN into INTR in <i>Figure 4: STM32F427xx and</i> <i>STM32F429xx block diagram</i> . Added note 4 in <i>Table 2: STM32F427xx and STM32F429xx features</i> <i>and peripheral counts</i> . Updated Section 3.15: Boot modes. Updated for PA4 and PA5 in <i>Table 10: STM32F427xx and</i> <i>STM32F429xx pin and ball definitions</i> . Added V _{IN} for BOOT0 pins in <i>Table 14: Voltage characteristics</i> . Updated Note 6, added Note 1, and updated maximum V _{IN} for B pins in <i>Table 17: General operating conditions</i> . Updated maximum Flash memory access frequency with wait states for V _{DD} =1.8 to 2.1 V in <i>Table 18: Limitations depending on the</i> <i>operating power supply range</i> . Updated Table 24: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled except prefetch) or RAM and Table 25: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory or RAM, regulator ON (ART accelerator enabled except prefetch), VDD=1.7 V, Table 31: Typical current consumption in Run mode, code with data processing running from Flash memory or RAM, regulator ON (ART accelerator enabled except prefetch), vDD=1.7 V, Table 31: Typical current consumption in Run mode, code with data processing running from Flash memory, regulator OFF (ART accelerator enabled except prefetch), and Table 32: Typical current consumption in Sleep mode, regulator ON, VDD=1.7 V. Updated Table 58: I/O AC characteristics. Added Figure 35. Updated Table 58: I/O AC characteristics. USB ULPI. Updated Table 57: Output voltage characteristics. Updated Table 57: Output voltage characteristics. Updated Table 57: Dynamic characteristics conditions. Updated Figure 73: SDRAM read access waveforms (CL = 1) and Figure 74: SDRAM write access waveforms. Added Table 103: LPSDR SDRAM read timings and Table 106: DPSDR SDRAM write timings and added note 2. Table 108: Dynamic characteristics: SD /		

	Table 124.	Document	revision	historv
--	------------	----------	----------	---------

