

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	130
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	169-UFBGA
Supplier Device Package	169-UFBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f429aih6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1 Full compatibility throughout the family

The STM32F427xx and STM32F429xx devices are part of the STM32F4 family. They are fully pin-to-pin, software and feature compatible with the STM32F2xx devices, allowing the user to try different memory densities, peripherals, and performances (FPU, higher frequency) for a greater degree of freedom during the development cycle.

The STM32F427xx and STM32F429xx devices maintain a close compatibility with the whole STM32F10xx family. All functional pins are pin-to-pin compatible. The STM32F427xx and STM32F429xx, however, are not drop-in replacements for the STM32F10xx devices: the two families do not have the same power scheme, and so their power pins are different. Nonetheless, transition from the STM32F10xx to the STM32F42x family remains simple as only a few pins are impacted.

Figure 1, *Figure 2*, and *Figure 3*, give compatible board designs between the STM32F4xx, STM32F2xx, and STM32F10xx families.

Figure 1. Compatible board design STM32F10xx/STM32F2xx/STM32F4xx for LQFP100 package

3.21 V_{BAT} operation

The V_{BAT} pin allows to power the device V_{BAT} domain from an external battery, an external supercapacitor, or from V_{DD} when no external battery and an external supercapacitor are present.

 V_{BAT} operation is activated when V_{DD} is not present.

The V_{BAT} pin supplies the RTC, the backup registers and the backup SRAM.

Note: When the microcontroller is supplied from V_{BAT} , external interrupts and RTC alarm/events do not exit it from V_{BAT} operation.

When PDR_ON pin is not connected to V_{DD} (Internal Reset OFF), the V_{BAT} functionality is no more available and V_{BAT} pin should be connected to VDD.

3.22 Timers and watchdogs

The devices include two advanced-control timers, eight general-purpose timers, two basic timers and two watchdog timers.

All timer counters can be frozen in debug mode.

Table 6 compares the features of the advanced-control, general-purpose and basic timers.

3.42 Embedded Trace Macrocell™

The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F42x through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.

The Embedded Trace Macrocell operates with third party debugger software tools.

4 Pinouts and pin description

Figure 11. STM32F42x LQFP100 pinout

1. The above figure shows the package top view.

6.3 Operating conditions

6.3.1 General operating conditions

Table 17	. General	operating	conditions

Symbol	Parameter	Conditions ⁽¹⁾		Min	Тур	Max	Unit
		Power Scale 3 (VOS[1:0] bits PWR_CR register = 0x01), Re ON, over-drive OFF	Power Scale 3 (VOS[1:0] bits in PWR_CR register = 0x01), Regulator ON, over-drive OFF		-	120	
	Internal AHB clock frequency	Power Scale 2 (VOS[1:0] bits	Over- drive OFF	0	-	144	
f _{HCLK}		Regulator ON	Over- drive ON	0	-	168	
		Power Scale 1 (VOS[1:0] bits in PWR_CR register= 0x11)	Over- drive OFF	0	-	168	MHz
		Regulator ON	Over- drive ON	Ŭ	-	180	
fpour	Internal APB1 clock frequency	Over-drive OFF		0	-	42	
'PCLK1		Over-drive ON	Over-drive ON			45	
f	Internal APP2 clock frequency	Over-drive OFF			-	84	
PCLK2		Over-drive ON	0	-	90		
V _{DD}	Standard operating voltage				-	3.6	
V _{DDA}	Analog operating voltage (ADC limited to 1.2 M samples)				-	2.4	
(3)(4)	Analog operating voltage (ADC limited to 2.4 M samples)	Must be the same potential as V _{DD} ⁽⁵⁾		2.4	-	3.6	v
V _{BAT}	Backup operating voltage				-	3.6	
		Power Scale 3 ((VOS[1:0] bits PWR_CR register = 0x01), 12 HCLK max frequency	Power Scale 3 ((VOS[1:0] bits in PWR_CR register = 0x01), 120 MHz HCLK max frequency		1.14	1.20	
	Regulator ON: 1.2 V internal voltage on V _{CAP_1} /V _{CAP_2} pins	Power Scale 2 ((VOS[1:0] bits in PWR_CR register = 0x10), 144 MHz HCLK max frequency with over-drive OFF or 168 MHz with over-drive ON		1.20	1.26	1.32	
V ₁₂		Power Scale 1 ((VOS[1:0] bits in PWR_CR register = 0x11), 168 MHz HCLK max frequency with over-drive OFF or 180 MHz with over-drive ON		1.26	1.32	1.40	V
	Regulator OFF: 1.2 V external	Max frequency 120 MHz		1.10	1.14	1.20	
	voltage must be supplied from external regulator on	Max frequency 144 MHz		1.20	1.26	1.32	
	$V_{CAP_1}/V_{CAP_2} pins^{(6)}$	Max frequency 168 MHz		1.26	1.32	1.38	1

Table 24. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator enabled except prefetch) or RAM ⁽¹⁾

Symbol	Parameter	Conditions	f _{HCLK} (MHz)	Тур	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			180	98	104 ⁽⁵⁾	123	141 ⁽⁵⁾	
			168	89	98 ⁽⁵⁾	116	133 ⁽⁵⁾	
			150	75	84	100	115	
			144	72	81	96	112	
			120	54	58	72	85	
		All	90	43	45	56	66	
		Peripherals	60	29	30	38	45	
		enabled	30	16	20	34	46	
			25	13	16	30	43	
		ipply	16	11	13	27	39	
			8	5	9	23	36	mΔ
			4	4	8	21	34	
	Supply		2	2	7	20	33	
'DD	RUN mode		180	44	47 ⁽⁵⁾	69	87 ⁽⁵⁾	
			168	41	45 ⁽⁵⁾	66	83 ⁽⁵⁾	
			150	36	39	57	73	
			144	33	37	56	72	
			120	25	29	43	56	
		All	90	20	21	32	41	
		Peripherals	60	14	15	22	28	
		disabled(0)	30	8	8	12	26	
			25	7	7	10	24	
			16	7	9	22	35	
			8	3	7	21	34	
			4	3	6	20	33	
			2	2	6	20	33	

1. Code and data processing running from SRAM1 using boot pins.

2. Guaranteed by characterization.

3. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

5. Guaranteed by test in production.

DocID024030 Rev 9

Peripheral			llait		
r	reripheral	Scale 1	Scale 2	Scale 3	Onit
	SDIO	8.11	8.75	7.83	
	TIM1	17.11	15.97	14.17	
	TIM8	17.33	16.11	14.33	
	TIM9	7.22	6.67	6.00	
	TIM10	4.56	4.31	3.83	
	TIM11	4.78	4.44	4.00	
	ADC1 ⁽⁵⁾	4.67	4.31	3.83	
	ADC2 ⁽⁵⁾	4.78	4.44	4.00	
APB2	ADC3 ⁽⁵⁾	4.56	4.17	3.67	
(up to 90 MHz)	SPI1	1.44	1.39	1.17	μΑνινιπΖ
· · ·	USART1	4.00	3.75	3.33	
	USART6	4.00	3.75	3.33	
	SPI4	1.44	1.39	1.17	
	SPI5	1.44	1.39	1.17	
	SPI6	1.44	1.39	1.17	
	SYSCFG	0.78	0.69	0.67	
	LCD_TFT	39.89	37.22	33.17	
	SAI1	3.78	3.47	3.17	

1. When the I/O compensation cell is ON, I_{DD} typical value increases by 0.22 mA.

2. The BusMatrix is automatically active when at least one master is ON.

3. To enable an I2S peripheral, first set the I2SMOD bit and then the I2SE bit in the SPI_I2SCFGR register.

4. When the DAC is ON and EN1/2 bits are set in DAC_CR register, add an additional power consumption of 0.8 mA per DAC channel for the analog part.

5. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

6.3.8 Wakeup time from low-power modes

The wakeup times given in *Table 36* are measured starting from the wakeup event trigger up to the first instruction executed by the CPU:

- For Stop or Sleep modes: the wakeup event is WFE.
- WKUP (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.

All timings are derived from tests performed under ambient temperature and V_{DD} =3.3 V.

Symbol	Parameter	Conditions	Тур ⁽¹⁾	Max ⁽¹⁾	Unit
t _{WUSLEEP} ⁽²⁾	Wakeup from Sleep	-	6	-	CPU clock cycle
		Main regulator is ON	13.6	-	
t _{WUSTOP} ⁽²⁾	Wakeup from Stop mode	Main regulator is ON and Flash memory in Deep power down mode	93	111	
	with MR/LP regulator in normal mode	Low power regulator is ON	22	32	
		Low power regulator is ON and Flash memory in Deep power down mode	103	126	μs
twustop ⁽²⁾	Wakeup from Stop mode	Main regulator in under-drive mode (Flash memory in Deep power-down mode)	105	128	
	with MR/LP regulator in Under-drive mode	Low power regulator in under-drive mode (Flash memory in Deep power-down mode)	125	155	
tWUSTDBY (2)(3)	Wakeup from Standby mode		318	412	

Table 36. Low-power mode wakeup timings

1. Guaranteed by characterization results.

2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first

3. $t_{WUSTDBY}\,$ maximum value is given at –40 $^{\circ}\text{C}.$

For C_{L1} and C_{L2}, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 29*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2}. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2}.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 40*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _F	Feedback resistor		-	18.4	-	MΩ
I _{DD}	LSE current consumption		-	-	1	μA
ACC _{LSE} ⁽²⁾	LSE accuracy		- 500	-	500	ppm
G _m _crit_max	Maximum critical crystal g _m	Startup	-	-	0.56	μA/V
t _{SU(LSE)} ⁽³⁾	startup time	V _{DD} is stabilized	-	2	-	S

Table 40. LSE oscillator characteristics (f_{LSE} = 32.768 kHz) ⁽¹⁾

1. Guaranteed by design.

2. This parameter depends on the crystal used in the application. Refer to application note AN2867.

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is based on characterization and not tested in production. It is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Note:

For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

Figure 32. ACC_{LSI} versus temperature

6.3.11 PLL characteristics

The parameters given in *Table 43* and *Table 44* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{PLL_IN}	PLL input clock ⁽¹⁾		0.95 ⁽²⁾	1	2.10	MHz
f _{PLL_OUT}	PLL multiplier output clock		24	-	180	MHz
f _{PLL48_OUT}	48 MHz PLL multiplier output clock		-	48	75	MHz
f _{VCO_OUT}	PLL VCO output		100	-	432	MHz
t _{LOCK}	PLL lock time	VCO freq = 100 MHz	75	-	200	116
		VCO freq = 432 MHz	100	-	300	μδ

Table 43. Main PLL characteristics

6.3.16 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibilty to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of – 5 μ A/+0 μ A range), or other functional failure (for example reset, oscillator frequency deviation).

Negative induced leakage current is caused by negative injection and positive induced leakage current by positive injection.

The test results are given in Table 55.

		Functional s			
Symbol	Description	Negative injection	Positive injection	Unit	
	Injected current on BOOT0 pin	- 0	NA		
	Injected current on NRST pin	- 0	NA		
I _{INJ}	Injected current on PA0, PA1, PA2, PA3, PA6, PA7, PB0, PC0, PC1, PC2, PC3, PC4, PC5, PH1, PH2, PH3, PH4, PH5	- 0	NA	mA	
	Injected current on TTa pins: PA4 and PA5	- 0	+5		
	Injected current on any other FT pin	- 5	NA		

Table 55. I/O current injection susceptibility⁽¹⁾

1. NA = not applicable.

Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

Output voltage levels

Unless otherwise specified, the parameters given in *Table 57* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	CMOS port ⁽²⁾	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	I _{IO} = +8 mA 2.7 V ≤V _{DD} ≤3.6 V	V _{DD} - 0.4	-	V
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	TTL port ⁽²⁾	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	I _{IO} =+ 8mA 2.7 V ⊴V _{DD} ⊴3.6 V	2.4	-	V
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +20 mA	-	1.3 ⁽⁴⁾	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	2.7 V ≤V _{DD} ≤3.6 V	V_{DD} -1.3 ⁽⁴⁾	-	v
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +6 mA	-	0.4 ⁽⁴⁾	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	1.8 V ≤V _{DD} ≤3.6 V	V _{DD} -0.4 ⁽⁴⁾	-	v
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +4 mA	-	0.4 ⁽⁵⁾	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	1.7 V ≤V _{DD} ≤3.6V	$V_{DD} - 0.4^{(5)}$	-	v

1. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 15*. and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 15 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

4. Based on characterization data.

5. Guaranteed by design.

Symbol	Parameter	Min	Max	Unit
t _{AF}	Maximum pulse width of spikes that are suppressed by the analog filter	50 ⁽²⁾	260 ⁽³⁾	ns

Table 61. I2C analog filter characteristics⁽¹⁾

- 1. Guaranteed by design.
- 2. Spikes with widths below $t_{AF(min)}$ are filtered.
- 3. Spikes with widths above $t_{AF(max)}$ are not filtered

SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 62* for the SPI interface are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
		Master mode, SPI1/4/5/6, 2.7 V≤V _{DD} ≤3.6 V				45	
		Slave mode,	Receiver	-	-	45	MHz
f _{SCK}	SPI clock frequency	SPI1/4/5/6, 2.7 V≤V _{DD} ≤3.6 V	Transmitter/ full-duplex			38 ⁽²⁾	
""C(SCK)		Master mode, SPI1/2/3/4/5/6, 1.7 V≤V _{DD} ≤3.6 V				22.5	
		Slave mode, SPI1/2/3/4/5/6, 1.7 V≤V _{DD} ≤3.6 V		-	-	22.5	
Duty(SCK)	Duty cycle of SPI clock frequency	Slave mode		30	50	70	%

Table 62. SPI dynamic characteristics⁽¹⁾

STM32F427xx STM32F429xx

Table 65. DAC characteristics (continued)							
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	Comments
t _{WAKEUP} (Wakeup time from off state (Setting the ENx bit in the DAC Control register)	-	-	6.5	10	μs	$C_{LOAD} \le 50$ pF, $R_{LOAD} \ge 5$ k Ω input code between lowest and highest possible ones.
PSRR+	Power supply rejection ratio (to V _{DDA}) (static DC measurement)	-	-	-67	-40	dB	No R _{LOAD} , C _{LOAD} = 50 pF

Table 85. DAC characteristics (continued)

1. V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset OFF).

2. Guaranteed by design.

The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic consumption occurs.

4. Guaranteed by characterization.

Figure 54. 12-bit buffered /non-buffered DAC

1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

	NWAIT timings()/-/			
Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	8T _{HCLK} +1	8T _{HCLK} +2	ns
t _{w(NWE)}	FMC_NWE low time	6T _{HCLK} – 1	6T _{HCLK} +2	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	6T _{HCLK} +1.5	-	ns
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} +1		ns

Table 89. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings^{(1)(2)}

1. C_L = 30 pF.

2. Guaranteed by characterization results.

Symbol	Parameter	Min	Max	Unit
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	0	-	ns
t _{d(CLKL-NWEL)}	FMC_CLK low to FMC_NWE low	-	0	ns
t _{d(CLKH-NWEH)}	FMC_CLK high to FMC_NWE high	T _{HCLK} -0.5	-	ns
t _{d(CLKL-Data)}	FMC_D[15:0] valid data after FMC_CLK low	-	2.5	ns
t _{d(CLKL-NBLL)}	FMC_CLK low to FMC_NBL low	0	-	ns
t _{d(CLKH-NBLH)}	FMC_CLK high to FMC_NBL high	T _{HCLK} -0.5	-	ns
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	4		
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	0		

Table 97. Synchronous non-multiplexed PSRAM write timings⁽¹⁾⁽²⁾ (continued)

1. C_L = 30 pF.

2. Guaranteed by characterization results.

PC Card/CompactFlash controller waveforms and timings

Figure 63 through *Figure 68* represent synchronous waveforms, and *Table 98* and *Table 99* provide the corresponding timings. The results shown in this table are obtained with the following FMC configuration:

- COM.FMC_SetupTime = 0x04;
- COM.FMC_WaitSetupTime = 0x07;
- COM.FMC_HoldSetupTime = 0x04;
- COM.FMC_HiZSetupTime = 0x00;
- ATT.FMC_SetupTime = 0x04;
- ATT.FMC_WaitSetupTime = 0x07;
- ATT.FMC_HoldSetupTime = 0x04;
- ATT.FMC_HiZSetupTime = 0x00;
- IO.FMC_SetupTime = 0x04;
- IO.FMC WaitSetupTime = 0x07;
- IO.FMC_HoldSetupTime = 0x04;
- IO.FMC_HiZSetupTime = 0x00;
- TCLRSetupTime = 0;
- TARSetupTime = 0.

In all timing tables, the T_{HCLK} is the HCLK clock period.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
f _{PP}	Clock frequency in data transfer mode		0		48	MHz	
-	SDIO_CK/fPCLK2 frequency ratio		-	-	8/3	-	
t _{W(CKL)}	Clock low time	fpp =48 MHz	8.5	9	-		
t _{W(CKH)}	Clock high time	fpp =48 MHz	8.3	10	-	115	
CMD, D inp	outs (referenced to CK) in MMC and SI	O HS mode					
t _{ISU}	Input setup time HS	fpp =48 MHz	3.5	-	-	20	
t _{IH}	Input hold time HS	fpp =48 MHz	0	-	-	ns	
CMD, D ou	tputs (referenced to CK) in MMC and S	SD HS mode		•	-		
t _{ov}	Output valid time HS	fpp =48 MHz	-	4.5	7	20	
t _{OH}	Output hold time HS	fpp =48 MHz	3	-	-	115	
CMD, D inp	outs (referenced to CK) in SD default n	node					
tISUD	Input setup time SD	fpp =24 MHz	1.5	-	-		
tIHD	Input hold time SD fpp =24 MHz 0.5 -		-	ns			
CMD, D ou	tputs (referenced to CK) in SD default	mode					
tOVD	Output valid default time SD	fpp =24 MHz	-	4.5	6.5		
tOHD	Output hold default time SD	fpp =24 MHz	3.5	-	-	ns	

Table 108. Dynamic characteristics: SD / MMC characteristics: //	Table 108. D	vnamic charac	cteristics: SD	/ MMC char	acteristics ⁽¹⁾⁽²
--	--------------	---------------	----------------	------------	------------------------------

1. Guaranteed by characterization results.

2. V_{DD} = 2.7 to 3.6 V.

6.3.30 RTC characteristics

Table 109. RTC characteristics

Symbol	Parameter	Conditions	Min	Мах
-	f _{PCLK1} /RTCCLK frequency ratio	Any read/write operation from/to an RTC register	4	-

Device marking for LQFP100

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which depends assembly location, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Figure 105. USB controller configured in dual mode and used in full speed mode

- 1. External voltage regulator only needed when building a $\mathrm{V}_{\mathrm{BUS}}$ powered device.
- The current limiter is required only if the application has to support a V_{BUS} powered device. A basic power switch can be used if 5 V are available on the application board.
- 3. The ID pin is required in dual role only.
- 4. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.

Date	Revision	Changes
		In the whole document, minimum supply voltage changed to 1.7 V when external power supply supervisor is used.
		Added DCMI_VSYNC alternate function on PG9 and updated note 6. in Table 10: STM32F427xx and STM32F429xx pin and ball definitions and Table 12: STM32F427xx and STM32F429xx alternate function mapping. Added note 2.belowFigure 16: STM32F42x UFBGA169 ballout.
		Changed SVGA (800x600) into XGA1024x768) on cover page and in Section 3.10: LCD-TFT controller (available only on STM32F429xx).
		Updated signal corresponding to pin L5 in <i>Figure 12: STM32F42x</i> <i>WLCSP143 ballout</i> .
24 Apr 2014		Added ACC _{HSE} in <i>Table 39: HSE 4-26 MHz oscillator characteristics</i> and ACC _{LSE} in <i>Table 40: LSE oscillator characteristics</i> ($fLSE = 32.768$ <i>kHz</i>).
24-Apr-2014	4	Updated Table 53: ESD absolute maximum ratings.
		Updated V _{IH} in <i>Table 56: I/O static characteristics</i> . Added condition V _{DD} >1.7 V in <i>Table 58: I/O AC characteristics</i> .
		Updated conditions in <i>Table 62: SPI dynamic characteristics</i> .
		Added Z _{DRV} in <i>Table 67: USB OTG full speed electrical characteristics</i>
		Removed note 3 in Table 80: Temperature sensor characteristics.
		Added Figure 82: LQFP100 marking example (package top view),
	Figur Figur LOFF	Figure 85: WLCSP143 marking example (package top view), Figure 88: LQFP144 marking example (package top view), Figure 91: LQFP176 marking (package top view), Figure 94: LQFP208 marking
		example (package top view), Figure 97: UFBGA169 marking example (package top view) and Figure 100: UFBGA176+25 marking example (package top view).
		Added Appendix A: Recommendations when using internal reset OFF. Removed Internal reset OFF hardware connection appendix.

Table 124. Document revision history

