

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	168
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	208-LQFP
Supplier Device Package	208-LQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f429bit7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of figures

Figure 1.	Compatible board design STM32F10xx/STM32F2xx/STM32F4xx	
	for LQFP100 package	17
Figure 2.	Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx	
	for LQFP144 package	18
Figure 3.	Compatible board design between STM32F2xx and STM32F4xx	
	for LQFP176 and UFBGA176 packages	18
Figure 4.	STM32F427xx and STM32F429xx block diagram	19
Figure 5.	STM32F427xx and STM32F429xx Multi-AHB matrix	22
Figure 6.	Power supply supervisor interconnection with internal reset OFF	26
Figure 7.	PDR_ON control with internal reset OFF	27
Figure 8.	Regulator OFF	29
Figure 9.	Startup in regulator OFF: slow V _{DD} slope	
-	- power-down reset risen after V _{CAP 1} /V _{CAP 2} stabilization	30
Figure 10.	Startup in regulator OFF mode: fast V _{DD} slope	
-	- power-down reset risen before V _{CAP 1} /V _{CAP 2} stabilization	30
Figure 11.	STM32F42x LQFP100 pinout	44
Figure 12.	STM32F42x WLCSP143 ballout	
Figure 13.	STM32F42x LQFP144 pinout	46
Figure 14.	STM32F42x LQFP176 pinout	
Figure 15.	STM32F42x LQFP208 pinout	
Figure 16.	STM32F42x UFBGA169 ballout	
Figure 17.	STM32F42x UFBGA176 ballout	
Figure 18.	STM32F42x TFBGA216 ballout	
Figure 19.	Memory map	
Figure 20.	Pin loading conditions	
Figure 21.	Pin input voltage	
Figure 22.	Power supply scheme	
Figure 23.	Current consumption measurement scheme	
Figure 24.	External capacitor C _{FXT}	
Figure 25.	Typical V _{BAT} current consumption (LSE and RTC ON/backup RAM OFF)	
Figure 26.	Typical V _{BAT} current consumption (LSE and RTC ON/backup RAM ON)	
Figure 27.	High-speed external clock source AC timing diagram	
Figure 28.	Low-speed external clock source AC timing diagram	
Figure 29.	Typical application with an 8 MHz crystal	
Figure 30.	Typical application with a 32.768 kHz crystal	
Figure 31.	ACCHSI accuracy versus temperature	
Figure 32.	ACC _{I SI} versus temperature	
Figure 33.	PLL output clock waveforms in center spread mode	
Figure 34.	PLL output clock waveforms in down spread mode	
Figure 35.	FT I/O input characteristics.	
Figure 36.	I/O AC characteristics definition	
Figure 37.	Recommended NRST pin protection	
Figure 38.	SPI timing diagram - slave mode and CPHA = 0	
Figure 39.	SPI timing diagram - slave mode and CPHA = 1	
Figure 40.		
Figure 41.	SPI timing diagram - master mode	1 <u>4</u> 6
Figure 42.	I ² S master timing diagram (Philips protocol) ⁽¹⁾	146
Figure 43.	SAI master timing waveforms	
i iguie 1 0.		

Peripher	als	STM32F427 Vx	STM32F429Vx	STM32F427 Zx	STM32F429Zx	STM32F427 Ax	STM32F429 Ax	STM32F427 Ix	STM32F429lx	STM32F429Bx	STM32F429N		
	SPI / I ² S	4/2 (ful	l duplex) ⁽²⁾				6/2	(full duplex) ⁽²⁾					
	l ² C			•			3						
	USART/ UART						4/4						
Communication interfaces	USB OTG FS						Yes						
Interfaces	USB OTG HS						Yes						
	CAN		2										
	SAI		1										
	SDIO						Yes						
Camera interface	9		Yes										
LCD-TFT (STM3 only)	D-TFT (STM32F429xx /)		Yes	No	Yes	No	Yes	No		Yes			
Chrom-ART Acc	elerator™			Yes									
GPIOs			82		114	130			140 168		58		
12-bit ADC							3						
Number of chanr	nels	16 24											
12-bit DAC Number of chanr	nels					Yes 2							
Maximum CPU f	requency	180 MHz											
Operating voltag	e	1.8 to 3.6 V ⁽³⁾											
Operating tempe	raturos				Ambient te	emperatures: -	40 to +85 °C /-	40 to +105 °C					
	aures				Ju	nction tempera	ture: -40 to + 1	125 °C					
Packages		LQ	FP100		WLCSP143 UF LQFP144 UF			BGA169 UFBGA176 LQFP176		LQFP208	TFBGA216		

Table 2. STM32F427xx and STM32F429xx features and peripheral counts (continued)

 For the LQFP100 package, only FMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package. For UFBGA169 package, only SDRAM, NAND and multiplexed static memories are supported.

2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.

16/238

3. V_{DD}/V_{DDA} minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset OFF).

reached, the option byte loading process starts, either to confirm or modify default BOR thresholds, or to disable BOR permanently. Three BOR thresholds are available through option bytes. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for an external reset circuit.

The device also features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.17.2 Internal reset OFF

This feature is available only on packages featuring the PDR_ON pin. The internal power-on reset (POR) / power-down reset (PDR) circuitry is disabled through the PDR_ON pin.

An external power supply supervisor should monitor V_{DD} and should maintain the device in reset mode as long as V_{DD} is below a specified threshold. PDR_ON should be connected to this external power supply supervisor. Refer to *Figure 6: Power supply supervisor interconnection with internal reset OFF*.

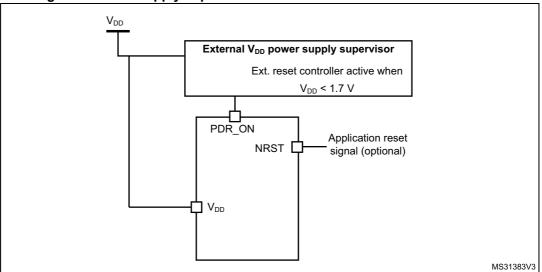


Figure 6. Power supply supervisor interconnection with internal reset OFF

The V_{DD} specified threshold, below which the device must be maintained under reset, is 1.7 V (see *Figure 7*).

A comprehensive set of power-saving mode allows to design low-power applications.

When the internal reset is OFF, the following integrated features are no more supported:

- The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled
- The brownout reset (BOR) circuitry must be disabled
- The embedded programmable voltage detector (PVD) is disabled
- V_{BAT} functionality is no more available and V_{BAT} pin should be connected to V_{DD}.

All packages, except for the LQFP100, allow to disable the internal reset through the PDR_ON signal.

The over-drive mode allows operating at a higher frequency than the normal mode for a given voltage scaling.

In Stop modes

The MR can be configured in two ways during stop mode: MR operates in normal mode (default mode of MR in stop mode) MR operates in under-drive mode (reduced leakage mode).

LPR is used in the Stop modes:

The LP regulator mode is configured by software when entering Stop mode.

Like the MR mode, the LPR can be configured in two ways during stop mode:

- LPR operates in normal mode (default mode when LPR is ON)
- LPR operates in under-drive mode (reduced leakage mode).
- Power-down is used in Standby mode.

The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost.

Refer to *Table 3* for a summary of voltage regulator modes versus device operating modes.

Two external ceramic capacitors should be connected on V_{CAP_1} and V_{CAP_2} pin. Refer to *Figure 22: Power supply scheme* and *Table 19: VCAP1/VCAP2 operating conditions*.

All packages have the regulator ON feature.

Voltage regulator configuration	Run mode	Sleep mode	Stop mode	Standby mode
Normal mode	MR	MR	MR or LPR	-
Over-drive mode ⁽²⁾	MR	MR	-	-
Under-drive mode	-	-	MR or LPR	-
Power-down mode	-	-	-	Yes

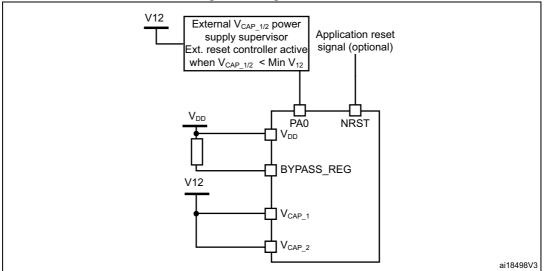
Table 3. Voltage regulator configuration mode versus device operating mode⁽¹⁾

1. C means that the corresponding configuration is not available.

2. The over-drive mode is not available when V_{DD} = 1.7 to 2.1 V.

3.18.2 Regulator OFF

This feature is available only on packages featuring the BYPASS_REG pin. The regulator is disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply externally a V₁₂ voltage source through V_{CAP 1} and V_{CAP 2} pins.


Since the internal voltage scaling is not managed internally, the external voltage value must be aligned with the targeted maximum frequency. Refer to *Table 17: General operating conditions*. The two 2.2 μ F ceramic capacitors should be replaced by two 100 nF decoupling capacitors. Refer to *Figure 22: Power supply scheme*.

When the regulator is OFF, there is no more internal monitoring on V_{12} . An external power supply supervisor should be used to monitor the V_{12} of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V_{12} power domain.

In regulator OFF mode, the following features are no more supported:

- PA0 cannot be used as a GPIO pin since it allows to reset a part of the V₁₂ logic power domain which is not reset by the NRST pin.
- As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection under reset or pre-reset is required.
- The over-drive and under-drive modes are not available.
- The Standby mode is not available.

The following conditions must be respected:

- V_{DD} should always be higher than V_{CAP_1} and V_{CAP_2} to avoid current injection between power domains.
- If the time for V_{CAP_1} and V_{CAP_2} to reach V₁₂ minimum value is faster than the time for V_{DD} to reach 1.7 V, then PA0 should be kept low to cover both conditions: until V_{CAP_1} and V_{CAP_2} reach V₁₂ minimum value and until V_{DD} reaches 1.7 V (see *Figure 9*).
- Otherwise, if the time for V_{CAP_1} and V_{CAP_2} to reach V₁₂ minimum value is slower than the time for V_{DD} to reach 1.7 V, then PA0 could be asserted low externally (see *Figure 10*).
- If V_{CAP_1} and V_{CAP_2} go below V₁₂ minimum value and V_{DD} is higher than 1.7 V, then a reset must be asserted on PA0 pin.

Note: The minimum value of V_{12} depends on the maximum frequency targeted in the application (see Table 17: General operating conditions).

Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes, hours, day, and date.

Like backup SRAM, the RTC and backup registers are supplied through a switch that is powered either from the V_{DD} supply when present or from the V_{BAT} pin.

3.20 Low-power modes

The devices support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

• Stop mode

The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled.

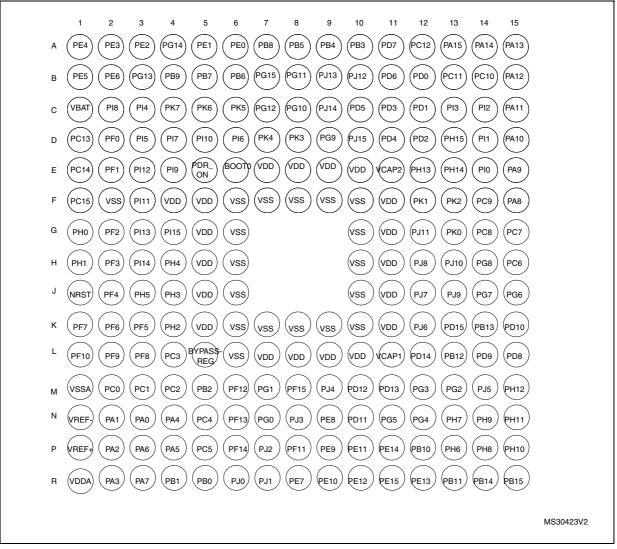
The voltage regulator can be put either in main regulator mode (MR) or in low-power mode (LPR). Both modes can be configured as follows (see *Table 5: Voltage regulator modes in stop mode*):

- Normal mode (default mode when MR or LPR is enabled)
- Under-drive mode.

The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup / tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup).

Voltage regulator configuration	Main regulator (MR)	Low-power regulator (LPR)
Normal mode	MR ON	LPR ON
Under-drive mode	MR in under-drive mode	LPR in under-drive mode

Table 5. Voltage regulator modes in stop mode


• Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected.

The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event occurs.

The standby mode is not supported when the embedded voltage regulator is bypassed and the 1.2 V domain is controlled by an external power.

Figure 18. STM32F42x TFBGA216 ballout

1. The above figure shows the package top view.

			Pin nu	ımber	•								
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
82	115	C9	C12	143	C4	165	C12	PD1	I/O	FT	-	CAN1_TX, FMC_D3, EVENTOUT	-
83	116	В9	D12	144	A3	166	D12	PD2	I/O	FT	-	TIM3_ETR, UART5_RX, SDIO_CMD, DCMI_D11, EVENTOUT	-
84	117	A9	D11	145	B4	167	C11	PD3	I/O	FT	-	SPI2_SCK/I2S2_CK, USART2_CTS, FMC_CLK, DCMI_D5, LCD_G7, EVENTOUT	-
85	118	D8	D10	146	B5	168	D11	PD4	I/O	FT	-	USART2_RTS, FMC_NOE, EVENTOUT	-
86	119	C8	C11	147	A4	169	C10	PD5	I/O	FT	-	USART2_TX, FMC_NWE, EVENTOUT	-
-	120	-	D8	148	-	170	F8	V _{SS}	S		-	-	-
-	121	D6	C8	149	C5	171	E9	V _{DD}	S		-	-	-
87	122	B8	B11	150	F4	172	B11	PD6	I/O	FT	-	SPI3_MOSI/I2S3_SD, SAI1_SD_A, USART2_RX, FMC_NWAIT, DCMI_D10, LCD_B2, EVENTOUT	-
88	123	A8	A11	151	A5	173	A11	PD7	I/O	FT	-	USART2_CK, FMC_NE1/FMC_NCE2, EVENTOUT	-
-	-	-	-	-	-	174	B10	PJ12	I/O	FT	-	LCD_B0, EVENTOUT	-
-	-	-	-	-	-	175	B9	PJ13	I/O	FT	-	LCD_B1, EVENTOUT	-
-	-	-	-	-	-	176	C9	PJ14	I/O	FT	-	LCD_B2, EVENTOUT	-
-	-	-	-	-	-	177	D10	PJ15	I/O	FT	-	LCD_B3, EVENTOUT	-
-	124	NC (2)	C10	152	E5	178	D9	PG9	I/O	FT	-	USART6_RX, FMC_NE2/FMC_NCE3, DCMI_VSYNC ⁽⁸⁾ , EVENTOUT	-

 Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)

DocID024030 Rev 9

Symbol	Deremeter	Conditions	£ (MIL)	VDD:	=3.3 V	VDD	=1.7 V	Unit
Symbol	Parameter	Conditions	f _{HCLK} (MHz) -	I _{DD12}	I _{DD}	I _{DD12}	I _{DD}	
			180	61.5	1.4	-	-	
			168	59.4	1.3	59.4	1.0	
			150	53.9	1.3	53.9	1.0	
			144	49.0	1.3	49.0	1.0	
		All Peripherals enabled	120	38.0	1.2	38.0	0.9	
	Supply current in Sleep mode from V_{12} and	enabled	90	29.3	1.4	29.3	1.1	
			60	20.2	1.2	20.2	0.9	- mA
			30	11.9	1.2	11.9	0.9	
1 /1			25	10.4	1.2	10.4	0.9	
I _{DD12} /I _{DD}			180	14.9	1.4	-	-	
	V_{DD} supply		168	14.0	1.3	14.0	1.0	
			150	12.6	1.3	12.6	1.0	
			144	11.5	1.3	11.5	1.0	
		All Peripherals disabled	120	8.7	1.2	8.7	0.9	
			90	7.1	1.4	7.1	1.1	-
			60	5.0	1.2	5.0	0.9	
			30	3.1	1.2	3.1	0.9	
			25	2.8	1.2	2.8	0.9	

Table 33. Tyical of	urrent consumption in Sleep mode, regulator OFF ⁽¹⁾)

1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC, or DAC) is not included.

				,		
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
I _{DD(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V_{DD}	VCO freq = 100 MHz VCO freq = 432 MHz	0.15 0.45	-	0.40 0.75	mA
I _{DDA(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V_{DDA}	VCO freq = 100 MHz VCO freq = 432 MHz	0.30 0.55	-	0.40 0.85	mA

Table 44. PLLI2S (audio PLL) characteristics (continued)

1. Take care of using the appropriate division factor M to have the specified PLL input clock values.

2. Guaranteed by design.

3. Value given with main PLL running.

4. Guaranteed by characterization results.

Table 45. PLLISAI (audio and LCD-TFT PLL) characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{PLLSAI_IN}	PLLSAI input clock ⁽¹⁾			0.95 ⁽²⁾	1	2.10	MHz
f _{PLLSAI_OUT}	PLLSAI multiplier output clock			-	-	216	MHz
f _{VCO_OUT}	PLLSAI VCO output			100	-	432	MHz
+	PLLSAI lock time	VCO freq = 100 MHz	2	75	-	200	
t _{LOCK}		VCO freq = 432 MHz	2	100	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	300	μs
		Cycle to cycle at	RMS	-	90	-	
	Main SAI clock jitter	12.288 MHz on 48KHz period, N=432, R=5	peak to peak	-	±280	-	ps
Jitter ⁽³⁾		Average frequency of 12.288 MHz N = 432, R = 5 on 1000 samples	-	90	-	ps	
	FS clock jitter	Cycle to cycle at 48 on 1000 samples	KHz	-	400	-	ps
I _{DD(PLLSAI)} ⁽⁴⁾	PLLSAI power consumption on V_{DD}	VCO freq = 100 MHz VCO freq = 432 MHz		0.15 0.45	-	0.40 0.75	mA
I _{DDA(PLLSAI)} ⁽⁴⁾	PLLSAI power consumption on V_{DDA}	VCO freq = 100 MHz VCO freq = 432 MHz		0.30 0.55	-	0.40 0.85	mA

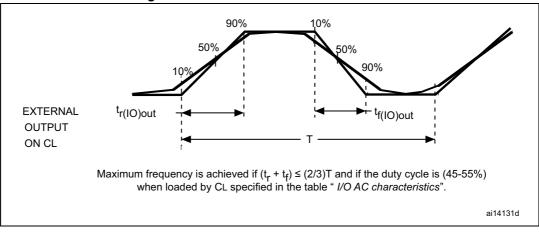
1. Take care of using the appropriate division factor M to have the specified PLL input clock values.

2. Guaranteed by design.

3. Value given with main PLL running.

4. Guaranteed by characterization results.

OSPEEDRy [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
			$C_L = 30 \text{ pF}, V_{DD} \ge 2.7 \text{ V}$	-	-	100 ⁽⁴⁾	
		Maximum frequency ⁽³⁾	C _L = 30 pF, V _{DD} ≥ 1.8 V	-	-	50	
	f		C _L = 30 pF, V _{DD} ≥ 1.7 V	-	-	42.5	MHz
	f _{max(IO)out}		C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	180 ⁽⁴⁾	
			C _L = 10 pF, V _{DD} ≥ 1.8 V	-	-	100	
11			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	72.5	
		Output high to low level fall	C _L = 30 pF, V _{DD} ≥ 2.7 V	-	-	4	- ns
			C _L = 30 pF, V _{DD} ≥1.8 V	-	-	6	
	t _{f(IO)out} /		C _L = 30 pF, V _{DD} ≥1.7 V	-	-	7	
	t _{r(IO)out}	time and output low to high level rise time	C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	2.5	
			C _L = 10 pF, V _{DD} ≥1.8 V	-	-	3.5	
			C _L = 10 pF, V _{DD} ≥1.7 V	V _{DD} ≥1.7 V		4	
-	tEXTIpw	Pulse width of external signals detected by the EXTI controller	-	10	-	-	ns


Table 58. I/O AC characteristics⁽¹⁾⁽²⁾ (continued)

1. Guaranteed by design.

2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of the GPIOx_SPEEDR GPIO port output speed register.

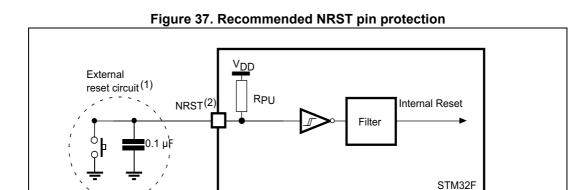
3. The maximum frequency is defined in *Figure 36*.

4. For maximum frequencies above 50 MHz and V_{DD} > 2.4 V, the compensation cell should be used.

Figure 36. I/O AC characteristics definition

6.3.18 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 56: I/O static characteristics*).


Unless otherwise specified, the parameters given in *Table 59* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{PU}	Weak pull-up equivalent resistor ⁽¹⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ
V _{F(NRST)} ⁽²⁾	NRST Input filtered pulse		-	-	100	ns
V _{NF(NRST)} ⁽²⁾	NRST Input not filtered pulse	V _{DD} > 2.7 V	300	-	-	ns
T _{NRST_OUT}	Generated reset pulse duration	Internal Reset source	20	-	-	μs

Table 59. NRST pin characteristics

1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order).

2. Guaranteed by design.

1. The reset network protects the device against parasitic resets.

- 2. The external capacitor must be placed as close as possible to the device.
- 3. The user must ensure that the level on the NRST pin can go below the $V_{IL(NRST)}$ max level specified in *Table 59*. Otherwise the reset is not taken into account by the device.

ai14132c

6.3.19 TIM timer characteristics

The parameters given in Table 60 are guaranteed by design.

Refer to Section 6.3.17: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions ⁽³⁾	Min	Max	Unit	
		AHB/APBx prescaler=1 or 2 or 4, f _{TIMxCLK} = 180 MHz	1	-	t _{TIMxCLK}	
,		AHB/APBx prescaler>4, f _{TIMxCLK} = 90 MHz	1	-	t _{TIMxCLK}	
f _{EXT}	Timer external clock frequency on CH1 to CH4	f _{TIMxCLK} = 180 MHz	0	f _{TIMxCLK} /2	MHz	
Res _{TIM}	Timer resolution		-	16/32	bit	
t _{MAX_COUNT}	Maximum possible count with 32-bit counter		-	65536 × 65536	t _{TIMxCLK}	

Table 60	TIMx	characteristics ⁽¹⁾⁽²⁾
----------	------	-----------------------------------

1. TIMx is used as a general term to refer to the TIM1 to TIM12 timers.

2. Guaranteed by design.

 The maximum timer frequency on APB1 or APB2 is up to 180 MHz, by setting the TIMPRE bit in the RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCKL, otherwise TIMxCLK = 4x PCLKx.

6.3.20 Communications interfaces

I²C interface characteristics

The I^2C interface meets the timings requirements of the I^2C -bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s.

The I²C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to RM0090 reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present. Refer to Section 6.3.17: I/O port characteristics for more details on the I²C I/O characteristics.

All I²C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:

r							
	Symbol	Parameter	Min	Мах	Unit		
	t _{AF}	t _{AF} Maximum pulse width of spikes that are suppressed by the analog filter		260 ⁽³⁾	ns		

Table 61. I2C analog filter characteristics⁽¹⁾

- 1. Guaranteed by design.
- 2. Spikes with widths below $t_{AF(min)}$ are filtered.
- 3. Spikes with widths above $t_{AF(max)}$ are not filtered

SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 62* for the SPI interface are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
		Master mode, SPI1/4/5/6, 2.7 V≤V _{DD} ≤3.6 V				45	
f _{SCK} 1/t _{c(SCK)}		Slave mode,	Receiver	-	-	45	MHz
	SPI clock frequency	SPI1/4/5/6, 2.7 V≤V _{DD} ≤3.6 V	Transmitter/ full-duplex			38 ⁽²⁾	
"C(SCK)		Master mode, SPI1/2/3/4/5/6, 1.7 V≤V _{DD} ≤3.6 V				22.5	
		Slave mode, SPI1/2/3/4/5/6, 1.7 V≤V _{DD} ≤3.6 V		-	-	22.5	
Duty(SCK)	Duty cycle of SPI clock frequency	Slave mode		30	50	70	%

Table 62. SPI dynamic characteristics⁽¹⁾

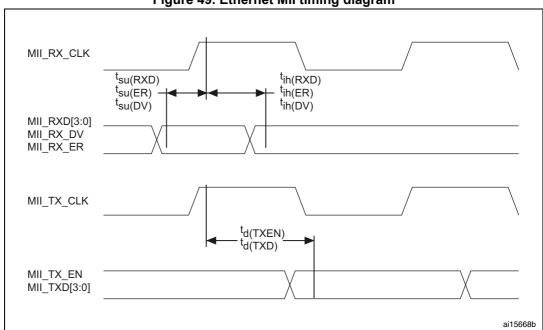


Figure 49. Ethernet MII timing diagram

Table 73. Dynamics characteristics: Ethernet MAC signals for MII ⁽¹⁾

Symbol	Parameter	Condition	Min	Тур	Max	Unit
t _{su(RXD)}	Receive data setup time		9	-	-	
t _{ih(RXD)}	Receive data hold time		10	-	-	
t _{su(DV)}	Data valid setup time	1.71 V < V _{DD} < 3.6 V	9	-	-	
t _{ih(DV)}	Data valid hold time	1.71 V < V _{DD} < 3.0 V	8	-	-	
t _{su(ER)}	Error setup time		6	-	-	
t _{ih(ER)}	Error hold time		8	-	-	ns
+	Transmit an able welled delay time	2.7 V < V _{DD} < 3.6 V	8	10	14	
t _{d(TXEN)}	Transmit enable valid delay time	1.71 V < V _{DD} < 3.6 V	8	10	16	
+	Transmit data valid delay time	2.7 V < V _{DD} < 3.6 V	7.5	10	15	
t _{d(TXD)}	Transmit uata valiu uelay time	1.71 V < V _{DD} < 3.6 V	7.5	10	17	

1. Guaranteed by characterization results.

CAN (controller area network) interface

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (CANx_TX and CANx_RX).

Symbol	Parameter	Min	Max	Unit		
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	0	-	ns		
t _{d(CLKL-NWEL)}	FMC_CLK low to FMC_NWE low	-	0	ns		
t _{d(CLKH-NWEH)}	FMC_CLK high to FMC_NWE high	T _{HCLK} -0.5	-	ns		
t _{d(CLKL-Data)}	FMC_D[15:0] valid data after FMC_CLK low	-	2.5	ns		
t _{d(CLKL-NBLL)}	FMC_CLK low to FMC_NBL low	0	-	ns		
t _{d(CLKH-NBLH)}	FMC_CLK high to FMC_NBL high	T _{HCLK} -0.5	-	ns		
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	4				
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	0				

Table 97. Synchronous non-multiplexed PSRAM write timings⁽¹⁾⁽²⁾ (continued)

1. C_L = 30 pF.

2. Guaranteed by characterization results.

PC Card/CompactFlash controller waveforms and timings

Figure 63 through *Figure 68* represent synchronous waveforms, and *Table 98* and *Table 99* provide the corresponding timings. The results shown in this table are obtained with the following FMC configuration:

- COM.FMC_SetupTime = 0x04;
- COM.FMC_WaitSetupTime = 0x07;
- COM.FMC_HoldSetupTime = 0x04;
- COM.FMC_HiZSetupTime = 0x00;
- ATT.FMC_SetupTime = 0x04;
- ATT.FMC_WaitSetupTime = 0x07;
- ATT.FMC_HoldSetupTime = 0x04;
- ATT.FMC_HiZSetupTime = 0x00;
- IO.FMC_SetupTime = 0x04;
- IO.FMC WaitSetupTime = 0x07;
- IO.FMC_HoldSetupTime = 0x04;
- IO.FMC_HiZSetupTime = 0x00;
- TCLRSetupTime = 0;
- TARSetupTime = 0.

In all timing tables, the T_{HCLK} is the HCLK clock period.

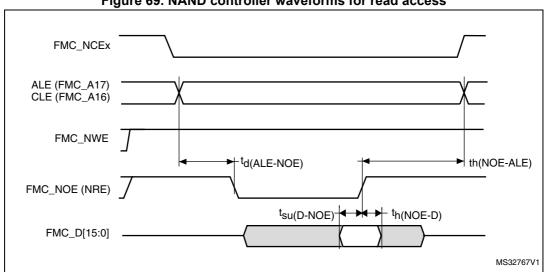
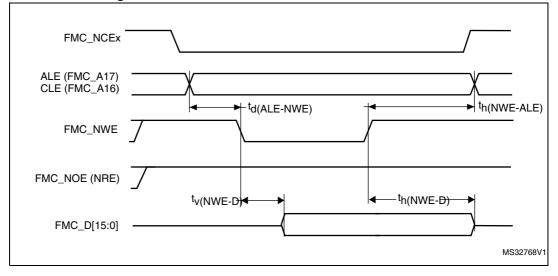
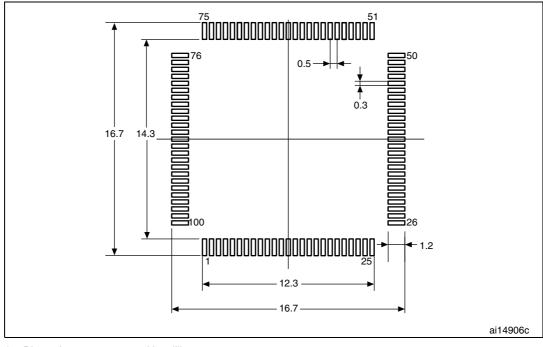
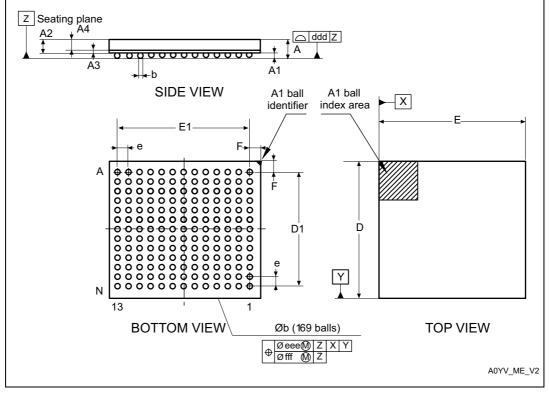




Figure 69. NAND controller waveforms for read access

Figure 70. NAND controller waveforms for write access


Figure 81. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat recommended footprint

1. Dimensions are expressed in millimeters.

7.6 UFBGA169 package information

Figure 95. UFBGA169 - 169-ball 7 x 7 mm 0.50 mm pitch, ultra fine pitch ball grid array package outline

1. Drawing is not to scale.

Table 116. UFBGA169 - 169-ball 7 x 7 mm 0.50 mm pitch, ultra fine pitch ball grid arraypackage mechanical data

Symbol		millimeters	ters		inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Мах	
А	0.460	0.530	0.600	0.0181	0.0209	0.0236	
A1	0.050	0.080	0.110	0.0020	0.0031	0.0043	
A2	0.400	0.450	0.500	0.0157	0.0177	0.0197	
A3	-	0.130	-	-	0.0051	-	
A4	0.270	0.320	0.370	0.0106	0.0126	0.0146	
b	0.230	0.280	0.330	0.0091	0.0110	0.0130	
D	6.950	7.000	7.050	0.2736	0.2756	0.2776	
D1	5.950	6.000	6.050	0.2343	0.2362	0.2382	
E	6.950	7.000	7.050	0.2736	0.2756	0.2776	
E1	5.950	6.000	6.050	0.2343	0.2362	0.2382	
е	-	0.500	-	-	0.0197	-	

ultra fine pitch ball grid array package mechanical data (continued)								
Symbol	millimeters			inches ⁽¹⁾				
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.		
eee	-	-	0.150	-	-	0.0059		
fff	-	-	0.050	-	-	0.0020		

Table 118. UFBGA176+25 - ball, 10 x 10 mm, 0.65 mm pitch,

Values in inches are converted from mm and rounded to 4 decimal digits. 1.

Figure 99. UFBGA176+25-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array package recommended footprint

000000000000000000000000000000000000	
	A0E7_FP_V1

Table 119. UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA)

Dimension	Recommended values
Pitch	0.65 mm
Dpad	0.300 mm
Dsm	0.400 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.300 mm
Stencil thickness	Between 0.100 mm and 0.125 mm
Pad trace width	0.100 mm

