




Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                              |
|----------------------------|-------------------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M4                                                                     |
| Core Size                  | 32-Bit Single-Core                                                                  |
| Speed                      | 180MHz                                                                              |
| Connectivity               | CANbus, EBI/EMI, Ethernet, I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART, USB OTG |
| Peripherals                | Brown-out Detect/Reset, DMA, I <sup>2</sup> S, LCD, POR, PWM, WDT                   |
| Number of I/O              | 140                                                                                 |
| Program Memory Size        | 2MB (2M x 8)                                                                        |
| Program Memory Type        | FLASH                                                                               |
| EEPROM Size                | -                                                                                   |
| RAM Size                   | 256K × 8                                                                            |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                                         |
| Data Converters            | A/D 24x12b; D/A 2x12b                                                               |
| Oscillator Type            | Internal                                                                            |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                   |
| Mounting Type              | Surface Mount                                                                       |
| Package / Case             | 201-UFBGA                                                                           |
| Supplier Device Package    | 176+25UFBGA (10x10)                                                                 |
| Purchase URL               | https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f429iih6tr             |
|                            |                                                                                     |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

|             | Table 1. Device Summary                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| Reference   | Part number                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |  |
| STM32F427xx | STM32F427VG, STM32F427ZG, STM32F427IG, STM32F427AG, STM32F427VI, STM32F427ZI, STM32F427II, STM32F427AI                                                                                                                               |  |  |  |  |  |  |  |  |  |  |  |
| STM32F429xx | STM32F429VG, STM32F429ZG, STM32F429IG, STM32F429BG, STM32F429NG,<br>STM32F429AG, STM32F429VI, STM32F429ZI, STM32F429II,, STM32F429BI,<br>STM32F429NI,STM32F429AI, STM32F429VE, STM32F429ZE, STM32F429IE, STM32F429BE,<br>STM32F429NE |  |  |  |  |  |  |  |  |  |  |  |

### Table 1. Device summary



| Figure 90.  | LQFP176 - 176-pin, 24 x 24 mm low profile quad flat recommended footprint    | . 210 |
|-------------|------------------------------------------------------------------------------|-------|
| Figure 91.  | LQFP176 marking (package top view)                                           | . 211 |
| Figure 92.  | LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package outline          | . 212 |
| Figure 93.  | LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package                  |       |
| 0           | recommended footprint.                                                       | . 214 |
| Figure 94.  | LQFP208 marking example (package top view)                                   |       |
| Figure 95.  | UFBGA169 - 169-ball 7 x 7 mm 0.50 mm pitch, ultra fine pitch ball grid array |       |
|             | package outline                                                              | . 216 |
| Figure 96.  | UFBGA169 - 169-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch               |       |
| U           | ball grid array recommended footprint                                        | . 217 |
| Figure 97.  | UFBGA169 marking example (package top view)                                  |       |
| Figure 98.  | UFBGA176+25 - ball 10 x 10 mm, 0.65 mm pitch ultra thin fine pitch           |       |
| -           | ball grid array package outline                                              | . 219 |
| Figure 99.  | UFBGA176+25-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch                |       |
|             | ball grid array package recommended footprint                                | . 220 |
| Figure 100. | UFBGA176+25 marking example (package top view)                               |       |
| Figure 101. | TFBGA216 - 216 ball 13 × 13 mm 0.8 mm pitch thin fine pitch                  |       |
| -           | ball grid array package outline                                              | . 222 |
| Figure 102. | TFBGA176 marking example (package top view)                                  |       |
| Figure 103. | USB controller configured as peripheral-only and used                        |       |
|             | in Full speed mode                                                           | . 227 |
| Figure 104. | USB controller configured as host-only and used in full speed mode           | . 227 |
| Figure 105. | USB controller configured in dual mode and used in full speed mode           | . 228 |
| Figure 106. | USB controller configured as peripheral, host, or dual-mode                  |       |
| -           | and used in high speed mode                                                  | . 229 |
| Figure 107. | MII mode using a 25 MHz crystal                                              | . 230 |
|             | RMII with a 50 MHz oscillator                                                |       |
|             | RMII with a 25 MHz crystal and PHY with PLL                                  |       |



## 2.1 Full compatibility throughout the family

The STM32F427xx and STM32F429xx devices are part of the STM32F4 family. They are fully pin-to-pin, software and feature compatible with the STM32F2xx devices, allowing the user to try different memory densities, peripherals, and performances (FPU, higher frequency) for a greater degree of freedom during the development cycle.

The STM32F427xx and STM32F429xx devices maintain a close compatibility with the whole STM32F10xx family. All functional pins are pin-to-pin compatible. The STM32F427xx and STM32F429xx, however, are not drop-in replacements for the STM32F10xx devices: the two families do not have the same power scheme, and so their power pins are different. Nonetheless, transition from the STM32F10xx to the STM32F42x family remains simple as only a few pins are impacted.

*Figure 1*, *Figure 2*, and *Figure 3*, give compatible board designs between the STM32F4xx, STM32F2xx, and STM32F10xx families.

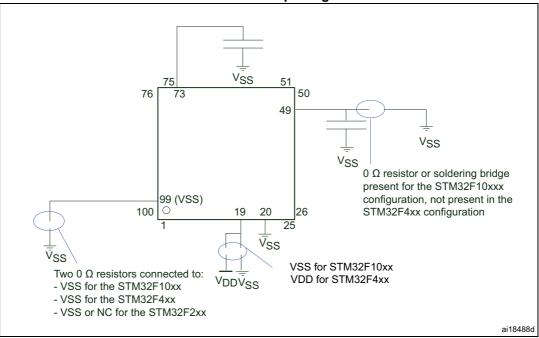



Figure 1. Compatible board design STM32F10xx/STM32F2xx/STM32F4xx for LQFP100 package



detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing to increase the frequency up to 180 MHz. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails).

Several prescalers allow the configuration of the two AHB buses, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB buses is 180 MHz while the maximum frequency of the high-speed APB domains is 90 MHz. The maximum allowed frequency of the low-speed APB domain is 45 MHz.

The devices embed a dedicated PLL (PLLI2S) and PLLSAI which allows to achieve audio class performance. In this case, the  $I^2S$  master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz.

## 3.15 Boot modes

At startup, boot pins are used to select one out of three boot options:

- Boot from user Flash
- Boot from system memory
- Boot from embedded SRAM

The boot loader is located in system memory. It is used to reprogram the Flash memory through a serial interface. Refer to application note AN2606 for details.

## 3.16 Power supply schemes

- $V_{DD}$  = 1.7 to 3.6 V: external power supply for I/Os and the internal regulator (when enabled), provided externally through V<sub>DD</sub> pins.
- V<sub>SSA</sub>, V<sub>DDA</sub> = 1.7 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL. V<sub>DDA</sub> and V<sub>SSA</sub> must be connected to V<sub>DD</sub> and V<sub>SS</sub>, respectively.
- V<sub>BAT</sub> = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V<sub>DD</sub> is not present.

Note: V<sub>DD</sub>/V<sub>DDA</sub> minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset OFF). Refer to Table 3: Voltage regulator configuration mode versus device operating mode to identify the packages supporting this option.

## 3.17 **Power supply supervisor**

### 3.17.1 Internal reset ON

On packages embedding the PDR\_ON pin, the power supply supervisor is enabled by holding PDR\_ON high. On the other package, the power supply supervisor is always enabled.

The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is



DocID024030 Rev 9

Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes, hours, day, and date.

Like backup SRAM, the RTC and backup registers are supplied through a switch that is powered either from the  $V_{DD}$  supply when present or from the  $V_{BAT}$  pin.

## 3.20 Low-power modes

The devices support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

### Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

### • Stop mode

The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled.

The voltage regulator can be put either in main regulator mode (MR) or in low-power mode (LPR). Both modes can be configured as follows (see *Table 5: Voltage regulator modes in stop mode*):

- Normal mode (default mode when MR or LPR is enabled)
- Under-drive mode.

The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup / tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup).

| Voltage regulator<br>configuration | Main regulator (MR)    | Low-power regulator (LPR) |
|------------------------------------|------------------------|---------------------------|
| Normal mode                        | MR ON                  | LPR ON                    |
| Under-drive mode                   | MR in under-drive mode | LPR in under-drive mode   |

### Table 5. Voltage regulator modes in stop mode

### • Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected.

The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event occurs.

The standby mode is not supported when the embedded voltage regulator is bypassed and the 1.2 V domain is controlled by an external power.



# 3.26 Inter-integrated sound (I<sup>2</sup>S)

Two standard I<sup>2</sup>S interfaces (multiplexed with SPI2 and SPI3) are available. They can be operated in master or slave mode, in full duplex and simplex communication modes, and can be configured to operate with a 16-/32-bit resolution as an input or output channel. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I<sup>2</sup>S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

All I2Sx can be served by the DMA controller.

Note: For I2S2 full-duplex mode, I2S2\_CK and I2S2\_WS signals can be used only on GPIO Port B and GPIO Port D.

# 3.27 Serial Audio interface (SAI1)

The serial audio interface (SAI1) is based on two independent audio sub-blocks which can operate as transmitter or receiver with their FIFO. Many audio protocols are supported by each block: I2S standards, LSB or MSB-justified, PCM/DSP, TDM, AC'97 and SPDIF output, supporting audio sampling frequencies from 8 kHz up to 192 kHz. Both sub-blocks can be configured in master or in slave mode.

In master mode, the master clock can be output to the external DAC/CODEC at 256 times of the sampling frequency.

The two sub-blocks can be configured in synchronous mode when full-duplex mode is required.

SAI1 can be served by the DMA controller.

## 3.28 Audio PLL (PLLI2S)

The devices feature an additional dedicated PLL for audio I<sup>2</sup>S and SAI applications. It allows to achieve error-free I<sup>2</sup>S sampling clock accuracy without compromising on the CPU performance, while using USB peripherals.

The PLLI2S configuration can be modified to manage an I<sup>2</sup>S/SAI sample rate change without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.

The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 KHz to 192 KHz.

In addition to the audio PLL, a master clock input pin can be used to synchronize the I<sup>2</sup>S/SAI flow with an external PLL (or Codec output).

# 3.29 Audio and LCD PLL(PLLSAI)

An additional PLL dedicated to audio and LCD-TFT is used for SAI1 peripheral in case the PLLI2S is programmed to achieve another audio sampling frequency (49.152 MHz or 11.2896 MHz) and the audio application requires both sampling frequencies simultaneously.

The PLLSAI is also used to generate the LCD-TFT clock.



FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). 256 bytes of SRAM are allocated for each CAN.

# 3.33 Universal serial bus on-the-go full-speed (OTG\_FS)

The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The major features are:

- Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 4 bidirectional endpoints
- 8 host channels with periodic OUT support
- HNP/SNP/IP inside (no need for any external resistor)
- For OTG/Host modes, a power switch is needed in case bus-powered devices are connected

## 3.34 Universal serial bus on-the-go high-speed (OTG\_HS)

The devices embed a USB OTG high-speed (up to 480 Mb/s) device/host/OTG peripheral. The USB OTG HS supports both full-speed and high-speed operations. It integrates the transceivers for full-speed operation (12 MB/s) and features a UTMI low-pin interface (ULPI) for high-speed operation (480 MB/s). When using the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required.

The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator.

The major features are:

- Combined Rx and Tx FIFO size of 1 Kbit × 35 with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 6 bidirectional endpoints
- 12 host channels with periodic OUT support
- Internal FS OTG PHY support
- External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the 60 MHz output.
- Internal USB DMA
- HNP/SNP/IP inside (no need for any external resistor)
- for OTG/Host modes, a power switch is needed in case bus-powered devices are connected



## 3.39 Temperature sensor

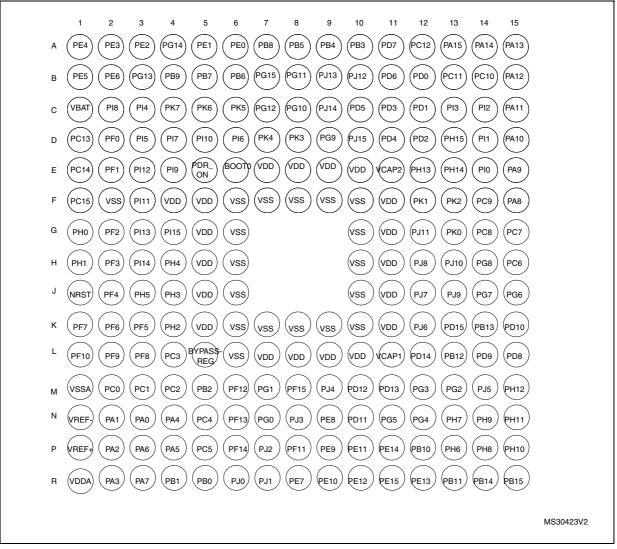
The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally connected to the same input channel as V<sub>BAT</sub>, ADC1\_IN18, which is used to convert the sensor output voltage into a digital value. When the temperature sensor and V<sub>BAT</sub> conversion are enabled at the same time, only V<sub>BAT</sub> conversion is performed.

As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used.

# 3.40 Digital-to-analog converter (DAC)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs.

This dual digital Interface supports the following features:


- two DAC converters: one for each output channel
- 8-bit or 10-bit monotonic output
- left or right data alignment in 12-bit mode
- synchronized update capability
- noise-wave generation
- triangular-wave generation
- dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- external triggers for conversion
- input voltage reference V<sub>REF+</sub>

Eight DAC trigger inputs are used in the device. The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams.

# 3.41 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.



### Figure 18. STM32F42x TFBGA216 ballout

1. The above figure shows the package top view.



| Table 10. STM32F427xx and S Pin number |         |          |    |         |          | anu S   | ι ινισζρ429XX μ |                                                      |          |                 |       | )                                                                                                     |                            |
|----------------------------------------|---------|----------|----|---------|----------|---------|-----------------|------------------------------------------------------|----------|-----------------|-------|-------------------------------------------------------------------------------------------------------|----------------------------|
| LQFP100                                | LQFP144 | UFBGA169 |    | LQFP176 | WLCSP143 | LQFP208 | TFBGA216        | Pin name<br>(function after<br>reset) <sup>(1)</sup> | Pin type | I / O structure | Notes | Alternate functions                                                                                   | Additional<br>functions    |
| 22                                     | 33      | J4       | R1 | 39      | L10      | 42      | R1              | V <sub>DDA</sub>                                     | S        | -               | -     | -                                                                                                     | -                          |
| 23                                     | 34      | J5       | N3 | 40      | K9       | 43      | N3              | PA0-WKUP<br>(PA0)                                    | I/O      | FT              | (6)   | TIM2_CH1/TIM2_ETR,<br>TIM5_CH1, TIM8_ETR,<br>USART2_CTS,<br>UART4_TX,<br>ETH_MII_CRS,<br>EVENTOUT     | ADC123_<br>IN0/WKUP<br>(5) |
| 24                                     | 35      | K1       | N2 | 41      | K8       | 44      | N2              | PA1                                                  | I/O      | FT              | (5)   | TIM2_CH2, TIM5_CH2,<br>USART2_RTS,<br>UART4_RX,<br>ETH_MII_RX_CLK/ETH<br>_RMII_REF_CLK,<br>EVENTOUT   | ADC123_<br>IN1             |
| 25                                     | 36      | K2       | P2 | 42      | L9       | 45      | P2              | PA2                                                  | I/O      | FT              | (5)   | TIM2_CH3, TIM5_CH3,<br>TIM9_CH1,<br>USART2_TX,<br>ETH_MDIO,<br>EVENTOUT                               | ADC123_<br>IN2             |
| -                                      | -       | L2       | F4 | 43      | -        | 46      | K4              | PH2                                                  | I/O      | FT              | -     | ETH_MII_CRS,<br>FMC_SDCKE0,<br>LCD_R0, EVENTOUT                                                       | -                          |
| -                                      | _       | L1       | G4 | 44      | -        | 47      | J4              | PH3                                                  | I/O      | FT              | -     | ETH_MII_COL,<br>FMC_SDNE0, LCD_R1,<br>EVENTOUT                                                        | -                          |
| -                                      | _       | M2       | H4 | 45      | -        | 48      | H4              | PH4                                                  | I/O      | FT              | -     | I2C2_SCL,<br>OTG_HS_ULPI_NXT,<br>EVENTOUT                                                             | -                          |
| -                                      | -       | L3       | J4 | 46      | -        | 49      | J3              | PH5                                                  | I/O      | FT              | -     | I2C2_SDA, SPI5_NSS,<br>FMC_SDNWE,<br>EVENTOUT                                                         | -                          |
| 26                                     | 37      | КЗ       | R2 | 47      | M11      | 50      | R2              | PA3                                                  | I/O      | FT              | (5)   | TIM2_CH4, TIM5_CH4,<br>TIM9_CH2,<br>USART2_RX,<br>OTG_HS_ULPI_D0,<br>ETH_MII_COL,<br>LCD_B5, EVENTOUT | ADC123_<br>IN3             |
| 27                                     | 38      | -        | -  |         | -        | 51      | K6              | V <sub>SS</sub>                                      | S        | -               | -     | -                                                                                                     | -                          |

### Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)

| Pin number |         |           |          |         |          |         |          |                                                      |          |                 |       |                                                                                               |                         |
|------------|---------|-----------|----------|---------|----------|---------|----------|------------------------------------------------------|----------|-----------------|-------|-----------------------------------------------------------------------------------------------|-------------------------|
| LQFP100    | LQFP144 | UFBGA169  | UFBGA176 | LQFP176 | WLCSP143 | LQFP208 | TFBGA216 | Pin name<br>(function after<br>reset) <sup>(1)</sup> | Pin type | I / O structure | Notes | Alternate functions                                                                           | Additional<br>functions |
| 82         | 115     | C9        | C12      | 143     | C4       | 165     | C12      | PD1                                                  | I/O      | FT              | -     | CAN1_TX, FMC_D3,<br>EVENTOUT                                                                  | -                       |
| 83         | 116     | В9        | D12      | 144     | A3       | 166     | D12      | PD2                                                  | I/O      | FT              | -     | TIM3_ETR,<br>UART5_RX,<br>SDIO_CMD,<br>DCMI_D11,<br>EVENTOUT                                  | -                       |
| 84         | 117     | A9        | D11      | 145     | B4       | 167     | C11      | PD3                                                  | I/O      | FT              | -     | SPI2_SCK/I2S2_CK,<br>USART2_CTS,<br>FMC_CLK, DCMI_D5,<br>LCD_G7, EVENTOUT                     | -                       |
| 85         | 118     | D8        | D10      | 146     | B5       | 168     | D11      | PD4                                                  | I/O      | FT              | -     | USART2_RTS,<br>FMC_NOE,<br>EVENTOUT                                                           | -                       |
| 86         | 119     | C8        | C11      | 147     | A4       | 169     | C10      | PD5                                                  | I/O      | FT              | -     | USART2_TX,<br>FMC_NWE,<br>EVENTOUT                                                            | -                       |
| -          | 120     | -         | D8       | 148     | -        | 170     | F8       | V <sub>SS</sub>                                      | S        |                 | -     | -                                                                                             | -                       |
| -          | 121     | D6        | C8       | 149     | C5       | 171     | E9       | V <sub>DD</sub>                                      | S        |                 | -     | -                                                                                             | -                       |
| 87         | 122     | B8        | B11      | 150     | F4       | 172     | B11      | PD6                                                  | I/O      | FT              | -     | SPI3_MOSI/I2S3_SD,<br>SAI1_SD_A,<br>USART2_RX,<br>FMC_NWAIT,<br>DCMI_D10, LCD_B2,<br>EVENTOUT | -                       |
| 88         | 123     | A8        | A11      | 151     | A5       | 173     | A11      | PD7                                                  | I/O      | FT              | -     | USART2_CK,<br>FMC_NE1/FMC_NCE2,<br>EVENTOUT                                                   | -                       |
| -          | -       | -         | -        | -       | -        | 174     | B10      | PJ12                                                 | I/O      | FT              | -     | LCD_B0, EVENTOUT                                                                              | -                       |
| -          | -       | -         | -        | -       | -        | 175     | B9       | PJ13                                                 | I/O      | FT              | -     | LCD_B1, EVENTOUT                                                                              | -                       |
| -          | -       | -         | -        | -       | -        | 176     | C9       | PJ14                                                 | I/O      | FT              | -     | LCD_B2, EVENTOUT                                                                              | -                       |
| -          | -       | -         | -        | -       | -        | 177     | D10      | PJ15                                                 | I/O      | FT              | -     | LCD_B3, EVENTOUT                                                                              | -                       |
| -          | 124     | NC<br>(2) | C10      | 152     | E5       | 178     | D9       | PG9                                                  | I/O      | FT              | -     | USART6_RX,<br>FMC_NE2/FMC_NCE3,<br>DCMI_VSYNC <sup>(8)</sup> ,<br>EVENTOUT                    | -                       |

 Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)

DocID024030 Rev 9



| Symbol                                                  | Parameter                                                         | Conditions <sup>(1)</sup>            | Min   | Тур                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Мах                       | Unit |  |
|---------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------|--|
|                                                         | Input voltage on RST and FT                                       | 2 V ≤V <sub>DD</sub> ≤3.6 V          | - 0.3 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.5                       |      |  |
| Symbol<br>V <sub>IN</sub><br>P <sub>D</sub><br>TA<br>TJ | pins <sup>(7)</sup>                                               | V <sub>DD</sub> ≤2 V                 | - 0.3 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.2                       |      |  |
|                                                         | Input voltage on TTa pins                                         |                                      | - 0.3 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V <sub>DDA</sub> +<br>0.3 | V    |  |
|                                                         | Input voltage on BOOT0 pin                                        |                                      | 0     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                         |      |  |
|                                                         |                                                                   | LQFP100                              | -     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 465                       |      |  |
|                                                         |                                                                   | WLCSP143                             | -     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 641                       |      |  |
|                                                         | Power dissipation at $T_A = 85 \degree C$                         | LQFP144                              | -     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500                       |      |  |
| P                                                       |                                                                   | UFBGA169                             | -     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 385                       |      |  |
| PD                                                      | for suffix 6 or $T_A = 105 \degree C$ for suffix 7 <sup>(8)</sup> | LQFP176                              | -     | 0.3     -       0.3     -       0.3     -       0.3     -       0     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     - | 526                       | mW   |  |
|                                                         |                                                                   | UFBGA176                             | -     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 513                       |      |  |
|                                                         |                                                                   | LQFP208                              | -     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1053                      |      |  |
|                                                         |                                                                   | TFBGA216                             | -     | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 690                       |      |  |
|                                                         | Ambient temperature for 6 suffix                                  | Maximum power dissipation            | - 40  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85                        | °C   |  |
| т.                                                      | version                                                           | Low power dissipation <sup>(9)</sup> | - 40  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 105                       |      |  |
| IA                                                      | Ambient temperature for 7 suffix                                  | Maximum power dissipation            | - 40  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 105                       | °C   |  |
|                                                         | version                                                           | Low power dissipation <sup>(9)</sup> | - 40  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 125                       |      |  |
| т.                                                      | lunction tomocrature range                                        | 6 suffix version                     | - 40  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 105                       | °C   |  |
| P <sub>D</sub>                                          | Junction temperature range                                        | 7 suffix version                     | - 40  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 125                       | °C   |  |

Table 17. General operating conditions (continued)

1. The over-drive mode is not supported at the voltage ranges from 1.7 to 2.1 V.

 V<sub>DD</sub>/V<sub>DDA</sub> minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset OFF).

3. When the ADC is used, refer to *Table 74: ADC characteristics*.

4. If  $V_{REF+}$  pin is present, it must respect the following condition:  $V_{DDA}-V_{REF+} < 1.2$  V.

5. It is recommended to power  $V_{DD}$  and  $V_{DDA}$  from the same source. A maximum difference of 300 mV between  $V_{DD}$  and  $V_{DDA}$  can be tolerated during power-up and power-down operation.

- 6. The over-drive mode is not supported when the internal regulator is OFF.
- 7. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled

8. If  $T_A$  is lower, higher  $P_D$  values are allowed as long as  $T_J$  does not exceed  $T_{Jmax}$ .

9. In low power dissipation state, T<sub>A</sub> can be extended to this range as long as T<sub>J</sub> does not exceed T<sub>Jmax</sub>.



## 6.3.5 Reset and power control block characteristics

The parameters given in *Table 22* are derived from tests performed under ambient temperature and  $V_{DD}$  supply voltage conditions summarized in *Table 17*.

| Symbol                              | Parameter                | Conditions                  | Min  | Тур  | Max  | Unit |
|-------------------------------------|--------------------------|-----------------------------|------|------|------|------|
|                                     |                          | PLS[2:0]=000 (rising edge)  | 2.09 | 2.14 | 2.19 | V    |
|                                     |                          | PLS[2:0]=000 (falling edge) | 1.98 | 2.04 | 2.08 | V    |
|                                     |                          | PLS[2:0]=001 (rising edge)  | 2.23 | 2.30 | 2.37 | V    |
|                                     |                          | PLS[2:0]=001 (falling edge) | 2.13 | 2.19 | 2.25 | V    |
|                                     |                          | PLS[2:0]=010 (rising edge)  | 2.39 | 2.45 | 2.51 | V    |
|                                     |                          | PLS[2:0]=010 (falling edge) | 2.29 | 2.35 | 2.39 | V    |
|                                     |                          | PLS[2:0]=011 (rising edge)  | 2.54 | 2.60 | 2.65 | V    |
| V                                   | Programmable voltage     | PLS[2:0]=011 (falling edge) | 2.44 | 2.51 | 2.56 | V    |
| V <sub>PVD</sub>                    | detector level selection | PLS[2:0]=100 (rising edge)  | 2.70 | 2.76 | 2.82 | V    |
|                                     |                          | PLS[2:0]=100 (falling edge) | 2.59 | 2.66 | 2.71 | V    |
|                                     |                          | PLS[2:0]=101 (rising edge)  | 2.86 | 2.93 | 2.99 | V    |
|                                     |                          | PLS[2:0]=101 (falling edge) | 2.65 | 2.84 | 2.92 | V    |
|                                     |                          | PLS[2:0]=110 (rising edge)  | 2.96 | 3.03 | 3.10 | V    |
|                                     |                          | PLS[2:0]=110 (falling edge) | 2.85 | 2.93 | 2.99 | V    |
|                                     |                          | PLS[2:0]=111 (rising edge)  | 3.07 | 3.14 | 3.21 | V    |
|                                     |                          | PLS[2:0]=111 (falling edge) | 2.95 | 3.03 | 3.09 | V    |
| V <sub>PVDhyst</sub> <sup>(1)</sup> | PVD hysteresis           |                             | -    | 100  | -    | mV   |
| V                                   | Power-on/power-down      | Falling edge                | 1.60 | 1.68 | 1.76 | V    |
| V <sub>POR/PDR</sub>                | reset threshold          | Rising edge                 | 1.64 | 1.72 | 1.80 | V    |
| V <sub>PDRhyst</sub> <sup>(1)</sup> | PDR hysteresis           |                             | -    | 40   | -    | mV   |
| V                                   | Brownout level 1         | Falling edge                | 2.13 | 2.19 | 2.24 | V    |
| V <sub>BOR1</sub>                   | threshold                | Rising edge                 | 2.23 | 2.29 | 2.33 | V    |
| V                                   | Brownout level 2         | Falling edge                | 2.44 | 2.50 | 2.56 | V    |
| V <sub>BOR2</sub>                   | threshold                | Rising edge                 | 2.53 | 2.59 | 2.63 | V    |
|                                     | Brownout level 3         | Falling edge                | 2.75 | 2.83 | 2.88 | V    |
| V <sub>BOR3</sub>                   | threshold                | Rising edge                 | 2.85 | 2.92 | 2.97 | V    |
| V <sub>BORhyst</sub> <sup>(1)</sup> | BOR hysteresis           |                             | -    | 100  | -    | mV   |
| T <sub>RSTTEMPO</sub>               | POR reset temporization  |                             | 0.5  | 1.5  | 3.0  | ms   |



|                            |                         |         | I <sub>DD</sub> ( Typ) <sup>(1)</sup> | <u> </u>  | 11     |
|----------------------------|-------------------------|---------|---------------------------------------|-----------|--------|
| Pe                         | eripheral               | Scale 1 | Scale 2                               | Scale 3   | – Unit |
| AHB2                       | OTG_FS                  | 25.67   | 26.67                                 | 23.58     |        |
| (up to                     | DCMI                    | 3.72    | 3.40                                  | 3.00      | µA/MHz |
| 180 MHz)                   | RNG                     | 2.28    | 2.36                                  | 2.17      |        |
| AHB3<br>(up to<br>180 MHz) | FMC                     | 21.39   | 19.79                                 | 17.50     | µA/MHz |
| Bu                         | s matrix <sup>(2)</sup> | 14.06   | 13.19                                 | 11.75     | µA/MHz |
|                            | TIM2                    | 17.56   | 16.42                                 | 14.47     |        |
|                            | TIM3                    | 14.22   | 13.36                                 | 11.80     |        |
| F                          | TIM4                    | 14.89   | 13.64                                 | 12.13     | 1      |
| F                          | TIM5                    | 17.33   | 16.42                                 | 14.47     | 1      |
| F                          | TIM6                    | 2.89    | 2.53                                  | 2.47      | 1      |
|                            | TIM7                    | 3.11    | 2.81                                  | 2.47      |        |
|                            | TIM12                   | 7.33    | 6.97                                  | 6.13      |        |
|                            | TIM13                   | 4.89    | 4.47                                  | 4.13      |        |
|                            | TIM14                   | 5.56    | 5.31                                  | 4.80      |        |
|                            | PWR                     | 11.11   | 10.31                                 | 9.13      |        |
|                            | USART2                  | 4.22    | 3.92                                  | 3.47      |        |
|                            | USART3                  | 4.44    | 4.19                                  | 3.80      |        |
| APB1                       | UART4                   | 4.00    | 3.92                                  | 3.47      |        |
| (up to                     | UART5                   | 4.00    | 3.92                                  | 3.47      | µA/MHz |
| 45 MHz)                    | UART7                   | 4.00    | 3.92                                  | 3.47      |        |
|                            | UART8                   | 3.78    | 3.92                                  | 3.47      |        |
|                            | I2C1                    | 4.00    | 3.92                                  | 3.47      |        |
|                            | I2C2                    | 4.00    | 3.92                                  | 3.47      |        |
|                            | I2C3                    | 4.00    | 3.92                                  | 3.47      |        |
| F                          | SPI2 <sup>(3)</sup>     | 3.11    | 3.08                                  | 2.80      | 1      |
| T T                        | SPI3 <sup>(3)</sup>     | 3.56    | 3.36                                  | 3.13      | 1      |
| T T                        | I2S2                    | 2.89    | 2.89 2.81 2.47                        |           | ]      |
| T T                        | I2S3                    | 3.33    | 3.08                                  | 2.80      | 1      |
| T T                        | CAN1                    | 6.89    | 6.42                                  | 5.80      | 1      |
| T T                        | CAN2                    | 6.67    | 6.14                                  | 5.47      | 1      |
| T T                        | DAC <sup>(4)</sup>      | 2.89    | 2.25                                  | 2.25 2.13 |        |
| F                          | WWDG                    | 0.89    | 0.86                                  | 0.80      | 1      |

Table 35. Peripheral current consumption (continued)



### Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 36* and *Table 58*, respectively.

Unless otherwise specified, the parameters given in *Table 58* are derived from tests performed under the ambient temperature and  $V_{DD}$  supply voltage conditions summarized in *Table 17*.

| OSPEEDRy<br>[1:0] bit<br>value <sup>(1)</sup> | Symbol                                           | Parameter                                                                       | Conditions                                                  | Min | Тур | Мах                | Unit  |
|-----------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------|-----|-----|--------------------|-------|
|                                               |                                                  |                                                                                 | $C_L = 50 \text{ pF}, V_{DD} \ge 2.7 \text{ V}$             | -   | -   | 4                  |       |
|                                               |                                                  |                                                                                 | $C_L = 50 \text{ pF}, V_{DD} \ge 1.7 \text{ V}$             | -   | -   | 2                  |       |
|                                               | f <sub>max(IO)out</sub>                          | Maximum frequency <sup>(3)</sup>                                                | $C_L$ = 10 pF, $V_{DD} \ge 2.7 V$                           | -   | -   | 8                  | MHz   |
| 00                                            |                                                  |                                                                                 | $C_L$ = 10 pF, $V_{DD} \ge 1.8 V$                           | -   | -   | 4                  |       |
|                                               |                                                  |                                                                                 | $C_L$ = 10 pF, $V_{DD} \ge 1.7 V$                           | -   | -   | 3                  |       |
|                                               | t <sub>f(IO)out</sub> /<br>t <sub>r(IO)out</sub> | Output high to low level fall<br>time and output low to high<br>level rise time | C <sub>L</sub> = 50 pF, V <sub>DD</sub> = 1.7 V to<br>3.6 V | -   | -   | 100                | ns    |
|                                               |                                                  |                                                                                 | C <sub>L</sub> = 50 pF, V <sub>DD</sub> ≥ 2.7 V             | -   | -   | 25                 |       |
|                                               |                                                  | Maximum frequency <sup>(3)</sup>                                                | C <sub>L</sub> = 50 pF, V <sub>DD</sub> ≥ 1.8 V             | -   | -   | 12.5               | • MHz |
|                                               | f <sub>max(IO)</sub> out                         |                                                                                 | C <sub>L</sub> = 50 pF, V <sub>DD</sub> ≥ 1.7 V             | -   | -   | 10                 |       |
|                                               |                                                  |                                                                                 | C <sub>L</sub> = 10 pF, V <sub>DD</sub> ≥ 2.7 V             | -   | -   | 50                 |       |
| 01                                            |                                                  |                                                                                 | C <sub>L</sub> = 10 pF, V <sub>DD</sub> ≥ 1.8 V             | -   | -   | 20                 |       |
| 01                                            |                                                  |                                                                                 | C <sub>L</sub> = 10 pF, V <sub>DD</sub> ≥ 1.7 V             | -   | -   | 12.5               |       |
|                                               |                                                  |                                                                                 | $C_L = 50 \text{ pF}, V_{DD} \ge 2.7 \text{ V}$             | -   | -   | 10                 |       |
|                                               | t <sub>f(IO)out</sub> /                          | Output high to low level fall time and output low to high                       | $C_L$ = 10 pF, $V_{DD} \ge 2.7 V$                           | -   | -   | 6                  |       |
|                                               | t <sub>r(IO)out</sub>                            | level rise time                                                                 | $C_L = 50 \text{ pF}, V_{DD} \ge 1.7 \text{ V}$             | -   | -   | 20                 | 115   |
|                                               |                                                  |                                                                                 | $C_L$ = 10 pF, $V_{DD} \ge 1.7 V$                           | -   | -   | 10                 |       |
|                                               |                                                  |                                                                                 | $C_L$ = 40 pF, $V_{DD} \ge 2.7 V$                           | -   | -   | 50 <sup>(4)</sup>  |       |
|                                               |                                                  |                                                                                 | $C_L$ = 10 pF, $V_{DD} \ge 2.7 V$                           | -   | -   | 100 <sup>(4)</sup> |       |
|                                               | f <sub>max(IO)out</sub>                          | Maximum frequency <sup>(3)</sup>                                                | $C_L$ = 40 pF, $V_{DD} \ge 1.7 V$                           | -   | -   | 25                 | MHz   |
|                                               |                                                  |                                                                                 | $C_L = 10 \text{ pF}, V_{DD} \ge 1.8 \text{ V}$             | -   | -   | 50                 |       |
| 10                                            |                                                  |                                                                                 | $C_L = 10 \text{ pF}, V_{DD} \ge 1.7 \text{ V}$             | 1   | -   | 42.5               |       |
|                                               |                                                  |                                                                                 | C <sub>L</sub> = 40 pF, V <sub>DD</sub> ≥2.7 V              | -   | -   | 6                  |       |
|                                               | t <sub>f(IO)out</sub> /                          | Output high to low level fall time and output low to high                       | $C_L$ = 10 pF, $V_{DD} \ge 2.7 V$                           | -   | -   | 4                  | ns    |
|                                               | t <sub>r(IO)out</sub>                            | level rise time                                                                 | C <sub>L</sub> = 40 pF, V <sub>DD</sub> ≥ 1.7 V             | -   | -   | 10                 | 115   |
|                                               |                                                  |                                                                                 | $C_L$ = 10 pF, $V_{DD} \ge 1.7 V$                           | -   | -   | 6                  |       |

Table 58. I/O AC characteristics<sup>(1)(2)</sup>



| E |                 |                                                                        |                   |                    |      |  |  |  |  |  |  |
|---|-----------------|------------------------------------------------------------------------|-------------------|--------------------|------|--|--|--|--|--|--|
|   | Symbol          | Parameter                                                              | Min               | Max                | Unit |  |  |  |  |  |  |
|   | t <sub>AF</sub> | Maximum pulse width of spikes that are suppressed by the analog filter | 50 <sup>(2)</sup> | 260 <sup>(3)</sup> | ns   |  |  |  |  |  |  |

Table 61. I2C analog filter characteristics<sup>(1)</sup>

- 1. Guaranteed by design.
- 2. Spikes with widths below  $t_{AF(min)}$  are filtered.
- 3. Spikes with widths above  $t_{AF(max)}$  are not filtered

### SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 62* for the SPI interface are derived from tests performed under the ambient temperature,  $f_{PCLKx}$  frequency and  $V_{DD}$  supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V<sub>DD</sub>

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

| Symbol                                    | Parameter                            | Condition                                                    | Min                         | Тур | Max | Unit              |     |
|-------------------------------------------|--------------------------------------|--------------------------------------------------------------|-----------------------------|-----|-----|-------------------|-----|
| f <sub>SCK</sub><br>1/t <sub>c(SCK)</sub> | SPI clock frequency                  | Master mode, SPI1/4/5<br>2.7 V≤V <sub>DD</sub> ≤3.6 V        |                             |     | 45  |                   |     |
|                                           |                                      | Slave mode,<br>SPI1/4/5/6,<br>2.7 V≤V <sub>DD</sub> ≤3.6 V   | Receiver                    | -   | -   | 45                | MHz |
|                                           |                                      |                                                              | Transmitter/<br>full-duplex |     |     | 38 <sup>(2)</sup> |     |
|                                           |                                      | Master mode, SPI1/2/3/4/5/6,<br>1.7 V≤V <sub>DD</sub> ≤3.6 V |                             | -   | -   | 22.5              |     |
|                                           |                                      | Slave mode, SPI1/2/3/4/5/6,<br>1.7 V≤V <sub>DD</sub> ≤3.6 V  |                             |     |     | 22.5              |     |
| Duty(SCK)                                 | Duty cycle of SPI clock<br>frequency | Slave mode                                                   |                             | 30  | 50  | 70                | %   |

Table 62. SPI dynamic characteristics<sup>(1)</sup>



### 6.3.21 12-bit ADC characteristics

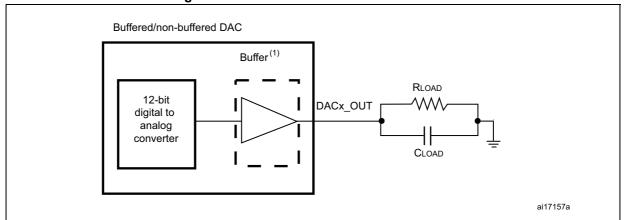
Unless otherwise specified, the parameters given in *Table 74* are derived from tests performed under the ambient temperature,  $f_{PCLK2}$  frequency and  $V_{DDA}$  supply voltage conditions summarized in *Table 17*.

| Symbol                           | Parameter Conditions Min                        |                                                                                       | Min                                                            | Тур | Мах               | Unit               |  |
|----------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------|-----|-------------------|--------------------|--|
| V <sub>DDA</sub>                 | Power supply                                    |                                                                                       | 1.7 <sup>(1)</sup>                                             | -   | 3.6               |                    |  |
| V <sub>REF+</sub>                | Positive reference voltage                      | V <sub>DDA</sub> –V <sub>REF+</sub> < 1.2 V                                           | 1.7 <sup>(1)</sup>                                             | -   | V <sub>DDA</sub>  | V                  |  |
| V <sub>REF-</sub>                | Negative reference voltage                      | -                                                                                     | -                                                              | 0   | -                 |                    |  |
| f <sub>ADC</sub>                 |                                                 | V <sub>DDA</sub> = 1.7 <sup>(1)</sup> to 2.4 V                                        | 0.6                                                            | 15  | 18                | MHz                |  |
|                                  | ADC clock frequency                             | V <sub>DDA</sub> = 2.4 to 3.6 V                                                       | 0.6                                                            | 30  | 36                | MHz                |  |
| f <sub>TRIG</sub> <sup>(2)</sup> | External trigger frequency                      | f <sub>ADC</sub> = 30 MHz,<br>12-bit resolution                                       | -                                                              | -   | 1764              | kHz                |  |
|                                  |                                                 |                                                                                       | -                                                              | -   | 17                | 1/f <sub>ADC</sub> |  |
| V <sub>AIN</sub>                 | Conversion voltage range <sup>(3)</sup>         |                                                                                       | 0<br>(V <sub>SSA</sub> or V <sub>REF-</sub><br>tied to ground) | -   | V <sub>REF+</sub> | V                  |  |
| R <sub>AIN</sub> <sup>(2)</sup>  | External input impedance                        | See <i>Equation 1</i> for details                                                     | -                                                              | -   | 50                | kΩ                 |  |
| $R_{ADC}^{(2)(4)}$               | Sampling switch resistance                      |                                                                                       | -                                                              | -   | 6                 | kΩ                 |  |
| C <sub>ADC</sub> <sup>(2)</sup>  | Internal sample and hold capacitor              |                                                                                       | -                                                              | 4   | 7                 | pF                 |  |
| t <sub>lat</sub> (2)             | Injection trigger conversion                    | f <sub>ADC</sub> = 30 MHz                                                             | -                                                              | -   | 0.100             | μs                 |  |
| 'lat` ´                          | latency                                         |                                                                                       | -                                                              | -   | 3 <sup>(5)</sup>  | 1/f <sub>ADC</sub> |  |
| t <sub>latr</sub> <sup>(2)</sup> | Regular trigger conversion                      | f <sub>ADC</sub> = 30 MHz                                                             | -                                                              | -   | 0.067             | μs                 |  |
| latr                             | latency                                         |                                                                                       | -                                                              | -   | 2 <sup>(5)</sup>  | 1/f <sub>ADC</sub> |  |
| ts <sup>(2)</sup>                | Sampling time                                   | f <sub>ADC</sub> = 30 MHz                                                             | 0.100                                                          | I   | 16                | μs                 |  |
| U U                              |                                                 |                                                                                       | 3                                                              | -   | 480               | 1/f <sub>ADC</sub> |  |
| t <sub>STAB</sub> <sup>(2)</sup> | Power-up time                                   |                                                                                       | -                                                              | 2   | 3                 | μs                 |  |
| t <sub>CONV</sub> <sup>(2)</sup> | Total conversion time (including sampling time) | f <sub>ADC</sub> = 30 MHz<br>12-bit resolution                                        | 0.50                                                           | -   | 16.40             | μs                 |  |
|                                  |                                                 | f <sub>ADC</sub> = 30 MHz<br>10-bit resolution                                        | 0.43                                                           | -   | 16.34             | μs                 |  |
|                                  |                                                 | f <sub>ADC</sub> = 30 MHz<br>8-bit resolution                                         | 0.37                                                           | -   | 16.27             | μs                 |  |
|                                  |                                                 | f <sub>ADC</sub> = 30 MHz<br>6-bit resolution                                         | 0.30                                                           | -   | 16.20             | μs                 |  |
|                                  |                                                 | 9 to 492 (t <sub>S</sub> for sampling +n-bit resolution for successive approximation) |                                                                |     |                   |                    |  |



#### STM32F427xx STM32F429xx

| Symbol | Parameter                                                                             | Conditions | Min | Тур | Max | Unit | Comments                                                                                               |  |
|--------|---------------------------------------------------------------------------------------|------------|-----|-----|-----|------|--------------------------------------------------------------------------------------------------------|--|
|        | Wakeup time from off<br>state (Setting the ENx<br>bit in the DAC Control<br>register) | -          | -   | 6.5 | 10  | μs   | $C_{LOAD} \le 50$ pF, $R_{LOAD} \ge 5$ k $\Omega$ input code between lowest and highest possible ones. |  |
|        | Power supply rejection<br>ratio (to V <sub>DDA</sub> ) (static<br>DC measurement)     | -          | -   | -67 | -40 | dB   | No R <sub>LOAD</sub> , C <sub>LOAD</sub> = 50 pF                                                       |  |


### Table 85. DAC characteristics (continued)

1. V<sub>DDA</sub> minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset OFF).

2. Guaranteed by design.

The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic consumption occurs.

4. Guaranteed by characterization.



### Figure 54. 12-bit buffered /non-buffered DAC

1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC\_CR register.



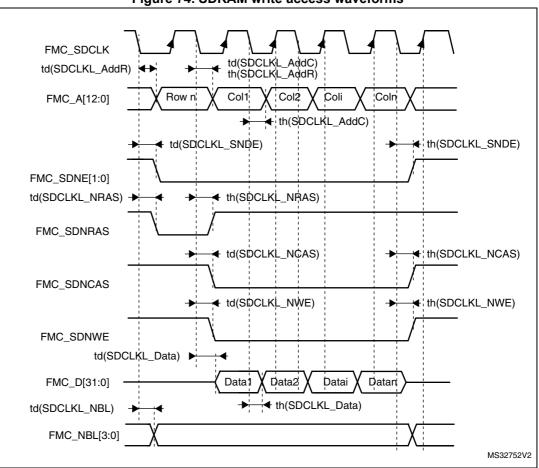



Figure 74. SDRAM write access waveforms



### STM32F427xx STM32F429xx

| Date        | Revision | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|-------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 21-Jan-2016 | 8        | Updated <i>Figure 22: Power supply scheme</i> .<br>Added $t_{d(TXD)}$ values corresponding to 1.71 V < V <sub>DD</sub> < 3.6 V in<br><i>Table 72: Dynamics characteristics: Ethernet MAC signals for RMII</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 18-Jul-2016 | 9        | Updated Figure 1: Compatible board design<br>STM32F10xx/STM32F2xx/STM32F4xx for LQFP100 package.<br>Added mission profile compliance with JEDEC JESD47 in<br>Section 6.2: Absolute maximum ratings.<br>Changed Figure 31 HSI deviation versus temperature to ACCHSI<br>versus temperature.<br>Updated R <sub>LOAD</sub> in Table 85: DAC characteristics.<br>Added note 2. related to the position of the 0.1 µF capacitor below<br>Figure 37: Recommended NRST pin protection.<br>Updated Figure 40: SPI timing diagram - master mode.<br>Added reference to optional marking or inset/upset marks in all<br>package device marking sections. Updated Figure 85: WLCSP143<br>marking example (package top view), Figure 88: LQFP144<br>marking example (package top view), Figure 91: LQFP176<br>marking (package top view).<br>Updated Figure 98: UFBGA176+25 - ball 10 x 10 mm, 0.65 mm pitch<br>ultra thin fine pitch ball grid array package outline and Table 118:<br>UFBGA176+25 - ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball<br>grid array package mechanical data. |  |  |  |

### Table 124. Document revision history

