

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	168
Program Memory Size	2MB (2M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	216-TFBGA
Supplier Device Package	216-TFBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f429nih7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 44.	PLLI2S (audio PLL) characteristics
Table 45.	PLLISAI (audio and LCD-TFT PLL) characteristics
Table 46.	SSCG parameters constraint
Table 47.	Flash memory characteristics
Table 48.	Flash memory programming
Table 49.	Flash memory programming with V _{PP} 129
Table 50.	Flash memory endurance and data retention
Table 51.	EMS characteristics
Table 52.	EMI characteristics
Table 53.	ESD absolute maximum ratings
Table 54.	Electrical sensitivities
Table 55.	I/O current injection susceptibility
Table 56.	I/O static characteristics
Table 57.	Output voltage characteristics
Table 58.	I/O AC characteristics
Table 59.	NRST pin characteristics
Table 60.	TIMx characteristics
Table 61.	I2C analog filter characteristics
Table 62.	SPI dynamic characteristics
Table 63.	I^2S dynamic characteristics 145
Table 64.	SAI characteristics
Table 65	USB OTG full speed startup time 149
Table 66	USB OTG full speed DC electrical characteristics 149
Table 67	USB OTG full speed electrical characteristics
Table 68	USB HS DC electrical characteristics
Table 60	USB HS clock timing parameters
Table 70	Dynamic characteristics: USB UI PI
Table 70.	Dynamics characteristics: Ethernet MAC signals for SMI
Table 71.	Dynamics characteristics: Ethernet MAC signals for SMI
Table 72.	Dynamics characteristics: Ethernet MAC signals for Mill
Table 73.	ADC characteristics
Table 74.	ADC challed cleristics $\dots \dots \dots$
Table 75.	ADC static accuracy at $I_{ADC} = 10 \text{ MHz}$ 159
Table 70.	ADC static accuracy at $I_{ADC} = 30 \text{ MHz}$
Table 77.	ADC static accuracy at $I_{ADC} = 30 \text{ MHz}$. Imited test conditions
Table 70.	ADC dynamic accuracy at $I_{ADC} = 10 \text{ MHz} - \text{imited test conditions}$
Table 79.	ADC dynamic accuracy at I _{ADC} = 36 MHZ - Iimited test conditions
Table 81.	Temperature sensor calibration values
Table 82.	V _{BAT} monitoring characteristics
Table 83.	
Table 84.	
Table 85.	DAC characteristics
l able 86.	Asynchronous non-multiplexed SRAM/PSRAM/NOR -
	read timings
l able 87.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read -
	NWAIT timings
Table 88.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings
I able 89.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write -
	NWAIT timings
Table 90.	Asynchronous multiplexed PSRAM/NOR read timings
Table 91.	Asynchronous multiplexed PSRAM/NOR read-NWAIT timings
Table 92.	Asynchronous multiplexed PSRAM/NOR write timings

Figure 44. Figure 45.	SAI slave timing waveforms	148 150
Figure 46.		151
Figure 47.	Ethernet SMI timing diagram	153
Figure 48.	Ethernet RMII timing diagram	154
Figure 49.	Ethernet MII timing diagram	155
Figure 50.	ADC accuracy characteristics	159
Figure 51.	Typical connection diagram using the ADC	160
Figure 52.	Power supply and reference decoupling (V_{REF+} not connected to V_{DDA})	161
Figure 53.	Power supply and reference decoupling (V _{REF+} connected to V _{DDA})	162
Figure 54.	12-bit buffered /non-buffered DAC	166
Figure 55.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms	168
Figure 56.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms	170
Figure 57.	Asynchronous multiplexed PSRAM/NOR read waveforms.	171
Figure 58.	Asynchronous multiplexed PSRAM/NOR write waveforms	173
Figure 59.	Synchronous multiplexed NOR/PSRAM read timings	175
Figure 60.	Synchronous multiplexed PSRAM write timings	176
Figure 61.	Synchronous non-multiplexed NOR/PSRAM read timings	178
Figure 62.	Synchronous non-multiplexed PSRAM write timings	179
Figure 63.	PC Card/CompactFlash controller waveforms for common memory read access	181
Figure 64.	PC Card/CompactFlash controller waveforms for common memory write access	181
Figure 65.	PC Card/CompactFlash controller waveforms for attribute memory	
-	read access	182
Figure 66.	PC Card/CompactFlash controller waveforms for attribute memory write access	183
Figure 67.	PC Card/CompactFlash controller waveforms for I/O space read access	183
Figure 68.	PC Card/CompactFlash controller waveforms for I/O space write access	184
Figure 69.	NAND controller waveforms for read access	186
Figure 70.	NAND controller waveforms for write access	186
Figure 71.	NAND controller waveforms for common memory read access	187
Figure 72.	NAND controller waveforms for common memory write access	187
Figure 73.	SDRAM read access waveforms (CL = 1)	188
Figure 74.	SDRAM write access waveforms	190
Figure 75.	DCMI timing diagram	192
Figure 76.	LCD-TFT horizontal timing diagram	194
Figure 77.	LCD-TFT vertical timing diagram	194
Figure 78	SDIO high-speed mode	195
Figure 79	SD default mode	195
Figure 80	I OEP100 -100-pin 14 x 14 mm low-profile quad flat package outline	197
Figure 81	I OPF100 - 100-pin, 14 x 14 mm low-profile guad flat	107
rigure or.	recommended footprint	100
Figure 82		200
Figure 83	WI CSP143 143 ball 4 521 x 5 547 mm 0.4 mm nitch wafer level chin scale	200
Figure 65.	webser 145 - 145-bail, 4.521X 5.547 milli, 0.4 milli pitch waler level only scale	201
Figure 94	VII CSD142 142 holl 4 524 × 5 547 mm 0.4 mm nitch wofer level chin coole	201
Figure 04.	WLCGP 145 - 145-ball, 4.52 IX 5.547 mm, 0.4 mm pitch waler level chip scale	202
		202
Figure 85.		203
Figure 80.	LQFF 144-144-pin, 20 x 20 mm low-profile guad flat package outline	204
Figure 87.	LQPF144-144-pin,20 X 20 mm low-profile quad flat package	000
		206
Figure 88.		207
⊢igure 89.	LQFP176 - 176-pin, 24 X 24 mm low-profile quad flat package outline	208

DocID024030 Rev 9

		Table	2. 01101321 42			icatures (and perip			A)			
Peripher	rals	STM32F427 Vx	STM32F429Vx	STM32F427 Zx	STM32F429Zx	STM32F427 Ax	STM32F429 Ax	STM32F427 Ix	STM32F429Ix	STM32F429Bx	STM32F429N		
	SPI / I ² S	4/2 (ful	l duplex) ⁽²⁾			•	6/2	(full duplex) ⁽²⁾					
	l ² C			•			3						
	USART/ UART						4/4						
Communication	USB OTG FS						Yes						
Interfaces	USB OTG HS						Yes						
	CAN						2						
	SAI						1						
	SDIO						Yes						
Camera interface	e						Yes						
LCD-TFT (STM3 only)	2F429xx	No	Yes	No	Yes	No	Yes	No		Yes			
Chrom-ART Acc	elerator™						Yes						
GPIOs			82			114 130 140					140 168		
12-bit ADC		3											
Number of chann	nels		16 24										
12-bit DAC Number of chan	nels		Yes 2										
Maximum CPU f	requency					18	0 MHz						
Operating voltag	e					1.8 to	o 3.6 V ⁽³⁾						
Operating temps	raturaa				Ambient te	emperatures:	40 to +85 °C /-	40 to +105 °C					
	aures				Ju	nction tempera	ture: -40 to + 7	125 °C					
Packages		LQ	FP100	WL LC	CSP143 QFP144	UFBC	GA169	UF LC	BGA176 QFP176	LQFP208	TFBGA216		

Table 2. STM32F427xx and STM32F429xx features and peripheral counts (continued)

 For the LQFP100 package, only FMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package. For UFBGA169 package, only SDRAM, NAND and multiplexed static memories are supported.

2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.

16/238

3. V_{DD}/V_{DDA} minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset OFF).

3.26 Inter-integrated sound (I²S)

Two standard I²S interfaces (multiplexed with SPI2 and SPI3) are available. They can be operated in master or slave mode, in full duplex and simplex communication modes, and can be configured to operate with a 16-/32-bit resolution as an input or output channel. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I²S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

All I2Sx can be served by the DMA controller.

Note: For I2S2 full-duplex mode, I2S2_CK and I2S2_WS signals can be used only on GPIO Port B and GPIO Port D.

3.27 Serial Audio interface (SAI1)

The serial audio interface (SAI1) is based on two independent audio sub-blocks which can operate as transmitter or receiver with their FIFO. Many audio protocols are supported by each block: I2S standards, LSB or MSB-justified, PCM/DSP, TDM, AC'97 and SPDIF output, supporting audio sampling frequencies from 8 kHz up to 192 kHz. Both sub-blocks can be configured in master or in slave mode.

In master mode, the master clock can be output to the external DAC/CODEC at 256 times of the sampling frequency.

The two sub-blocks can be configured in synchronous mode when full-duplex mode is required.

SAI1 can be served by the DMA controller.

3.28 Audio PLL (PLLI2S)

The devices feature an additional dedicated PLL for audio I²S and SAI applications. It allows to achieve error-free I²S sampling clock accuracy without compromising on the CPU performance, while using USB peripherals.

The PLLI2S configuration can be modified to manage an I²S/SAI sample rate change without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.

The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 KHz to 192 KHz.

In addition to the audio PLL, a master clock input pin can be used to synchronize the I²S/SAI flow with an external PLL (or Codec output).

3.29 Audio and LCD PLL(PLLSAI)

An additional PLL dedicated to audio and LCD-TFT is used for SAI1 peripheral in case the PLLI2S is programmed to achieve another audio sampling frequency (49.152 MHz or 11.2896 MHz) and the audio application requires both sampling frequencies simultaneously.

The PLLSAI is also used to generate the LCD-TFT clock.

3.39 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally connected to the same input channel as V_{BAT}, ADC1_IN18, which is used to convert the sensor output voltage into a digital value. When the temperature sensor and V_{BAT} conversion are enabled at the same time, only V_{BAT} conversion is performed.

As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used.

3.40 Digital-to-analog converter (DAC)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs.

This dual digital Interface supports the following features:

- two DAC converters: one for each output channel
- 8-bit or 10-bit monotonic output
- left or right data alignment in 12-bit mode
- synchronized update capability
- noise-wave generation
- triangular-wave generation
- dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- external triggers for conversion
- input voltage reference V_{REF+}

Eight DAC trigger inputs are used in the device. The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams.

3.41 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

	11	10	9	8	7	6	5	4	3	2	1
A	PDR ON	(PE1)	(PB8)	(PB6)	PG15	PG12	(PD7)	PD5	PD2	PC10	VDD
В	PE4	PE0	(PB9)	(PB7)	(PB3)	(PG11)	(PD4)	(PD3)	(PD0)	PC11	(PA14)
С	VBAT	(PE3)		(PB5)	(PB4)	PG10	VDD	(PD1)	PC12	(PA15)	VDD
D	PC14	PC13	PE5	PE2	VDD	PG13	(PA10)	(PA11)	(PA13)	vss	VCAP _2
Е	PC15	VDD	(PF1)	PE6	vss	VDD	PG9	PC8	PC9	(PA9)	(PA12)
F	PF0	PF2	(PF4)	PF5	(PF7)	PG14	vss	PD6	PC7	PC6	(PA8)
G	PF3	PF6	(PF10)	PF9	VDD	PG5	PG4	PG6	PG3	PG8	VDD
Н	PF8	(PH1)	NRST	PC0	vss	(PD12)	(PD13)	PD10	vss	vss	PG7
J	PH0	PC2	PC3	VDD	VDD	VDD	VDD	PE10	(PB15)	(PD14)	PG2
К	PC1	VSSA	PA0	(PA1)	(PB1)	(PF13)	(PG1)	(PE11)	(PB14)	(PD11)	PD15
L	VREF +	VDDA	(PA2)	(PA7)	(PB2)	(PF14)	PE7	PE12	PE15	PD8	VDD
М	PA3	(PA4)	(PA5)	PC4	(PF11)	(PF15)	PE8	PE14	PB10	(PB12)	(PD9)
Ν	BYPASS_ REG	(PA6)	PC5	(PB0)	(PF12)	(PG0)	PE9	PE13	(PB11)		PB13

Figure 12. STM32F42x WLCSP143 ballout

1. The above figure shows the package bump view.

Pinouts and pin description

Pin name	CF	NOR/PSRAM/ SRAM	NOR/PSRAM Mux	NAND16	SDRAM
PE11	D8	D8	DA8	D8	D8
PE12	D9	D9	DA9	D9	D9
PE13	D10	D10	DA10	D10	D10
PE14	D11	D11	DA11	D11	D11
PE15	D12	D12	DA12	D12	D12
PD8	D13	D13	DA13	D13	D13
PD9	D14	D14	DA14	D14	D14
PD10	D15	D15	DA15	D15	D15
PH8		D16			D16
PH9		D17			D17
PH10		D18			D18
PH11		D19			D19
PH12		D20			D20
PH13		D21			D21
PH14		D22			D22
PH15		D23			D23
PI0		D24			D24
PI1		D25			D25
PI2		D26			D26
PI3		D27			D27
PI6		D28			D28
PI7		D29			D29
PI9		D30			D30
PI10		D31			D31
PD7		NE1	NE1	NCE2	
PG9		NE2	NE2	NCE3	
PG10	NCE4_1	NE3	NE3		
PG11	NCE4_2				
PG12		NE4	NE4		
PD3		CLK	CLK		
PD4	NOE	NOE	NOE	NOE	
PD5	NWE	NWE	NWE	NWE	
PD6	NWAIT	NWAIT	NWAIT	NWAIT	
PB7		NL(NADV)	NL(NADV)		

Table 11. FMC pin definition (continued)

51

Table 12. STM32F427xx and STM32F429xx alternate function mapping

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Po	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/ 10/11	I2C1/ 2/3	SPI1/2/ 3/4/5/6	SPI2/3/ SAI1	SPI3/ USART1/ 2/3	USART6/ UART4/5/7 /8	CAN1/2/ TIM12/13/14 /LCD	OTG2_HS /OTG1_ FS	ЕТН	FMC/SDIO /OTG2_FS	DCMI	LCD	SYS
	PA0	-	TIM2_ CH1/TIM2 _ETR	TIM5_ CH1	TIM8_ ETR	-	-	-	USART2_ CTS	UART4_TX	-	-	ETH_MII_ CRS	-	-	-	EVEN TOUT
	PA1	-	TIM2_ CH2	TIM5_ CH2	-	-	-	-	USART2_ RTS	UART4_RX	-	-	ETH_MII_ RX_CLK/E TH_RMII_ REF_CLK	-	-	-	EVEN TOUT
	PA2	-	TIM2_ CH3	TIM5_ CH3	TIM9_ CH1	-	-	-	USART2_ TX	-	-	-	ETH_ MDIO	-	-	-	EVEN TOUT
	PA3	-	TIM2_ CH4	TIM5_ CH4	TIM9_ CH2	-	-	-	USART2_ RX	-	-	OTG_HS_ ULPI_D0	ETH_MII_ COL	-	-	LCD_B5	EVEN TOUT
	PA4	-	-	-	-	-	SPI1_ NSS	SPI3_ NSS/ I2S3_WS	USART2_ CK	-	-	-	-	OTG_HS_ SOF	DCMI_ HSYNC	LCD_ VSYNC	EVEN TOUT
Dort A	PA5	-	TIM2_ CH1/TIM2 _ETR	-	TIM8_ CH1N	-	SPI1_ SCK	-	-	-	-	OTG_HS_ ULPI_CK	-	-	-	-	EVEN TOUT
FULA	PA6	-	TIM1_ BKIN	TIM3_ CH1	TIM8_ BKIN	-	SPI1_ MISO	-	-	-	TIM13_CH1	-	-	-	DCMI_ PIXCLK	LCD_G2	EVEN TOUT
	PA7	-	TIM1_ CH1N	TIM3_ CH2	TIM8_ CH1N	-	SPI1_ MOSI	-	-	-	TIM14_CH1	-	ETH_MII_ RX_DV/ ETH_RMII _CRS_DV	-	-	-	EVEN TOUT
	PA8	MCO1	TIM1_ CH1	-	-	I2C3_ SCL	-	-	USART1_ CK	-	-	OTG_FS_ SOF	-	-	-	LCD_R6	EVEN TOUT
	PA9	-	TIM1_ CH2	-	-	I2C3_ SMBA	-	-	USART1_ TX	-	-	-	-	-	DCMI_ D0	-	EVEN TOUT
	PA10	-	TIM1_ CH3	-	-	-	-	-	USART1_ RX	-	-	OTG_FS_ ID	-	-	DCMI_ D1	-	EVEN TOUT
	PA11	-	TIM1_ CH4	-	-	-	-	-	USART1_ CTS	-	CAN1_RX	OTG_FS_ DM	-	-	-	LCD_R4	EVEN TOUT
	PA12	-	TIM1_ ETR	-	-	-	-	-	USART1_ RTS	-	CAN1_TX	OTG_FS_ DP	-	-	-	LCD_R5	EVEN TOUT

STM32F427xx STM32F429xx

74/238

DocID024030 Rev 9

Pinouts and pin description

Bus	Boundary address	Peripheral	
	0x4001 6C00- 0x4001 FFFF	Reserved	
	0x4001 6800 - 0x4001 6BFF	LCD-TFT	
	0x4001 5C00 - 0x4001 67FF	Reserved	
	0x4001 5800 - 0x4001 5BFF	SAI1	
	0x4001 5400 - 0x4001 57FF	SPI6	
	0x4001 5000 - 0x4001 53FF	SPI5	
	0x4001 5400 - 0x4001 57FF	SPI6	
	0x4001 5000 - 0x4001 53FF	SPI5	
	0x4001 4C00 - 0x4001 4FFF	Reserved	
	0x4001 4800 - 0x4001 4BFF	TIM11	
	0x4001 4400 - 0x4001 47FF	TIM10	
	0x4001 4000 - 0x4001 43FF	TIM9	
	0x4001 3C00 - 0x4001 3FFF	EXTI	
	0x4001 3800 - 0x4001 3BFF	SYSCFG	
	0x4001 3400 - 0x4001 37FF	SPI4	
	0x4001 3000 - 0x4001 33FF	SPI1	
	0x4001 2C00 - 0x4001 2FFF	SDIO	
	0x4001 2400 - 0x4001 2BFF	Reserved	
	0x4001 2000 - 0x4001 23FF	ADC1 - ADC2 - ADC3	
	0x4001 1800 - 0x4001 1FFF	Reserved	
	0x4001 1400 - 0x4001 17FF	USART6	
	0x4001 1000 - 0x4001 13FF	USART1	
	0x4001 0800 - 0x4001 0FFF	Reserved	
	0x4001 0400 - 0x4001 07FF	TIM8	
	0x4001 0000 - 0x4001 03FF	TIM1	

Table 13. STM32F427xx and STM32F429xx register boundary addresses (continued)

6.3.5 Reset and power control block characteristics

The parameters given in *Table 22* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		PLS[2:0]=000 (rising edge)	2.09	2.14	2.19	V
		PLS[2:0]=000 (falling edge)	1.98	2.04	2.08	V
		PLS[2:0]=001 (rising edge)	2.23	2.30	2.37	V
		PLS[2:0]=001 (falling edge)	2.13	2.19	2.25	V
		PLS[2:0]=010 (rising edge)	2.39	2.45	2.51	V
		PLS[2:0]=010 (falling edge)	2.29	2.35	2.39	V
		PLS[2:0]=011 (rising edge)	2.54	2.60	2.65	V
M	Programmable voltage	PLS[2:0]=011 (falling edge)	2.44	2.51	2.56	V
VPVD	detector level selection	PLS[2:0]=100 (rising edge)	2.70	2.76	2.82	V
		PLS[2:0]=100 (falling edge)	2.59	2.66	2.71	V
		PLS[2:0]=101 (rising edge)	2.86	2.93	2.99	V
		PLS[2:0]=101 (falling edge)	2.65	2.84	2.92	V
		PLS[2:0]=110 (rising edge)	2.96	3.03	3.10	V
		PLS[2:0]=110 (falling edge)	2.85	2.93	2.99	V
		PLS[2:0]=111 (rising edge)	3.07	3.14	3.21	V
		PLS[2:0]=111 (falling edge)	2.95	3.03	3.09	V
V _{PVDhyst} ⁽¹⁾	PVD hysteresis		-	100	-	mV
M	Power-on/power-down	Falling edge	1.60	1.68	1.76	V
♥ POR/PDR	reset threshold	Rising edge	1.64	1.72	1.80	V
V _{PDRhyst} ⁽¹⁾	PDR hysteresis		-	40	-	mV
M	Brownout level 1	Falling edge	2.13	2.19	2.24	V
VBOR1	threshold	Rising edge	2.23	2.29	2.33	V
M	Brownout level 2	Falling edge	2.44	2.50	2.56	V
VBOR2	threshold	Rising edge	2.53	2.59	2.63	V
M	Brownout level 3	Falling edge	2.75	2.83	2.88	V
VBOR3	threshold	Rising edge	2.85	2.92	2.97	V
V _{BORhyst} ⁽¹⁾	BOR hysteresis		-	100	-	mV
T _{RSTTEMPO}	POR reset temporization		0.5	1.5	3.0	ms

Table 22.	reset and	power	control block	characteristics
-----------	-----------	-------	---------------	-----------------

On-chip peripheral current consumption

The MCU is placed under the following conditions:

- At startup, all I/O pins are in analog input configuration.
- All peripherals are disabled unless otherwise mentioned.
- I/O compensation cell enabled.
- The ART accelerator is ON.
- Scale 1 mode selected, internal digital voltage V12 = 1.32 V.
- HCLK is the system clock. f_{PCLK1} = f_{HCLK}/4, and f_{PCLK2} = f_{HCLK}/2.
 The given value is calculated by measuring the difference of current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
 - f_{HCLK} = 180 MHz (Scale1 + over-drive ON), f_{HCLK} = 144 MHz (Scale 2), f_{HCLK} = 120 MHz (Scale 3)"
- Ambient operating temperature is 25 °C and V_{DD} =3.3 V.

-) e vin h e vel		I _{DD} (Typ) ⁽¹⁾	-	11:5
F	reripheral	Scale 1	Scale 2	Scale 3	Unit
	GPIOA	2.50	2.36	2.08	
	GPIOB	2.56	2.36	2.08	
	GPIOC	2.44	2.29	2.00	
	GPIOD	2.50	2.36	2.08	
	GPIOE	2.44	2.29	2.00	
	GPIOF	2.44	2.29	2.00	
	GPIOG GPIOH GPIOI	2.39	2.22	2.00	
		2.33	2.15	1.92	
		2.39	2.22	2.00	
AHB1	GPIOJ	2.33	2.15	1.92	
(up to 180 MHz)	GPIOK	2.33	2.15	1.92	µA/MHz
100 111 12)	OTG_HS+ULPI	27.00	24.86	21.92	
	CRC	0.44	0.42	0.33	
	BKPSRAM	0.78	0.69	0.58	
	DMA1	25.33	23.26	20.50	
	DMA2	24.72	22.71	20.00	
t	DMA2D	28.50	26.32	23.33	
	ETH_MAC ETH_MAC_TX ETH_MAC_RX ETH_MAC_PTP	21.56	20.07	17.75	

Table 35. Peripheral current consumption

Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The external clock signal has to respect the *Table 56: I/O static characteristics*. However, the recommended clock input waveform is shown in *Figure 28*.

The characteristics given in *Table 38* result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User External clock source frequency ⁽¹⁾		-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	V
V _{LSEL}	OSC32_IN input pin low level voltage		V _{SS}	-	0.3V _{DD}	
t _{w(LSE)} t _{f(LSE)}	OSC32_IN high or low time ⁽¹⁾		450	-	-	ne
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	115
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾		-	5	-	рF
DuCy _(LSE)	Duty cycle		30	-	70	%
۱ _L	OSC32_IN Input leakage current	$V_{SS} \!\leq\! \! V_{IN} \!\leq\! \! V_{DD}$	-	-	±1	μA

Table 38. Low-spee	ed external user	clock characteristics
--------------------	------------------	-----------------------

1. Guaranteed by design.

For C_{L1} and C_{L2}, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 29*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2}. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2}.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 40*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _F	Feedback resistor		-	18.4	-	MΩ
I _{DD}	LSE current consumption		-	-	1	μA
ACC _{LSE} ⁽²⁾	LSE accuracy		- 500	-	500	ppm
G _m _crit_max	Maximum critical crystal g _m	Startup	-	-	0.56	μA/V
t _{SU(LSE)} ⁽³⁾	startup time	V _{DD} is stabilized	-	2	-	s

Table 40. LSE oscillator characteristics (f_{LSE} = 32.768 kHz) ⁽¹⁾

1. Guaranteed by design.

2. This parameter depends on the crystal used in the application. Refer to application note AN2867.

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is based on characterization and not tested in production. It is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Note:

For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

Figure 32. ACC_{LSI} versus temperature

6.3.11 PLL characteristics

The parameters given in *Table 43* and *Table 44* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{PLL_IN}	PLL input clock ⁽¹⁾		0.95 ⁽²⁾	1	2.10	MHz
f _{PLL_OUT}	PLL multiplier output clock		24	-	180	MHz
f _{PLL48_OUT}	48 MHz PLL multiplier output clock		-	48	75	MHz
f _{VCO_OUT}	PLL VCO output		100	-	432	MHz
t _{LOCK}	PLL lock time	VCO freq = 100 MHz	75	-	200	116
		VCO freq = 432 MHz	100	-	300	μο

Table 43. Main PLL characteristics

6.3.18 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 56: I/O static characteristics*).

Unless otherwise specified, the parameters given in *Table 59* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
R _{PU}	Weak pull-up equivalent resistor ⁽¹⁾	nt resistor ⁽¹⁾ $V_{IN} = V_{SS}$		40	50	kΩ
V _{F(NRST)} ⁽²⁾	NRST Input filtered pulse		-	-	100	ns
V _{NF(NRST)} ⁽²⁾	NRST Input not filtered pulse	V _{DD} > 2.7 V	300	-	-	ns
T _{NRST_OUT}	Generated reset pulse duration	Internal Reset source	20	-	-	μs

Table 59. NRST pin characteristics

1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order).

2. Guaranteed by design.

1. The reset network protects the device against parasitic resets.

- 2. The external capacitor must be placed as close as possible to the device.
- 3. The user must ensure that the level on the NRST pin can go below the $V_{IL(NRST)}$ max level specified in *Table 59*. Otherwise the reset is not taken into account by the device.

ai14132c

Figure 58. Asynchronous multiplexed PSRAM/NOR write waveforms

Table 92. As	synchronous mult	iplexed PSRAM/NOR	write timings ⁽¹⁾⁽²⁾
--------------	------------------	-------------------	---------------------------------

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	4T _{HCLK}	4T _{HCLK} +0.5	ns
t _{v(NWE_NE)}	FMC_NEx low to FMC_NWE low	T _{HCLK} – 1	T _{HCLK} +0.5	ns
t _{w(NWE)}	FMC_NWE low time	2T _{HCLK}	2T _{HCLK} +0.5	ns
t _{h(NE_NWE)}	FMC_NWE high to FMC_NE high hold time	T _{HCLK}	-	ns
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	0	ns
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	0.5	1	ns
t _{w(NADV)}	FMC_NADV low time	T _{HCLK} – 0.5	T _{HCLK} + 0.5	ns
t _{h(AD_NADV)}	FMC_AD(adress) valid hold time after FMC_NADV high)	T _{HCLK} – 2	-	ns
t _{h(A_NWE)}	Address hold time after FMC_NWE high	T _{HCLK}	-	ns
t _{h(BL_NWE)}	FMC_BL hold time after FMC_NWE high	T _{HCLK} – 2	-	ns
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	2	ns
t _{v(Data_NADV)}	FMC_NADV high to Data valid	-	T _{HCLK} +1.5	ns
t _{h(Data_NWE)}	Data hold time after FMC_NWE high	T _{HCLK} +0.5	-	ns

1. C_L = 30 pF.

2. Guaranteed by characterization results.

Figure 93. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

7.7 UFBGA176+25 package information

Figure 98. UFBGA176+25 - ball 10 x 10 mm, 0.65 mm pitch ultra thin fine pitch ball grid array package outline

1. Drawing is not to scale.

Table 118. UFBGA176+25 - ball, 10 x 10 mm, 0.65 mm pitch,
ultra fine pitch ball grid array package mechanical data

Symbol		millimeters		inches ⁽¹⁾		
	Min.	Тур.	Max.	Min.	Тур.	Max.
A	-	-	0.600	-	-	0.0236
A1	-	-	0.110	-	-	0.0043
A2	-	0.130	-	-	0.0051	-
A3	-	0.450	-	-	0.0177	-
A4	-	0.320	-	-	0.0126	-
b	0.240	0.290	0.340	0.0094	0.0114	0.0134
D	9.850	10.000	10.150	0.3878	0.3937	0.3996
D1	-	9.100	-	-	0.3583	-
E	9.850	10.000	10.150	0.3878	0.3937	0.3996
E1	-	9.100	-	-	0.3583	-
е	-	0.650	-	-	0.0256	-
Z	-	0.450	-	-	0.0177	-
ddd	-	-	0.080	-	-	0.0031

Appendix A Recommendations when using internal reset OFF

When the internal reset is OFF, the following integrated features are no longer supported:

- The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled.
- The brownout reset (BOR) circuitry must be disabled.
- The embedded programmable voltage detector (PVD) is disabled.
- V_{BAT} functionality is no more available and VBAT pin should be connected to V_{DD}.
- The over-drive mode is not supported.

A.1 Operating conditions

Table 123. Limitations depending on the operating power supply range

Operating power supply range	ADC operation	Maximum Flash memory access frequency with no wait states (f _{Flashmax})	Maximum Flash memory access frequency with wait states ⁽¹⁾⁽²⁾	I/O operation	Possible Flash memory operations
V _{DD} =1.7 to 2.1 V ⁽³⁾	Conversion time up to 1.2 Msps	20 MHz ⁽⁴⁾	168 MHz with 8 wait states and over-drive OFF	 No I/O compensation 	8-bit erase and program operations only

1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is required.

 Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state program execution.

 V_{DD}/V_{DDA} minimum value of 1.7 V, with the use of an external power supply supervisor (refer to Section 3.17.1: Internal reset ON).

4. Prefetch is not available. Refer to AN3430 application note for details on how to adjust performance and power.

Figure 105. USB controller configured in dual mode and used in full speed mode

- 1. External voltage regulator only needed when building a $\mathrm{V}_{\mathrm{BUS}}$ powered device.
- The current limiter is required only if the application has to support a V_{BUS} powered device. A basic power switch can be used if 5 V are available on the application board.
- 3. The ID pin is required in dual role only.
- 4. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.

