

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	114
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f429zgt6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of tables

Table 1.	Device summary	2
Table 2.	STM32F427xx and STM32F429xx features and peripheral counts	. 15
Table 3.	Voltage regulator configuration mode versus device operating mode	. 28
Table 4.	Regulator ON/OFF and internal reset ON/OFF availability.	. 31
Table 5.	Voltage regulator modes in stop mode	. 32
Table 6.	Timer feature comparison.	. 34
Table 7.	Comparison of I2C analog and digital filters	. 36
Table 8.	USART feature comparison	. 37
Table 9.	Legend/abbreviations used in the pinout table	. 52
Table 10.	STM32F427xx and STM32F429xx pin and ball definitions	. 52
Table 11.	FMC pin definition.	. 71
Table 12.	STM32F427xx and STM32F429xx alternate function mapping	. 74
Table 13.	STM32F427xx and STM32F429xx register boundary addresses.	. 86
Table 14.	Voltage characteristics	. 92
Table 15.	Current characteristics	. 93
Table 16.	Thermal characteristics.	. 93
Table 17.	General operating conditions	. 94
Table 18	Limitations depending on the operating power supply range	96
Table 19	VCAP1/VCAP2 operating conditions	. 96
Table 20	Operating conditions at power-up / power-down (regulator ON)	. 97
Table 21	Operating conditions at power-up / power-down (regulator OFF)	. 97
Table 22	reset and power control block characteristics	98
Table 23	Over-drive switching characteristics	99
Table 20. Table 24	Typical and maximum current consumption in Run mode, code with data processing	. 00
	running from Flash memory (ART accelerator enabled excent prefetch) or RAM	101
Table 25	Turning normalized except prefetcing of rooms,	101
	running from Elash memory (ART accelerator disabled)	102
Table 26	Turning Iron Flash memory (ART accelerator disabled)	102
Table 20.	Typical and maximum current consumption in Steep mode	103
Table 27.	Typical and maximum current consumptions in Stop mode	104
Table 20.	Typical and maximum current consumptions in Stanuby mode	105
Table 29.	Typical and maximum current consumptions in V _{BAT} mode	105
Table 30.	Typical current consumption in Run mode, code with data processing running from	
		107
Table 21	VDD=1.7 V	107
Table 31.	Typical current consumption in Run mode, code with data processing running	400
	trom Flash memory, regulator OFF (ART accelerator enabled except pretetch)	108
Table 32.	Typical current consumption in Sleep mode, regulator ON, VDD=1.7 V	109
Table 33.		110
Table 34.		112
Table 35.	Peripheral current consumption	113
Table 36.	Low-power mode wakeup timings	116
Table 37.	High-speed external user clock characteristics.	117
Table 38.	Low-speed external user clock characteristics	118
Table 39.	HSE 4-26 MHz oscillator characteristics	119
Table 40.	LSE oscillator characteristics (f _{LSE} = 32.768 kHz)	120
Table 41.	HSI oscillator characteristics	121
Table 42.	L CL appillator obstractoristica	122

3.11 Chrom-ART Accelerator[™] (DMA2D)

The Chrom-Art Accelerator [™] (DMA2D) is a graphic accelerator which offers advanced bit blitting, row data copy and pixel format conversion. It supports the following functions:

- Rectangle filling with a fixed color
- Rectangle copy
- Rectangle copy with pixel format conversion
- Rectangle composition with blending and pixel format conversion.

Various image format coding are supported, from indirect 4bpp color mode up to 32bpp direct color. It embeds dedicated memory to store color lookup tables.

An interrupt can be generated when an operation is complete or at a programmed watermark.

All the operations are fully automatized and are running independently from the CPU or the DMAs.

3.12 Nested vectored interrupt controller (NVIC)

The devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 91 maskable interrupt channels plus the 16 interrupt lines of the $Cortex^{\$}$ -M4 with FPU core.

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Allows early processing of interrupts
- Processing of late arriving, higher-priority interrupts
- Support tail chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimum interrupt latency.

3.13 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 23 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 168 GPIOs can be connected to the 16 external interrupt lines.

3.14 Clocks and startup

On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy over the full temperature range. The application can then select as system clock either the RC oscillator or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is

detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing to increase the frequency up to 180 MHz. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails).

Several prescalers allow the configuration of the two AHB buses, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB buses is 180 MHz while the maximum frequency of the high-speed APB domains is 90 MHz. The maximum allowed frequency of the low-speed APB domain is 45 MHz.

The devices embed a dedicated PLL (PLLI2S) and PLLSAI which allows to achieve audio class performance. In this case, the I^2S master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz.

3.15 Boot modes

At startup, boot pins are used to select one out of three boot options:

- Boot from user Flash
- Boot from system memory
- Boot from embedded SRAM

The boot loader is located in system memory. It is used to reprogram the Flash memory through a serial interface. Refer to application note AN2606 for details.

3.16 Power supply schemes

- V_{DD} = 1.7 to 3.6 V: external power supply for I/Os and the internal regulator (when enabled), provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} = 1.7 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL. V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.
- V_{BAT} = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

Note: V_{DD}/V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset OFF). Refer to Table 3: Voltage regulator configuration mode versus device operating mode to identify the packages supporting this option.

3.17 **Power supply supervisor**

3.17.1 Internal reset ON

On packages embedding the PDR_ON pin, the power supply supervisor is enabled by holding PDR_ON high. On the other package, the power supply supervisor is always enabled.

The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is

communicate at speeds of up to 11.25 Mbit/s. The other available interfaces communicate at up to 5.62 bit/s.

USART1, USART2, USART3 and USART6 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller.

USART name	Standard features	Modem (RTS/CTS)	LIN	SPI master	irDA	Smartcard (ISO 7816)	Max. baud nartcard rate in Mbit/s ra SO 7816) (oversampling (o by 16)		APB mapping
USART1	х	х	x	х	х	х	5.62	11.25	APB2 (max. 90 MHz)
USART2	х	Х	x	х	х	Х	2.81	5.62	APB1 (max. 45 MHz)
USART3	х	Х	x	х	х	Х	2.81	5.62	APB1 (max. 45 MHz)
UART4	х	-	x	-	х	-	2.81	5.62	APB1 (max. 45 MHz)
UART5	х	-	х	-	х	-	2.81	5.62	APB1 (max. 45 MHz)
USART6	х	х	х	х	х	х	5.62	11.25	APB2 (max. 90 MHz)
UART7	х	-	х	-	х	-	2.81	5.62	APB1 (max. 45 MHz)
UART8	х	-	x	_	х	-	2.81	5.62	APB1 (max. 45 MHz)

1. X = feature supported.

3.25 Serial peripheral interface (SPI)

The devices feature up to six SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1, SPI4, SPI5, and SPI6 can communicate at up to 45 Mbits/s, SPI2 and SPI3 can communicate at up to 22.5 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller.

The SPI interface can be configured to operate in TI mode for communications in master mode and slave mode.

Figure 16. STM32F42x UFBGA169 ballout

1. The above figure shows the package top view.

2. The 4 corners balls, A1,A13, N1 and N13, are not bonded internally and should be left not connected on the PCB.

			Pin nı	ımbei	r								
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
35	46	N4	R5	56	N8	61	R5	PB0	I/O	FT	(5)	TIM1_CH2N, TIM3_CH3, TIM8_CH2N, LCD_R3, OTG_HS_ULPI_D1, ETH_MII_RXD2, EVENTOUT	ADC12_ IN8
36	47	K5	R4	57	K7	62	R4	PB1	I/O	FT	(5)	TIM1_CH3N, TIM3_CH4, TIM8_CH3N, LCD_R6, OTG_HS_ULPI_D2, ETH_MII_RXD3, EVENTOUT	ADC12_ IN9
37	48	L5	M6	58	L7	63	M5	PB2-BOOT1 (PB2)	I/O	FT	-	EVENTOUT	-
-	-	-	-	-	-	64	G4	PI15	I/O	FT	-	LCD_R0, EVENTOUT	-
-	-	-	-	-	-	65	R6	PJ0	I/O	FT	-	LCD_R1, EVENTOUT	-
-	-	-	-	-	-	66	R7	PJ1	I/O	FT	-	LCD_R2, EVENTOUT	-
-	-	-	-	-	-	67	P7	PJ2	I/O	FT	-	LCD_R3, EVENTOUT	-
-	-	-	-	-	-	68	N8	PJ3	I/O	FT	-	LCD_R4, EVENTOUT	-
-	-	-	1	-	-	69	M9	PJ4	I/O	FT	-	LCD_R5, EVENTOUT	-
-	49	M5	R6	59	M7	70	P8	PF11 I/O FT - SPI5_MOSI, DCMI_D12, EVENTOUT		-			
-	50	N5	P6	60	N7	71	M6	PF12	I/O	FT	-	FMC_A6, EVENTOUT	-
-	51	G9	M8	61	-	72	K7	V _{SS}	S		-	-	-
-	52	D10	N8	62	-	73	L8	V _{DD}	S		-	-	-
-	53	M6	N6	63	K6	74	N6	PF13	I/O	FT	-	FMC_A7, EVENTOUT	-
-	54	K7	R7	64	L6	75	P6	PF14	I/O	FT	-	FMC_A8, EVENTOUT	-
-	55	L7	P7	65	M6	76	M8	PF15	I/O	FT	-	FMC_A9, EVENTOUT	-
-	56	N6	N7	66	N6	77	N7	PG0	I/O	FT	-	FMC_A10, EVENTOUT	-
-	57	M7	M7	67	K5	78	M7	PG1	I/O	FT	-	FMC_A11, EVENTOUT	-

[able 10. STM32F427xx and STM32]	F429xx pin and ball	definitions (continued)
----------------------------------	---------------------	-------------------------

			Pin nı	umbei	•								
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
-	125	C7	B10	153	C6	179	C8	PG10	I/O	FT	-	LCD_G3, FMC_NCE4_1/FMC_N E3, DCMI_D2, LCD_B2, EVENTOUT	-
-	126	B7	В9	154	B6	180	B8	PG11	I/O	FT	-	ETH_MII_TX_EN/ETH_ RMII_TX_EN, FMC_NCE4_2, DCMI_D3, LCD_B3, EVENTOUT	-
-	127	A7	B8	155	A6	181	C7	PG12	I/O	FT	-	SPI6_MISO, USART6_RTS, LCD_B4, FMC_NE4, LCD_B1, EVENTOUT	-
-	128	NC (2)	A8	156	D6	182	В3	PG13	I/O	FT	-	SPI6_SCK, USART6_CTS, ETH_MII_TXD0/ETH_R MII_TXD0, FMC_A24, EVENTOUT	-
-	129	NC (2)	A7	157	F6	183	A4	PG14	I/O	FT	-	SPI6_MOSI, USART6_TX, ETH_MII_TXD1/ETH_R MII_TXD1, FMC_A25, EVENTOUT	-
-	130	D7	D7	158	-	184	F7	V _{SS}	S		-	-	-
-	131	L6	C7	159	E6	185	E8	V _{DD}	S		-	-	-
-	-	-	-	-	-	186	D8	PK3	1/0	FT	-	LCD_B4, EVENTOUT	-
-	-	-	-	-	-	107		PK4	1/0		-	LOD BE EVENTOUT	-
-	-	-	-	-	-	189	C5	PK6	1/0	FT	-	LCD B7. EVENTOUT	-
-	-	-	-	-	_	190	C4	PK7	O	FT	-	LCD DE, EVENTOUT	-
-	132	C6	В7	160	A7	191	B7	PG15	I/O	FT	-	USART6_CTS, FMC_SDNCAS, DCMI_D13, EVENTOUT	-

Table 10. STM32F427xx and STM32F429xx	pin and ball definitions (continued)
---------------------------------------	----------------------------	------------

Pinouts and pin description

- 4. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F4xx reference manual, available from the STMicroelectronics website: www.st.com.
- 5. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).
- If the device is delivered in an WLCSP143, UFBGA169, UFBGA176, LQFP176 or TFBGA216 package, and the BYPASS_REG pin is set to V_{DD} (Regulator OFF/internal reset ON mode), then PA0 is used as an internal Reset (active low).
- 7. PI0 and PI1 cannot be used for I2S2 full-duplex mode.
- 8. The DCMI_VSYNC alternate function on PG9 is only available on silicon revision 3.

Bus	Boundary address	Peripheral
	0x4000 8000- 0x4000 FFFF	Reserved
	0x4000 7C00 - 0x4000 7FFF	UART8
	0x4000 7800 - 0x4000 7BFF	UART7
	0x4000 7400 - 0x4000 77FF	DAC
	0x4000 7000 - 0x4000 73FF	PWR
	0x4000 6C00 - 0x4000 6FFF	Reserved
	0x4000 6800 - 0x4000 6BFF	CAN2
	0x4000 6400 - 0x4000 67FF	CAN1
	0x4000 6000 - 0x4000 63FF	Reserved
	0x4000 5C00 - 0x4000 5FFF	I2C3
	0x4000 5800 - 0x4000 5BFF	I2C2
	0x4000 5400 - 0x4000 57FF	I2C1
	0x4000 5000 - 0x4000 53FF	UART5
	0x4000 4C00 - 0x4000 4FFF	UART4
	0x4000 4800 - 0x4000 4BFF	USART3
	0x4000 4400 - 0x4000 47FF	USART2
	0x4000 4000 - 0x4000 43FF	I2S3ext
AFDI	0x4000 3C00 - 0x4000 3FFF	SPI3 / I2S3
	0x4000 3800 - 0x4000 3BFF	SPI2 / I2S2
	0x4000 3400 - 0x4000 37FF	I2S2ext
	0x4000 3000 - 0x4000 33FF	IWDG
	0x4000 2C00 - 0x4000 2FFF	WWDG
	0x4000 2800 - 0x4000 2BFF	RTC & BKP Registers
	0x4000 2400 - 0x4000 27FF	Reserved
	0x4000 2000 - 0x4000 23FF	TIM14
	0x4000 1C00 - 0x4000 1FFF	TIM13
	0x4000 1800 - 0x4000 1BFF	TIM12
	0x4000 1400 - 0x4000 17FF	TIM7
	0x4000 1000 - 0x4000 13FF	TIM6
	0x4000 0C00 - 0x4000 0FFF	TIM5
	0x4000 0800 - 0x4000 0BFF	TIM4
	0x4000 0400 - 0x4000 07FF	TIM3
	0x4000 0000 - 0x4000 03FF	TIM2

Table 13. STM32F427xx and STM32F429xx register boundary addresses (continued)

Symbol	Parameter	Conditions	I/O toggling frequency (fsw)	Тур	Unit	
			2 MHz	0.0		
			8 MHz	0.2		
			25 MHz	0.6		
		$V_{DD} = 3.3 V$ C= C _{WT} ⁽²⁾	50 MHz	1.1		
		C CINI	60 MHz	1.3		
			84 MHz	1.8		
	I/O switching		90 MHz	1.9		
IDDIO	Current		2 MHz	0.1	mA	
			8 MHz	0.4		
		V _{DD} = 3.3 V	25 MHz	1.23		
		$C_{EXT} = 0 \text{ pF}$	50 MHz	2.43		
		$C = C_{INT} + C_{EXT}$ + C_{S}	60 MHz	2.93		
			84 MHz	3.86		
			90 MHz	4.07		
			2 MHz	0.18	-	
			8 MHz	0.67		
		$V_{DD} = 3.3 V$ $C_{EXT} = 10 pF$	25 MHz	2.09		
			50 MHz	3.6		
		$+ C_{S}$	60 MHz	4.5		
			84 MHz	7.8		
			90 MHz	9.8		
Innua	I/O switching		2 MHz	0.26	mΔ	
סוסטי	Current	V _{DD} = 3.3 V	8 MHz	1.01	mA	
		C _{EXT} = 22 pF C = Chut + CEXT	25 MHz	3.14		
		$+ C_{S}$	50 MHz	6.39		
			60 MHz	10.68		
		$V_{DD} = 3.3 V$	2 MHz	0.33		
		$C_{EXT} = 33 \text{ pF}$	8 MHz	1.29		
		$C = C_{INT} + Cext$	25 MHz	4.23		
		+ 0 _S	50 MHz	11.02		

Table 34. Switching out	tput I/O current consumption ⁽¹⁾
-------------------------	---

1. C_S is the PCB board capacitance including the pad pin. C_S = 7 pF (estimated value).

2. This test is performed by cutting the LQFP176 package pin (pad removal).

For C_{L1} and C_{L2}, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 29*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2}. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2}.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 40*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _F	Feedback resistor		-	18.4	-	MΩ
I _{DD}	LSE current consumption		-	-	1	μA
ACC _{LSE} ⁽²⁾	LSE accuracy		- 500	-	500	ppm
G _m _crit_max	Maximum critical crystal g _m	Startup	-	-	0.56	μA/V
t _{SU(LSE)} ⁽³⁾	startup time	V _{DD} is stabilized	-	2	-	S

Table 40. LSE oscillator characteristics (f_{LSE} = 32.768 kHz) ⁽¹⁾

1. Guaranteed by design.

2. This parameter depends on the crystal used in the application. Refer to application note AN2867.

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is based on characterization and not tested in production. It is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Note:

For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC[?] code, is running. This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored	Max vs. [f _{HSE} /f _{CPU}]	Max vs. [f _{HSE} /f _{CPU}]	Unit	
				25/168 MHz	25/180 MHz		
		V_DD = 3.3 V, T_A = 25 °C, LQFP176 package, conforming to SAE J1752/3 EEMBC, ART ON, all peripheral clocks enabled, clock dithering disabled.0.1 to 30 toPeak levelV_DD = 3.3 V, T_A = 25 °C, LQFP176 package, conforming to SAE J1752/30.1 to 	0.1 to 30 MHz	16	19		
			30 to 130 MHz	23	23	dBµV	
			130 MHz to 1GHz	25	22		
	Peak level		SAE EMI Level	4	4	-	
SEWI	reak level		0.1 to 30 MHz	17	16		
			30 to 130 MHz	8	10	dBuV	
			EEMBC, ART ON, all peripheral clocks enabled, clock dithering archied	EEMBC, ART ON, all peripheral clocks enabled, clock dithering	11	16	
			SAE EMI level	3.5	3.5	-	

Table 52. EMI characteristics

6.3.19 TIM timer characteristics

The parameters given in Table 60 are guaranteed by design.

Refer to Section 6.3.17: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions ⁽³⁾	Min	Max	Unit			
t _{res(TIM)}	Timer resolution time	AHB/APBx prescaler=1 or 2 or 4, f _{TIMxCLK} = 180 MHz	1	-	t _{TIMxCLK}			
		AHB/APBx prescaler>4, f _{TIMxCLK} = 90 MHz	1	-	t _{TIMxCLK}			
f _{EXT}	Timer external clock frequency on CH1 to CH4	f _{TIMxCLK} = 180 MHz	0	f _{TIMxCLK} /2	MHz			
Res _{TIM}	Timer resolution		-	16/32	bit			
t _{MAX_COUNT}	Maximum possible count with 32-bit counter		-	65536 × 65536	t _{TIMxCLK}			

1. TIMx is used as a general term to refer to the TIM1 to TIM12 timers.

2. Guaranteed by design.

 The maximum timer frequency on APB1 or APB2 is up to 180 MHz, by setting the TIMPRE bit in the RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCKL, otherwise TIMxCLK = 4x PCLKx.

6.3.20 Communications interfaces

I²C interface characteristics

The I^2C interface meets the timings requirements of the I^2C -bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s.

The I²C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to RM0090 reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present. Refer to Section 6.3.17: I/O port characteristics for more details on the I²C I/O characteristics.

All I²C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:

Figure 41. I²S slave timing diagram (Philips protocol)⁽¹⁾

1. .LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 42. I²S master timing diagram (Philips protocol)⁽¹⁾

1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 53. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

1. V_{REF+} and V_{REF-} inputs are both available on UFBGA176. V_{REF+} is also available on LQFP100, LQFP144, and LQFP176. When V_{REF+} and V_{REF-} are not available, they are internally connected to V_{DDA} and V_{SSA} .

6.3.22 Temperature sensor characteristics

Table 80. Temperature sensor characteristics					
Parameter	Min	-			

Symbol	Parameter		Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	-	2.5		mV/°C
V ₂₅ ⁽¹⁾	Voltage at 25 °C	-	0.76		V
t _{START} ⁽²⁾	Startup time	-	6	10	μs
T _{S_temp} ⁽²⁾	ADC sampling time when reading the temperature (1 °C accuracy)	10	-	-	μs

1. Guaranteed by characterization results.

2. Guaranteed by design.

Symbol	Parameter	Memory address
TS_CAL1	TS ADC raw data acquired at temperature of 30 °C, V_{DDA} = 3.3 V	0x1FFF 7A2C - 0x1FFF 7A2D
TS_CAL2	TS ADC raw data acquired at temperature of 110 °C, V _{DDA} = 3.3 V	0x1FFF 7A2E - 0x1FFF 7A2F

Table 81. Temperature sensor calibration values

Symbol	Parameter	Min	Мах	Unit
t _{w(NWE)}	FMC_NWE low width	4T _{HCLK}	4T _{HCLK} +1	ns
t _{v(NWE-D)}	FMC_NWE low to FMC_D[15-0] valid	0	-	ns
t _{h(NWE-D)}	FMC_NWE high to FMC_D[15-0] invalid	3T _{HCLK} – 1	-	ns
t _{d(D-NWE)}	FMC_D[15-0] valid before FMC_NWE high	5T _{HCLK} – 3	-	ns
t _{d(ALE-NWE)}	FMC_ALE valid before FMC_NWE low	-	3T _{HCLK} -0.5	ns
t _{h(NWE-ALE)}	FMC_NWE high to FMC_ALE invalid	3T _{HCLK} – 1	-	ns

Table 101. Switching characteristics for NAND Flash write cycles⁽¹⁾

1. C_L = 30 pF.

SDRAM waveforms and timings

57

6.3.27 Camera interface (DCMI) timing specifications

Unless otherwise specified, the parameters given in *Table 106* for DCMI are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage summarized in *Table 17*, with the following configuration:

- DCMI_PIXCLK polarity: falling
- DCMI_VSYNC and DCMI_HSYNC polarity: high
- Data formats: 14 bits

Symbol	Parameter	Min	Max	Unit
	Frequency ratio DCMI_PIXCLK/f _{HCLK}	-	0.4	
DCMI_PIXCLK	Pixel clock input	-	54	MHz
D _{Pixel}	Pixel clock input duty cycle	30	70	%
t _{su(DATA)}	Data input setup time	2	-	
t _{h(DATA)}	Data input hold time	2.5	-	
t _{su(HSYNC)} t _{su(VSYNC)}	DCMI_HSYNC/DCMI_VSYNC input setup time	0.5	-	ns
t _{h(HSYNC)} t _{h(VSYNC)}	DCMI_HSYNC/DCMI_VSYNC input hold time	1	-	

Table 106. DCMI characteristics

Figure 75. DCMI timing diagram

57

6.3.29 SD/SDIO MMC card host interface (SDIO) characteristics

Unless otherwise specified, the parameters given in *Table 108* for the SDIO/MMC interface are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output characteristics.

Figure 78. SDIO high-speed mode

Figure 79. SD default mode

Device marking for LQFP144

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which depends assembly location, are not indicated below.

Figure 88. LQFP144 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.8 **TFBGA216** package information

Figure 101. TFBGA216 - 216 ball 13 × 13 mm 0.8 mm pitch thin fine pitch ball grid array package outline

1. Drawing is not to scale.

Table 120. TFBGA216 - 216 ball 13 × 13 mm 0.8 mm pitch thin fine pitch ball grid arraypackage mechanical data

Symbol	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Мах	
А	-	-	1.100	-	-	0.0433	
A1	0.150	-	-	0.0059	-	-	
A2	-	0.760	-	-	0.0299	-	
b	0.350	0.400	0.450	0.0138	0.0157	0.0177	
D	12.850	13.000	13.150	0.5118	0.5118	0.5177	
D1	-	11.200	-	-	0.4409	-	
E	12.850	13.000	13.150	0.5118	0.5118	0.5177	
E1	-	11.200	-	-	0.4409	-	
е	-	0.800	-	-	0.0315	-	
F	-	0.900	-	-	0.0354	-	
ddd	-	-	0.100	-	-	0.0039	

