

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detailo	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	24
Program Memory Size	4KB (4K x 8)
Program Memory Type	ROM
EEPROM Size	-
RAM Size	236 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.600", 15.24mm)
Supplier Device Package	28-DIP
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z87c3304pecr53a7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

©2003 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Except with the express written approval of ZiLOG, use of information, devices, or technology as critical components of life support systems is not authorized. No licenses are conveyed, implicitly or otherwise, by this document under any intellectual property rights.

Pin Description

	1					
P25		1	\bigcirc	28	3 占	P24
P26		2		2	7	P23
P27		3		26	6 🗖	P22
P04		4		2	5 🗖	P21
P05	С	5		24	4日	P20
P06		6		23	3 占	P03
P07		7		22	2⊨	VSS
V_{DD}	С	8		2	۱þ	P02
XTAL2		9		20	┝┢	P01
XTAL1	С	10		19	ョト	P00
P31	Ц	11		18	3	P30
P32	С	12		17	۲þ	P36
P33		13		16	۶þ	P37
P34		14		1:	5 1	P35
	L					

Pin #	Symbol	Function	Direction
1–3	P25-27	Port 2, Pins 5,6,7	Input/Output
4-7	P04-07	Port 0, Pins 4-7	Input/Output
8	V _{DD}	Power Supply	
9	XTAL2	Crystal Oscillator	Output
10	XTAL1	Crystal Oscillator	Input
11-13	P31-33	Port 3, Pins 1,2,3	Fixed Input
14-15	P34-35	Port 3, Pins 4,5	Fixed Output
16	P37	Port 3, Pin 7	Fixed Output
17	P36	Port 3, Pin 6	Fixed Output
18	P30	Port 3, Pin 0	Fixed Input
19-21	P00-02	Port 0, Pins 0,1,2	Input/Output
22	V _{SS}	Ground	
23	P03	Port 0, Pin 3	Input/Output
24-28	P20-24	Port 2, Pins 0,1,2,3,4	Input/Output

Table 2. 28-Pin DIP/SOIC Pin Configuration

8

Mode Register (P3M bit 1). For interrupt functions, Port 3, bit 0 and pin 3 are falling-edge interrupt inputs. P31 and P32 are programmable as rising, falling, or both edge-triggered interrupts (IRQ register bits 6 and 7). P33 is the comparator reference voltage input when in Analog mode. Access to Counter/Timer 1 is made through P31 (T_{IN}) and P36 (T_{OUT}). Handshake lines for Ports 0, 1, and 2 are available on P31 through P36.

Port 3 also provides the following control functions: four external interrupt request signals (IRQ3–IRQ0) and timer input and output signals (T_{IN} and T_{OUT}).

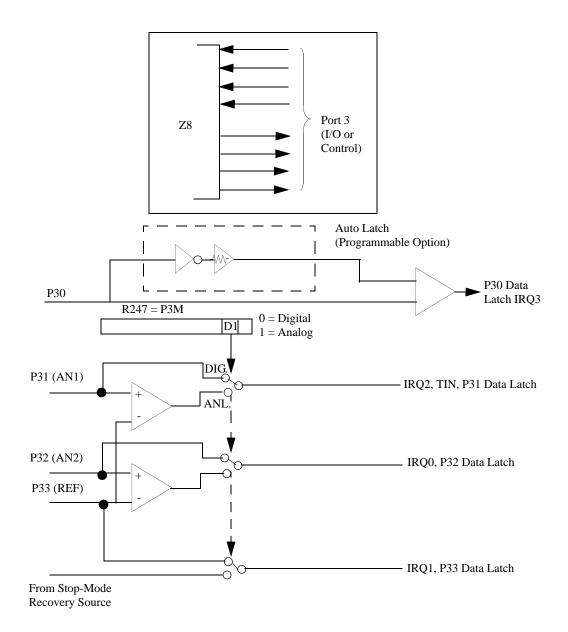
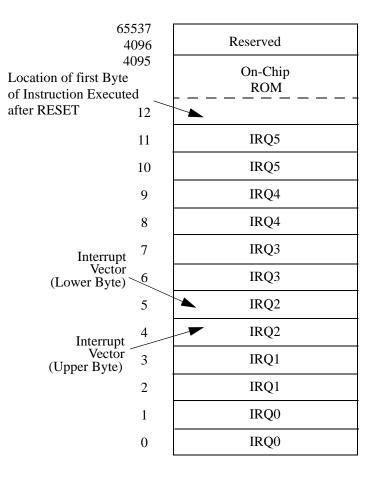

Pin	I/O	Control Timer	Analog	Interrupt
P30	IN			IRQ3
P31	IN	T _{IN}	AN1	IRQ2
P32	IN		AN2	IRQ0
P33	IN		REF	IRQ1
P34	OUT		AN1–OUT	
P35	OUT			
P36	OUT	T _{OUT}		
P37	OUT		AN2-OUT	

Table 3	3.	Port	3	Pin	Assignments
---------	----	------	---	-----	-------------

Comparator Inputs and Outputs. Port 3, pins P31 and P32 each feature a comparator front end. The comparator reference voltage, pin P33, is common to both comparators. In ANALOG mode, the P31 and P32 are the positive inputs to the comparators, and P33 is the reference voltage supplied to both comparators. In DIGITAL mode, pin P33 is used as a P33 register input or IRQ1 source. P34 and P37 can provide the comparator output directly by software-programming the PCON register bit D0 to 1 (see Figure 5).

Note: The user must add a two-NOP delay after setting the P3M bit D1 to 1 before the comparator output is valid. IRQ0, IRQ1, and IRQ2 must be cleared in the IRQ register when the comparator is enabled or disabled.



interrupts. Address 12 to address 4095 consists of on-chip mask-programmed ROM.

The 4 KB program memory is mask programmable. A ROM protect feature prevents dumping of the ROM contents by inhibiting execution of LDC, LDCI, LDE, and LDEI instructions to program memory in external program mode. ROM lookup tables can be used with this feature. The ROM Protect option is mask-programmable, to be selected by the customer when the ROM code is submitted.

See Figure 7.

Figure 7. Program Memory Map

ROM Protect. ROM PROTECT provides an additional security function. When the ROM PROTECT option bit is selected, and executing out of Internal Program

Name	Source	Vector Location	Comments
IRQ0	IRQ0	0,1	External (P32), Rising and Falling Edges Triggered
IRQ1,	IRQ1	2,3	External (P33), Falling Edge Triggered
IRQ2	IRQ2, T _{IN}	4,5	External (P31), Rising and Falling Edges Triggered
IRQ3	IRQ3	6,7	External (P30), Falling Edge Triggered
IRQ4	ТО	8,9	Internal
IRQ5	T1	10,11	Internal

Table 5. Interrupt Types, Sources, and Vectors

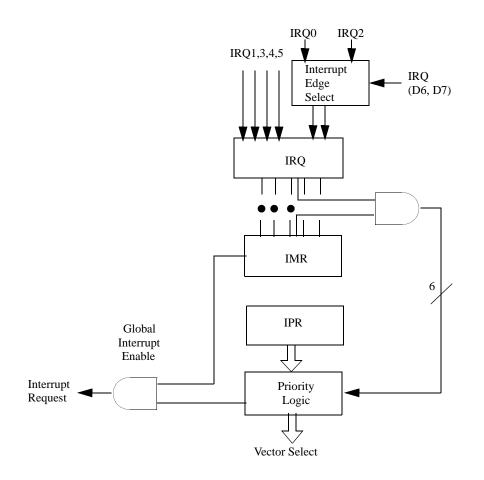


Figure 11.Interrupt Block Diagram

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register. An interrupt machine cycle activates when an interrupt request is granted. This action disables all subsequent interrupts, saves the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt.

All Z8 interrupts are vectored through locations in the program memory. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request. To accommodate polled interrupt systems, interrupt inputs are masked and the Interrupt Request register is polled to determine which of the interrupt requests require service.

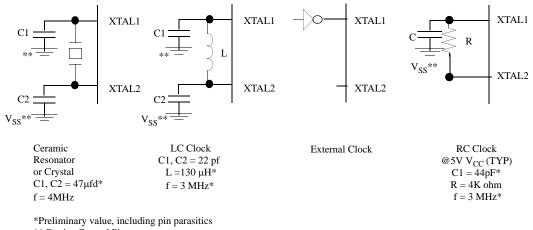
When in ANALOG mode, an interrupt resulting from AN1 maps to IRQ2, and an interrupt from AN2 maps to IRQ0. Interrupts IRQ2 and IRQ0 may be rising, falling, or both edge-triggered, and are programmed in the IRQ register. The software polls to identify the state of the pin. When in ANALOG mode, IRQ1 is generated by the Stop-Mode Recovery source selected by SMR Register bits D4, D3, D2, or SMR2 D1 or D0.

Programming bits for the Interrupt Edge Select are located in the IRQ register, bits D7 and D6. The configuration is indicated in Table 7.

	IRQ	In	Interrupt Edge			
D7	D6	P31	P32			
0	0	F	F			
	1	F	R			
1	0	R	F			
1	1	R/F	R/F			
Notes: F = Falling R = Rising						

Table 6. IRQ Register*

Clock. The Z8 on-chip oscillator features a high-gain, parallel-resonant amplifier for connection to a crystal, LC, RC, ceramic resonator, or any suitable external clock source ($X_{IN} = INPUT$, $X_{OUT} = OUTPUT$). The crystal should be AT-cut, 4 MHz maximum, with a series resistance (RS) of less than or equal to 100 Ω when oscillating from 1MHz to 4MHz.


The crystal should be connected across XTAL1 and XTAL2 using the vendor's recommended capacitor values from each pin directly to the device Ground pin to reduce ground-noise injection into the oscillator. The RC oscillator option is mask-

programmable and is selectable by the customer at the time the ROM code is submitted.

Notes: The RC option is available up to 4MHz. The RC oscillator configuration must be an external resistor connected from x_{IN} to x_{OUT} , with a frequency-setting capacitor from x_{IN} to Ground (Figure 12).

For better noise immunity, the capacitors should be tied directly to the device Ground pin (V_{SS}).

** Device Ground Pin

Power-On Reset (POR). A timer circuit clocked by a dedicated on-board RC oscillator is used for the Power-On Reset (POR) timer function. The POR time allows V_{CC} and the oscillator circuit to stabilize before instruction execution begins.

The POR timer circuit is a one-shot timer triggered by one of three conditions:

- 1. Power fail to Power OK status.
- 2. Stop-Mode Recovery (if D5 of SMR = 1).
- 3. WDT time-out.

The POR time is specified as TPOR. Bit 5 of the Stop-Mode Register determines whether the POR timer is bypassed after Stop-Mode Recovery (typical for external clock, RC/LC oscillators).

HALT. HALT turns off the internal CPU clock, but not the CRYSTAL oscillation. The counter/timers, analog comparators, and external interrupts IRQ0, IRQ1, IRQ2, and IRQ3 remain active. The devices are recovered by interrupts and are either externally or internally generated. This also includes WDT time-out Reset

Bit		D7	D6	D5	D4	D3	D2	D1	D0	
R/W		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset Stat	te	Х	Х	Х	Х	Х	Х	Х	Х	
Note: $R = F$	Read, W	= Write, X	= Indete	rminate.						
					Description					
Bit Position	Bit Field		R/W	Reset State	Descrip	otion				
			R/W R	-	•	otion ent Value				

Table 19. Counter/Timer 0 Register—T0 F4h/R244 Bank 0h: READ/WRITE

Prescaler 0 Register

The Prescaler 0 Register PRE0 controls clocking functions. WRITE and reset states for bits D7–D0 are listed in Table 20.

Table 20. Prescaler 0 Register—PRE0 F5h/R245 Bank 0h: WRITE ONLY

Bit	D7	D6	D5	D4	D3	D2	D1	D0			
R/W	W	W	W	W	W	W	W	W			
Reset State X X X X X X X X 0											
Note: W = Write, X =	Note: W = Write, X = Indeterminate.										

Bit Position	Bit Field	R/W	Reset State	Description
D7–D2	Prescaler	W	Х	Prescaler Modulo Range = 1–64 decimal; 01h–00h
D1	Reserved	W	Х	Reserved—must be 0
D0	Count	W	0	Count Mode 0: T0 Single Pass 1: T0 Modulo N

Bit Position	Bit Field	R/W	Reset State	Description
D7–D6	Interrupt Edge	R/W	00	Interrupt Edge 00: P31 ↓ P32 ↓ 01: P31 ↓ P32 ↑ 10: P31 ↑ P32 ↓ 11: P31 ↑↓ P32 ↑↓
D5	IRQ5	R/W	0	Interrupt IRQ5 = T1 0: No Interrupt pending 1: Interrupt pending
D4	IRQ4	R/W	0	Interrupt IRQ4 = T0 0: No Interrupt pending 1: Interrupt pending
D3	IRQ3	R/W	0	Interrupt IRQ3 = P30 Input 0: No Interrupt pending 1: Interrupt pending
D2	IRQ2	R/W	0	Interrupt IRQ2 = P31 Input 0: No Interrupt pending 1: Interrupt pending
D1	IRQ1	R/W	0	Interrupt IRQ1 = P33 Input 0: No Interrupt pending 1: Interrupt pending
D0	IRQ0	R/W	0	Interrupt IRQ0 = P32 Input 0: No Interrupt pending 1: Interrupt pending

Interrupt Mask Register

The Interrupt Mask Register, IMR, controls interrupt functions. READ/WRITE and reset states for bits D7–D0 are listed in Table 26.

Table 26. Interrupt Mask Register—IMR FBh/R251 Bank 0h: READ/WRITE

Bit	D7	D6	D5	D4	D3	D2	D1	D0
R/W								

Bit Position	Bit Field	R/W	Reset State	Description
D4	Reserved	W	1	Reserved 1: Reserved must be "1"
D3	Port 0 I/O	W	1	Port 0† 0: Low EMI 1: Standard
D2	Port 0 I/O	W	1	Port 0 0: Open-Drain 1: Push-Pull Active
D1	Reserved	W	1	Reserved 1: Reserved must be "1"
D0	Port 3	W	0	Port 3 Comparator Output 0: P34, P37 Standard Output 1: P34, P37 Comparator Output

Stop-Mode Recovery Register

The Stop-Mode Recovery Register, SMR, controls clocking functions. READ/ WRITE and reset states for bits D7–D0 are listed in Table 33.

Table 33. Stop-Mode Recovery Register—SMR 0Bh/R11 Bank Fh:READ/WRITE
--

Bit	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R	W	W	W	W	W	W	W
Reset	0	0	1	0	0	0	0	0
Note: R = Read, W = Write.								

Bit Position	Bit Field	R/W	Reset State	Description
D7	Stop	R	0	Stop Flag³ 0: POR 1: Stop Recovery
D6	Stop-Mode Recovery	W	0	Stop-Mode Recovery Level 0: Low 1: High

Notes:

 For the Stop-Mode Recovery Source, either SMR or SMR2 can be selected. If SMR is used to select the <u>Stop-Mode</u> Recovery Source, bits D1–D0 of SMR2 must be 0.

2. Cleared by $\overrightarrow{\mathsf{RESET}}$ and SMR.

3. Not reset after Stop-Mode Recovery.

Bit Position	Bit Field	R/W	Reset State	Description
D5	Stop Delay	W	1	Stop Delay 0: Off 1: On
D4–D2	Stop Mode	W	000	Stop-Mode Recovery Source ² 000: POR only and/or external RESET 001: P30 010: P31 011: P32 100: P33 101: P27 110: P2 NOR 0–3 111: P2 NOR 0–7
D1	Clock	W	0	External Clock Divide-by-2 0: SCLK &TCLK = X _{IN} ÷ 2 1: SCLK &TCLK = X _{IN}
D0	SCLK/TCLK	W	0	SCLK/TCLK Divide-by-16 0: Off 1: On

Notes:

1. For the Stop-Mode Recovery Source, either SMR or SMR2 can be selected. If SMR is used to select the Stop-Mode Recovery Source, bits D1–D0 of SMR2 must be 0.

2. Cleared by RESET and SMR.

3. Not reset after Stop-Mode Recovery.

				T _A = to +70°C	– Typical ²				
Sym	Parameter	V_{CC1}	Min	Max	@25°C	Units	Conditions	Notes	
I _{CC1}	Standby Current	3.0V		4.3	1.5	mA	V _{IN} = 0V, V _{CC} @ 16 MHz	6	
	(HALT mode)	5.5V		7	3.4	mA	V _{IN} = 0V, V _{CC} @ 16 MHz	6	
I _{CC2}	Standby Current	3.0V		8	2	μA	WDT is not Running	7,8	
•		(STOP Mode)	5.5V		10	4	μA	WDT is not Running	7,8
		3.0V		500	310	μA	WDT is Running	7,8,9	
		5.5V		800	600	μA	WDT is Running	7,8,9	
V _{ICR}	Input	3.0V	0	V _{CC} -1.0V		V		5	
	Common Mode Voltage Range	5.5V	0	V _{CC} -1.0V		V		5	
I _{ALL}	Autolatch	3.0V	0.7	8	3	μA	0V <v<sub>IN<v<sub>CC</v<sub></v<sub>	10	
	Low Current	5.5V	1.4	15	5	μA	0V <v<sub>IN<v<sub>CC</v<sub></v<sub>	10	
I _{ALH}	Autolatch	3.0V	-0.6	-5	-3	μA	0V <v<sub>IN<v<sub>CC</v<sub></v<sub>	10	
	High Current	5.5V	-1.0	-8	-6	μA	0V <v<sub>IN<v<sub>CC</v<sub></v<sub>	10	

Table 37. DC Electrical Characteristics at Standard Temperature (Continued)

Notes:

1. The V_{CC} voltage specification of 3.0V guarantees $3.3V \pm 0.3V$ with typicals at V_{CC} = 3.3V, and the V_{CC} voltage specification of 5.5V guarantees 5.0V $\pm 0.5V$ with typicals at V_{CC} = 5.0V.

2. Typical voltage is $V_{CC} = 5.0$ V and 3.3 V.

3. STANDARD Mode (not Low-EMI Mode).

4. Low-EMI Mode (Not Standard Mode).

5. For analog comparator, inputs when analog comparators are enabled.

6. All outputs unloaded, I/O pins floating, inputs at rail.

7. Same as note 6, except inputs at V_{CC}.

8. Clock must be forced Low, when X_{IN} is clock-driven and X_{OUT} is floating.

9. 0°C to 70°C (standard temperature).

10. Autolatch (Mask Option) selected.

11. The V_{LV} voltage increases as the temperature decreases and overlaps lower V_{CC} operating region. See <u>Figure 15</u>.

12.-40°C to 105°C (extended temperature).

			T _A = −40°C to +105°C		_ Typical ²			
Sym	Parameter	\mathbf{v}_{CC1}	Min	Max	@25°C	Units	Conditions	Notes
V _{OL}	Output Low	3.0V		0.6	0.2	V	I _{OL} = 1.0 mA	4
	Voltage	5.0V		0.4	0.1	V	I _{OL} = 1.0 mA	4
V _{OL1}	Output Low	3.0V		0.6	0.2	V	$I_{OL} = +4.0 \text{ mA}$	3
	Voltage	5.5V		0.4	0.1	V	I _{OL} = +4.0 mA	3
V _{OL2}	Output Low	3.0V		1.2	0.3	V	I _{OL} = +6 mA	3
	Voltage	5.5V		1.2	0.4	V	I _{OL} = +12 mA	3
VOFFSET		3.0V		25	10	mV		5
	Input Offset Voltage	5.5V		25	10	mV		5
Ι _{ΙL}	Input Leakage	3.0V	-1	2	0.04	μA	$V_{IN} = 0V, V_{CC}$	
		5.5V	-1	2	0.04	μA	$V_{IN} = 0V, V_{CC}$	
I _{OL}	Output	3.0V	-1	2	0.04	μA	$V_{IN} = 0V, V_{CC}$	
	Leakage	5.5V	-1	2	0.04	μA	$V_{IN} = 0V, V_{CC}$	
Icc	Supply Current	3.0V		10	4	mA	@ 4 MHz	6
		5.5V		15	9	mA	@ 4 MHz	6
I _{CC1}	Standby Current	3.0V		4.3	1.5	mA	V _{IN} = 0V, V _{CC} @ 4 MHz	6
	(HALT mode)	5.5V		7	3.4	mA	V _{IN} = 0V, V _{CC} @ 4 MHz	6

 Table 38. DC Electrical Characteristics at Extended Temperature (Continued)

Notes:

1. The V_{CC} voltage specification of 3.0V guarantees $3.3V \pm 0.3V$ with typicals at V_{CC} = 3.3V, and the V_{CC} voltage specification of 5.5V guarantees $5.0V \pm 0.5V$ with typicals at V_{CC} = 5.0V.

2. Typical voltage is $V_{CC} = 5.0$ V and 3.3 V.

- 3. STANDARD Mode (not Low-EMI Mode).
- 4. Low-EMI Mode (Not Standard Mode).
- 5. For analog comparator, inputs when analog comparators are enabled.
- 6. All outputs unloaded, I/O pins floating, inputs at rail.
- 7. Same as note 6, except inputs at V_{CC} .
- 8. Clock must be forced Low, when X_{IN} is clock-driven and X_{OUT} is floating.
- 9. 0° C to 70° C (standard temperature).
- 10. Autolatch (Mask Option) selected.
- 11. The V_{LV} voltage increases as the temperature decreases and overlaps lower V_{CC} operating region. See <u>Figure 15</u>.
- 12.-40°C to 105°C (extended temperature).

					0ºC to ∕0ºC			
				4 MHz				
No	Sym	Parameter	V_{CC}^{1}	Min	Max	Units	Notes	D1,D0
1	T _P C	Input Clock Period	3.0V	250	DC	ns	2,3,4	
			5.5V	250	DC	ns	2,3,4	
2	T _R C,	Clock Input Rise & Fall	3.0V		25	ns	2,3	
	T _F C	Times	5.5V		25	ns	2,3	
3	T _W C	Input Clock Width	3.0V	125		ns	2,3,4	
			5.5V	125		ns	2,3,4	
4	$T_W T_{IN} L$	Timer Input Low Width	3.0V	100		ns	2,3	
			5.5V	70		ns	2,3	
5	$T_W T_{\rm IN} H$	Timer Input High Width	3.0V	3T _P C			2,3	
			5.5V	3T _P C			2,3	
6	$T_P T_{IN}$	Timer Input Period	3.0V	4T _P C			2,3	
			5.5V	4T _P C			2,3	
7	T _R T _{IN} ,	Timer Input Rise & Fall	3.0V		100	ns	2,3	
	$T_F T_{IN}$	Timer	5.5V		100	ns	2,3	
8A	T _W IL	Interrupt Request Low	3.0V	100		ns	2,3,5	
		Time	5.5V	70		ns	2,3,5	
8B	T _W IL	Interrupt Request Low	3.0V	3T _P C			2,3,6	
		Time	5.5V	3T _P C			2,3,6	

Table 39. Additional Timing at Standard Temperature

Notes:

1. The V_{CC} voltage specification of 3.0V guarantees 3.3V ±0.3V, and the V_{CC} voltage specification of 5.5V guarantees 5.0V ±0.5V.

2. Timing reference uses 0.7 V_{CC} for a logic 1 and 0.2 V_{CC} for a logic 0.

3. SMR: D1 = 0.

4. The maximum frequency for the external crystal clock is 4 MHz when using LOW-EMI OSCIL-LATOR mode.

5. The interrupt request via Port 3 (P31-P33).

6. The interrupt request via Port 3 (P30).

7. SMR: D5 = 1, and the POR Stop-Mode Delay is on.

8. For RC and LC oscillators, and for an oscillator driven by a clock driver.

9. The D1,D0 column applies to the Watch-Dog Timer Mode Register tap selection.

10. 12 µs is the typical delay time; only applies when SMR Register bit D5 is cleared to 0

				T _A = −40°C to +105°C				
				4 MHz				
No	Sym	Parameter	V_{CC}^{1}	Min	Max	Units	Notes	D1,D0
1	T _P C	Input Clock Period	3.0V	250	DC	ns	2,3,4	
			5.5V	250	DC	ns	2,3,4	
2	T _R C,	Clock Input Rise & Fall	3.0V		25	ns	2,3	
	T _F C	Times	5.5V		25	ns	2,3	
3	T _W C	Input Clock Width	3.0V	125		ns	2,3,4	
			5.5V	125		ns	2,3,4	
4	$T_W T_{IN} L$	Timer Input Low Width	3.0V	100		ns	2,3	
			5.5V	70		ns	2,3	
5	$T_W T_{IN} H$	Timer Input High Width	3.0V	3T _P C			2,3	
			5.5V	3T _P C			2,3	
6	$T_P T_{IN}$	Timer Input Period	3.0V	4T _P C			2,3	
			5.5V	4T _P C			2,3	
7	T _R T _{IN} ,	Timer Input Rise & Fall	3.0V		100	ns	2,3	
	$T_F T_{IN}$	Timer	5.5V		100	ns	2,3	
8A	T _W IL	Interrupt Request Low	3.0V	100		ns	2,3,5	
		Time	5.5V	70		ns	2,3,5	
8B	T _W IL	Interrupt Request Low	3.0V	3T _P C			2,3,6	
		Time	5.5V	3T _P C			2,3,6	

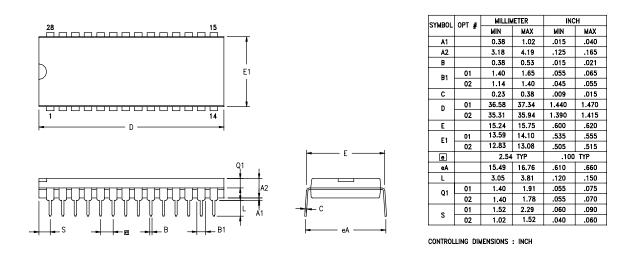
Table 40. Additional Timing at Extended Temperature

Notes:

1. The V_{CC} voltage specification of 5.5V guarantees 5.0V \pm 0.5V.

2. The timing reference uses 0.7 V_{CC} for a logic 1 and 0.2 V_{CC} for a logic 0.

3. SMR: D1 = 0.


- 4. The maximum frequency for the external crystal clock is 4 MHz when using LOW-EMI OSCIL-LATOR mode.
- 5. The interrupt request via Port 3 (P31-P33).
- 6. The interrupt request via Port 3 (P30).
- 7. SMR: D5 = 1, and the POR Stop-Mode Delay is on.

8. For RC and LC oscillators, and for an oscillator driven by a clock driver.

9. The D1,D0 column applies to the Watch-Dog Timer Mode Register tap selection.

10. 12 µs is the typical delay time.

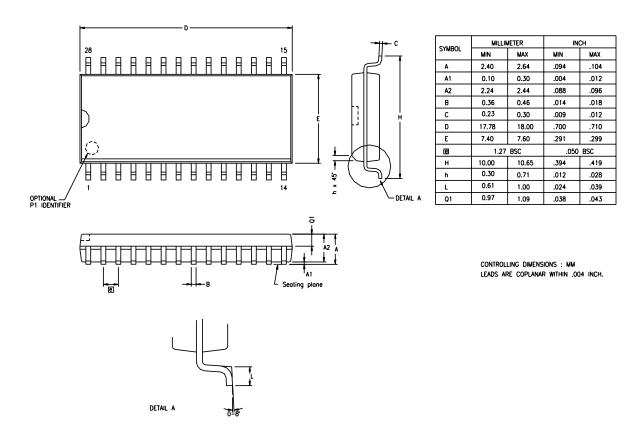

OPTION TABLE						
OPTION #	PACKAGE					
01	STANDARD					
02	IDF					

Figure 18.28-Pin DIP Package Diagram

Figure 19 illustrates the 28-pin SOIC package.

PS015601-1003

Ordering Information

Table 42. Ordering Information

Temperature	Speed (4MHz)	Pin Count	Package	Order Number*
Standard	4	28	DIP	Z87C3304PSC
Standard	4	28	SOIC	Z87C3304SSC
Extended	4	28	DIP	Z87C3304PEC

Table 42. Ordering Information

Temperature	Speed (4MHz)	Pin Count	Package	Order Number*				
Extended	4	28	SOIC	Z87C3304SEC				
Note: *The Standard temperature range is 0°C to 70°C. For parts that operate in the Extended temperature range of -40°C to 105°C, substitute the letter E for the letter S. For example, the Order Number for a 28-pin DIP operating in								

the Extended temperature range is Z87C3304PEC.

For fast results, contact your local ZiLOG sale office for assistance in ordering the part(s) desired.

Part Number Description

ZiLOG part numbers consist of a number of components. For example, part number Z87C3304PEC is a 4-MHz 28-pin DIP that operates in the –40°C to +105°C temperature range, with Plastic Standard Flow. The Z87C3304PEC part number corresponds to the code segments indicated in the following table.

Z	ZiLOG Prefix
86	Z8 Product
С	ROM Product
33	Product Number
04	Speed (MHz)
Р	Package
E	Temperature
С	Environmental Flow

For fast results, contact your local ZiLOG sales office for assistance in ordering the part required.

Precharacterization Product

The product represented by this document is newly introduced and ZiLOG has not completed the full characterization of the product. The document states what ZiLOG knows about this product at this time, but additional features or non-conformance with some aspects of the document may be found, either by ZiLOG or its customers in the course of further application and characterization work. In addition, ZiLOG cautions that delivery may be uncertain at times, due to start-up yield issues.

ZiLOG, Inc. 532 Race Street San Jose, CA 95126-3432 Telephone (408) 558-8500 FAX 408 558-8300 Internet: <u>www.ZiLOG.com</u>

Document Information

Document Number Description

The Document Control Number that appears in the footer of each page of this document contains unique identifying attributes, as indicated in the following table:

PS	Product Specification	
00156	Unique Document Number	
01 Revision Number		
1003	Month and Year Published	

Customer Feedback Form

Z87C33 Product Specification

If you experience any problems while operating this product, or if you note any inaccuracies while reading this Product Specification, please copy and complete this form, then mail or fax it to ZiLOG (see *Return Information*, below). We also welcome your suggestions!

Customer Information

Name	Country
Company	Phone
Address	Fax
City/State/Zip	E-Mail