Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|--| | | | | Product Status | Obsolete | | Core Processor | ARM® Cortex®-M3 | | Core Size | 32-Bit Single-Core | | Speed | 67MHz | | Connectivity | I ² C, LINbus, SPI, UART/USART, USB | | Peripherals | CapSense, DMA, LCD, POR, PWM, WDT | | Number of I/O | 60 | | Program Memory Size | 128KB (128K x 8) | | Program Memory Type | FLASH | | EEPROM Size | 2K x 8 | | RAM Size | 32K x 8 | | Voltage - Supply (Vcc/Vdd) | 2.7V ~ 5.5V | | Data Converters | A/D 2x12b; D/A 4x8b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 100-LQFP | | Supplier Device Package | 100-TQFP (14x14) | | Purchase URL | https://www.e-xfl.com/product-detail/infineon-technologies/cy8c5467axi-011 | # **Contents** | 1. Architectural Overview | 3 | |---------------------------------------|----------| | 2. Pinouts | 5 | | 3. Pin Descriptions | g | | 4. CPU | | | 4.1 ARM Cortex-M3 CPU | | | 4.2 Cache Controller | | | 4.3 DMA and PHUB | 11 | | 4.4 Interrupt Controller | 14 | | 5. Memory | 16 | | 5.1 Static RAM | | | 5.2 Flash Program Memory | | | 5.3 Flash Security | | | 5.4 EEPROM | | | 5.5 Memory Map | | | 6. System Integration | | | 6.1 Clocking System | | | 6.2 Power System | | | 6.3 Reset | | | 6.4 I/O System and Routing | | | 7. Digital Subsystem | | | 7.1 Example Peripherals | | | 7.2 Universal Digital Block | | | 7.4 DSI Routing Interface Description | 37
38 | | 7.5 USB | | | 7.6 Timers, Counters, and PWMs | | | 7.7 I ² C | | | 7.8 Digital Filter Block | 41 | | 8. Analog Subsystem | 41 | | 8.1 Analog Routing | | | 8.2 Successive Approximation ADCs | | | 8.3 Comparators | | | 8.4 Opamps | | | 8.5 Programmable SC/CT Blocks | | | 8.6 LCD Direct Drive | | | 8.7 CapSense | 48 | | 8.8 Temp Sensor | 48 | |---|-----| | 8.9 DAC | | | 8.10 Up/Down Mixer | 49 | | 8.11 Sample and Hold | 49 | | 9. Programming, Debug Interfaces, Resources | 50 | | 9.1 Debug Port Acquisition | | | 9.2 SWD Interface | | | 9.3 Debug Features | | | 9.4 Trace Features | | | 9.5 SWV Interface | | | 9.6 Programming Features | | | 9.7 Device Security | | | 10. Development Support | | | 10.1 Documentation | | | 10.2 Online | | | 10.3 Tools | | | 11. Electrical Specifications | | | 11.1 Absolute Maximum Ratings | | | 11.2 Device Level Specifications | | | 11.3 Power Regulators | 57 | | 11.4 Inputs and Outputs | 58 | | 11.5 Analog Peripherals | 66 | | 11.6 Digital Peripherals | 83 | | 11.7 Memory | | | 11.8 PSoC System Resources | 88 | | 11.9 Clocking | | | 12. Ordering Information | | | 12.1 Part Numbering Conventions | | | 13. Packaging | | | | | | 14. Acronyms | | | 15. Reference Documents | 99 | | 16. Document Conventions | 100 | | 16.1 Units of Measure | 100 | | 17. Revision History | 101 | | 18. Sales, Solutions, and Legal Information | 103 | # PSoC® 5: CY8C54 Family Datasheet make the SIO function as a general purpose analog comparator. For devices with FS USB the USB physical interface is also provided (USBIO). When not using USB these pins may also be used for limited digital functionality and device programming. All the features of the PSoC I/Os are covered in detail in the "I/O System and Routing" section on page 24 of this data sheet. The PSoC device incorporates flexible internal clock generators, designed for high stability and factory trimmed for high accuracy. The Internal Main Oscillator (IMO) is the master clock base for the system, and has 5% accuracy at 3 MHz. The IMO can be configured to run from 3 MHz up to 48 MHz. Multiple clock derivatives can be generated from the main clock frequency to meet application needs. The device provides a PLL to generate system clock frequencies up to 67 MHz from the IMO, external crystal, or external reference clock. It also contains a separate, very low power Internal Low Speed Oscillator (ILO) for the sleep and watchdog timers. A 32.768 kHz external watch crystal is also supported for use in RTC applications. The clocks, together with programmable clock dividers, provide the flexibility to integrate most timing requirements. The CY8C54 family supports a wide supply operating range from 2.7 to 5.5 V. This allows operation from regulated supplies such as 3.3 V \pm 10% or 5.0 V \pm 10%, or directly from a wide range of battery types. PSoC supports a wide range of low power modes. These include a 300-nA hibernate mode with RAM retention and a 2- μ A sleep mode. Power to all major functional blocks, including the programmable digital and analog peripherals, can be controlled independently by firmware. This allows low power background processing when some peripherals are not in use. This, in turn, provides a total device current of only 6 mA when the CPU is running at 6 MHz. The details of the PSoC power modes are covered in the "Power System" section on page 21 of this data sheet. PSoC uses a a SWD interface for programming, debug, and test. Using this standard interface enables the designer to debug or program the PSoC with a variety of hardware solutions from Cypress or third party vendors. The Cortex-M3 debug and trace modules include Flash Patch and Breakpoint (FPB), Data Watchpoint and Trace (DWT) and Instrumentation Trace Macrocell (ITM). These modules have many features to help solve difficult debug and trace problems. Details of the programming, test, and debugging interfaces are discussed in the "Programming, Debug Interfaces, Resources" section on page 50 of this data sheet. ### 2. Pinouts The VDDIO pin that supplies a particular set of pins is indicated by the black lines drawn on the pinout diagrams in Figure 2-1 and Figure 2-2. Using the VDDIO pins, a single PSoC can support multiple interface voltage levels, eliminating the need for off-chip level shifters. Each VDDIO may sink up to 20 mA total to its associated I/O pins and opamps, and each set of VDDIO associated pins may sink up to 100 mA. Figure 2-2. 100-pin TQFP Part Pinout Figure 2-3 and Figure 2-4 on page 9 show an example schematic and an example PCB layout, for the 100-pin TQFP part, for optimal analog performance on a 2-layer board. - The two pins labeled Vddd must be connected together. - The two pins labeled Vccd must be connected together, with capacitance added, as shown in Figure 2-3 on page 8 and Power System on page 21. The trace between the two Vccd pins should be as short as possible. - The two pins labeled Vssd must be connected together. For information on circuit board layout issues for mixed signals, refer to the application note AN57821 - Mixed Signal Circuit Board Layout Considerations for PSoC® 3 and PSoC 5. #### Note 4. Pins labeled Do Not Use (DNU) must be left floating. USB pins on devices without USB are DNU. Figure 2-3. Example Schematic for 100-pin TQFP Part with Power Connections **Note** The two V_{CCD} pins must be connected together with as short a trace as possible. A trace under the device is recommended, as shown in Figure 2-4. #### Note 5. $10 \mu F$ is required for sleep mode. See Table 11-3. - Bit-band support for the SRAM region. Atomic bit-level write and read operations for SRAM addresses. - Unaligned data storage and access. Contiguous storage of data of different byte lengths. - Operation at two privilege levels (privileged and user) and in two modes (thread and handler). Some instructions can only be executed at the privileged level. There are also two stack pointers: Main (MSP) and Process (PSP). These features support a multitasking operating system running one or more user-level processes. - Extensive interrupt and system exception support. ### 4.1.2 Cortex-M3 Operating Modes The Cortex-M3 operates at either the privileged level or the user level, and in either the thread mode or the handler mode. Because the handler mode is only enabled at the privileged level, there are actually only three states, as shown in Table 4-1. Table 4-1. Operational Level | Condition | Privileged | User | |----------------------|--------------|-------------| | Running an exception | Handler mode | Not used | | Running main program | Thread mode | Thread mode | At the user level, access to certain instructions, special registers, configuration registers, and debugging components is blocked. Attempts to access them cause a fault exception. At the privileged level, access to all instructions and registers is allowed. The processor runs in the handler mode (always at the privileged level) when handling an exception, and in the thread mode when not. ## 4.1.3 CPU Registers Register The Cortex-M3 CPU registers are listed in Table 4-2. Registers R0-R15 are all 32 bits wide. Description Table 4-2. Cortex M3 CPU Registers | Register | Description | |----------|--| | R0-R12 | General purpose registers R0-R12 have no special architecturally defined uses. Most instructions that specify a general purpose register specify R0-R12. | | | ■ Low Registers: Registers R0-R7 are accessible by all instructions that specify a general purpose register. | | | ■ High Registers: Registers R8-R12 are accessible by all 32-bit instructions that specify a general purpose register; they are not accessible by all 16-bit instructions. | | R13 | R13 is the stack pointer register. It is a banked register that switches between two 32-bit stack pointers: the Main Stack Pointer (MSP) and the Process Stack Pointer (PSP). The PSP is used only when the CPU operates at the user level in thread mode. The MSP is used in all other privilege levels and modes. Bits[0:1] of the SP are ignored and considered to be 0, so the SP is always aligned to a word (4 byte) boundary. | Table 4-2. Cortex M3 CPU Registers (continued) | Register | Description | |-----------|---| | R14 | R14 is the Link Register (LR). The LR stores the return address when a subroutine is called. | | R15 | R15 is the Program Counter (PC). Bit 0 of the PC is ignored and considered to be 0, so instructions are always aligned to a half word (2 byte) boundary. | | xPSR | The Program status registers are divided into three status registers, which are accessed either together or separately: | | | ■ Application Program Status Register (APSR) holds program execution status bits such as zero, carry, negative, in bits[27:31]. | | | ■ Interrupt Program Status Register (IPSR) holds the current exception number in bits[0:8]. | | | ■ Execution Program Status Register (EPSR) holds control bits for interrupt continuable and IF-THEN instructions in bits[10:15] and [25:26]. Bit 24 is always set to 1 to indicate Thumb mode. Trying to clear it causes a fault exception. | | PRIMASK | A 1-bit interrupt mask register. When set, it allows only the nonmaskable interrupt (NMI) and hard fault exception. All other exceptions and interrupts are masked. | | FAULTMASK | A 1-bit interrupt mask register. When set, it allows only the NMI. All other exceptions and interrupts are masked. | | BASEPRI | A register of up to nine bits that define the masking priority level. When set, it disables all interrupts of the same or higher priority value. If set to 0 then the masking function is disabled. | | CONTROL | A 2-bit register for controlling the operating mode. | | | Bit 0: 0 = privileged level in thread mode, 1 = user level in thread mode. | | | Bit 1: 0 = default stack (MSP) is used, 1 = alternate stack is used. If in thread mode or user level then the alternate stack is the PSP. There is no alternate stack for handler mode; the bit must be 0 while in handler mode. | #### 4.2 Cache Controller The CY8C54 family has 128 bytes of direct mapped instruction cache between the CPU and the flash memory. This allows the CPU to access instructions much faster. The cache is enabled by default but user have the option to disable it. #### 4.3 DMA and PHUB The PHUB and the DMA controller are responsible for data transfer between the CPU and peripherals, and also data transfers between peripherals. The PHUB and DMA also control device configuration during boot. The PHUB consists of: - A central hub that includes the DMA controller, arbiter, and router - Multiple spokes that radiate outward from the hub to most peripherals #### 4.4 Interrupt Controller The Cortex-M3 NVIC supports 16 system exceptions and 32 interrupts from peripherals, as shown in Table 4-5. Table 4-5. Cortex-M3 Exceptions and Interrupts | Exception Number | Exception Type | Priority | Exception Table Address Offset | Function | |------------------|----------------|--------------|--------------------------------|---| | | | | 0x00 | Starting value of R13 / MSP | | 1 | Reset | -3 (highest) | 0x04 | Reset | | 2 | NMI | -2 | 0x08 | Non maskable interrupt | | 3 | Hard fault | -1 | 0x0C | All classes of fault, when the corresponding fault handler cannot be activated because it is currently disabled or masked | | 4 | MemManage | Programmable | 0x10 | Memory management fault, for example, instruction fetch from a nonexecutable region | | 5 | Bus fault | Programmable | 0x14 | Error response received from the bus system; caused by an instruction prefetch abort or data access error | | 6 | Usage fault | Programmable | 0x18 | Typically caused by invalid instructions or trying to switch to ARM mode | | 7 – 10 | _ | _ | 0x1C - 0x28 | Reserved | | 11 | SVC | Programmable | 0x2C | System service call via SVC instruction | | 12 | Debug monitor | Programmable | 0x30 | Debug monitor | | 13 | _ | _ | 0x34 | Reserved | | 14 | PendSV | Programmable | 0x38 | Deferred request for system service | | 15 | SYSTICK | Programmable | 0x3C | System tick timer | | 16 – 47 | IRQ | Programmable | 0x40 - 0x3FC | Peripheral interrupt request #0 – #31 | Bit 0 of each exception vector indicates whether the exception is executed using ARM or Thumb instructions. Because the Cortex-M3 only supports Thumb instructions, this bit must always be 1. The Cortex-M3 non maskable interrupt (NMI) input can be routed to any pin, via the DSI, or disconnected from all pins. See "DSI Routing Interface Description" section on page 38. The Nested Vectored Interrupt Controller (NVIC) handles interrupts from the peripherals, and passes the interrupt vectors to the CPU. It is closely integrated with the CPU for low latency interrupt handling. Features include: - 32 interrupts. Multiple sources for each interrupt. - Configurable number of priority levels: from 3 to 8. - Dynamic reprioritization of interrupts. - Priority grouping. This allows selection of preempting and non preempting interrupt levels. - Support for tail-chaining, and late arrival, of interrupts. This enables back-to-back interrupt processing without the overhead of state saving and restoration between interrupts. - Processor state automatically saved on interrupt entry, and restored on interrupt exit, with no instruction overhead. If the same priority level is assigned to two or more interrupts, the interrupt with the lower vector number is executed first. Each interrupt vector may choose from three interrupt sources: Fixed Function, DMA, and UDB. The fixed function interrupts are direct connections to the most common interrupt sources and provide the lowest resource cost connection. The DMA interrupt sources provide direct connections to the two DMA interrupt sources provided per DMA channel. The third interrupt source for vectors is from the UDB digital routing array. This allows any digital signal available to the UDB array to be used as an interrupt source. All interrupt sources may be routed to any interrupt vector using the UDB interrupt source connections. # 5. Memory #### 5.1 Static RAM CY8C54 Static RAM (SRAM) is used for temporary data storage. Code can be executed at full speed from the portion of SRAM that is located in the code space. This process is slower from SRAM above 0x20000000. The device provides up to 64 KB of SRAM. The CPU or the DMA controller can access all of SRAM. The SRAM can be accessed simultaneously by the Cortex-M3 CPU and the DMA controller if accessing different 32 KB blocks. #### 5.2 Flash Program Memory Flash memory in PSoC devices provides nonvolatile storage for user firmware, user configuration data and bulk data storage. The main flash memory area contains up to 256 KB of user program space. Up to an additional 32 KB of flash space is available for storing device configuration data and bulk user data. User code may not be run out of this flash memory section. The flash output is 9 bytes wide with 8 bytes of data and one additional byte. The flash programming interface performs flash erasing, programming and setting code protection levels. Flash In System Serial Programming (ISSP), typically used for production programming, is possible through the SWD interface. In-system programming, typically used for bootloaders, is also possible using serial interfaces such as I²C, USB, UART, and SPI, or any communications protocol. #### 5.3 Flash Security All PSoC devices include a flexible flash protection model that prevents access and visibility to on-chip flash memory. This prevents duplication or reverse engineering of proprietary code. Flash memory is organized in blocks, where each block contains 256 bytes of program or data and 32 bytes of configuration or general-purpose data. The device offers the ability to assign one of four protection levels to each row of flash. Table 5-1 lists the protection modes available. Flash protection levels can only be changed by performing a complete flash erase. The Full Protection and Field Upgrade settings disable external access (through a debugging tool such as PSoC Creator, for example). If your application requires code update through a boot loader, then use the Field Upgrade setting. Use the Unprotected setting only when no security is needed in your application. The PSoC device also offers an advanced security feature called Device Security which permanently disables all test, programming, and debug ports, protecting your application from external access (see the "Device Security" section on page 52). For more information on how to take full advantage of the security features in PSoC, see the PSoC 5 TRM. Table 5-1. Flash Protection | Protection Setting | Allowed | Not Allowed | |--------------------|--|--| | Unprotected | External read and write
+ internal read and write | _ | | Factory
Upgrade | External write + internal read and write | External read | | Field Upgrade | Internal read and write | External read and write | | Full Protection | Internal read | External read and write + internal write | #### **Disclaimer** Note the following details of the flash code protection features on Cypress devices. Cypress products meet the specifications contained in their particular Cypress data sheets. Cypress believes that its family of products is one of the most secure families of its kind on the market today, regardless of how they are used. There may be methods, unknown to Cypress, that can breach the code protection features. Any of these methods, to our knowledge, would be dishonest and possibly illegal. Neither Cypress nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable." Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly evolving. We at Cypress are committed to continuously improving the code protection features of our products. #### 5.4 EEPROM PSoC EEPROM memory is a byte addressable nonvolatile memory. The CY8C54 has 2 KB of EEPROM memory to store user data. Reads from EEPROM are random access at the byte level. Reads are done directly; writes are done by sending write commands to an EEPROM programming interface. CPU code execution can continue from flash during EEPROM writes. EEPROM is erasable and writeable at the row level. The EEPROM is divided into two sections, each containing 64 rows of 16 bytes each. The CPU cannot execute out of EEPROM. Figure 6-1. Clocking Subsystem #### 6.1.1 Internal Oscillators #### 6.1.1.1 Internal Main Oscillator The IMO operates with no external components and outputs a stable clock. A factory trim for each frequency range is stored in the device. With the factory trim, tolerance varies from $\pm 5\%$ at 3 MHz, up to $\pm 10\%$ at 48 MHz. The IMO, in conjunction with the PLL, allows generation of CPU and system clocks up to the device's maximum frequency. The IMO provides clock outputs at 3, 6, 12, 24, and 48 MHz. #### 6.1.1.2 Clock Doubler The clock doubler outputs a clock at twice the frequency of the input clock. The doubler works for input frequency ranges of 6 to 24 MHz (providing 12 to 48 MHz at the output). It can be configured to use a clock from the MHzECO or the DSI (external pin). The doubler is typically used to clock the USB. ### 6.1.1.3 Phase-Locked Loop The PLL allows low frequency, high accuracy clocks to be multiplied to higher frequencies. This is a tradeoff between higher clock frequency and accuracy and, higher power consumption and increased startup time. The PLL block provides a mechanism for generating clock frequencies based upon a variety of input sources. The PLL outputs clock frequencies in the range of 24 to 67 MHz. Its input and feedback dividers supply 4032 discrete ratios to create almost any desired system clock frequency. The accuracy of the PLL output depends on the accuracy of the PLL input source. The most common PLL use is to multiply the IMO clock at 3 MHz, where it is most accurate, to generate the CPU and system clocks up to the device's maximum frequency. The PLL achieves phase lock within 250 µs (verified by bit setting). It can be configured to use a clock from the IMO, MHzECO or DSI (external pin). The PLL clock source can be used until lock is complete and signaled with a lock bit. The lock signal can be routed through the DSI to generate an interrupt. Disable the PLL before entering low power modes. ## 6.1.1.4 Internal Low Speed Oscillator The ILO provides clock frequencies for low power consumption, including the sleep timer. The ILO generates up to three different clocks: 1 kHz, 33 kHz, and 100 kHz. The 1 kHz clock (CLK1K) is typically used for a background 'heartbeat' timer. This clock inherently lends itself long sleep intervals using the central timewheel (CTW). The central timewheel is a free running counter clocked by the ILO 1 kHz output. The central timewheel is always enabled except in hibernate mode and when the CPU is stopped during debug on chip mode. It can be used to generate periodic interrupts for timing purposes or to wake the system from a low power mode. Firmware can reset the central timewheel. Figure 6-8. SIO Input/Output Block Diagram Figure 6-9. USBIO Block Diagram The bits of the control register, which may be written to by the system bus, are used to drive into the routing matrix, and thus provide firmware with the opportunity to control the state of UDB processing. The status register is read-only and it allows internal UDB state to be read out onto the system bus directly from internal routing. This allows firmware to monitor the state of UDB processing. Each bit of these registers has programmable connections to the routing matrix and routing connections are made depending on the requirements of the application. #### 7.2.3.15 Usage Examples As an example of control input, a bit in the control register can be allocated as a function enable bit. There are multiple ways to enable a function. In one method the control bit output would be routed to the clock control block in one or more UDBs and serve as a clock enable for the selected UDB blocks. A status example is a case where a PLD or datapath block generated a condition, such as a "compare true" condition that is captured and latched by the status register and then read (and cleared) by CPU firmware. #### 7.2.3.16 Clock Generation Each subcomponent block of a UDB including the two PLDs, the datapath, and Status and Control, has a clock selection and control block. This promotes a fine granularity with respect to allocating clocking resources to UDB component blocks and allows unused UDB resources to be used by other functions for maximum system efficiency. #### 7.3 UDB Array Description Figure 7-11 shows an example of a 16 UDB array. In addition to the array core, there are a DSI routing interfaces at the top and bottom of the array. Other interfaces that are not explicitly shown include the system interfaces for bus and clock distribution. The UDB array includes multiple horizontal and vertical routing channels each comprised of 96 wires. The wire connections to UDBs, at horizontal/vertical intersection and at the DSI interface are highly permutable providing efficient automatic routing in PSoC Creator. Additionally the routing allows wire by wire segmentation along the vertical and horizontal routing to further increase routing flexibility and capability. Figure 7-11. Digital System Interface Structure ### 7.3.1 UDB Array Programmable Resources Figure 7-12 shows an example of how functions are mapped into a bank of 16 UDBs. The primary programmable resources of the UDB are two PLDs, one datapath and one status/control register. These resources are allocated independently, because they have independently selectable clocks, and therefore unused blocks are allocated to other unrelated functions. An example of this is the 8-bit Timer in the upper left corner of the array. This function only requires one datapath in the UDB, and therefore the PLD resources may be allocated to another function. A function such as a Quadrature Decoder may require more PLD logic than one UDB can supply and in this case can utilize the unused PLD blocks in the 8-bit Timer UDB. Programmable resources in the UDB array are generally homogeneous so functions can be mapped to arbitrary boundaries in the array. Figure 8-10. DAC Block Diagram #### 8.9.1 Current DAC The current DAC (IDAC) can be configured for the ranges 0 to 31.875 μ A, 0 to 255 μ A, and 0 to 2.04 mA. The IDAC can be configured to source or sink current. ### 8.9.2 Voltage DAC For the voltage DAC (VDAC), the current DAC output is routed through resistors. The two ranges available for the VDAC are 0 to 1.02 V and 0 to 4.08 V. In voltage mode any load connected to the output of a DAC should be purely capacitive (the output of the VDAC is not buffered). # 8.10 Up/Down Mixer In continuous time mode, the SC/CT block components are used to build an up or down mixer. Any mixing application contains an input signal frequency and a local oscillator frequency. The polarity of the clock, Fclk, switches the amplifier between inverting or noninverting gain. The output is the product of the input and the switching function from the local oscillator, with frequency components at the local oscillator plus and minus the signal frequency (Fclk + Fin and Fclk - Fin) and reduced-level frequency components at odd integer multiples of the local oscillator frequency. The local oscillator frequency is provided by the selected clock source for the mixer. Continuous time up and down mixing works for applications with input signals and local oscillator frequencies up to 1 MHz. Figure 8-11. Mixer Configuration #### 8.11 Sample and Hold The main application for a sample and hold, is to hold a value stable while an ADC is performing a conversion. Some applications require multiple signals to be sampled simultaneously, such as for power calculations (V and I). Figure 8-12. Sample and Hold Topology (Φ 1 and Φ 2 are opposite phases of a clock) Figure 9-1. SWD Interface Connections between PSoC 5 and Programmer The voltage levels of the Host Programmer and the PSoC 5 voltage domains involved in programming should be the same. XRES pin is powered by V_{DDIO1}. The USB SWD pins are powered by V_{DDD}. So for programming using the USB SWD pins with XRES pin, the V_{DDD}, V_{DDIO1} of PSoC 5 should be at the same voltage level as Host V_{DD}. Rest of PSoC 5 voltage domains (V_{DDA}, V_{DDIO2}, V_{DDIO3}, V_{DDIO3}) need not be at the same voltage level as host Programmer. The Port 1 SWD pins are powered by V_{DDIO1}. So V_{DDIO1} of PSoC 5 should be at same voltage level as host V_{DD} for Port 1 SWD programming. Rest of PSoC 5 voltage domains (V_{DDD}, V_{DDIO2}, V_{DDIO3}, V_{DDIO3}) need not be at the same voltage level as host Programmer. ² Vdda must be greater than or equal to all other power supplies (Vddd, Vddio's) in PSoC 5. ³ For Power cycle mode Programming, XRES pin is not required. But the Host programmer must have the capability to toggle power (Vddd, Vdda, All Vddio's) to PSoC 5. This may typically require external interface circuitry to toggle power which will depend on the programming setup. The power supplies can be brought up in any sequence, however, once stable, VDDA must be greater than or equal to all other supplies. When USB SWD pins are used for Programming, the P1[1] SWDCK pin must be externally connected to Ground using external pull-down resistor (around 100 K resistor). This is required for P15[7] SWDCK signal to be seen by PSoC 5's internal logic. # PSoC® 5: CY8C54 Family Datasheet # 10. Development Support The CY8C54 family has a rich set of documentation, development tools, and online resources to assist you during your development process. Visit psoc.cypress.com/getting-started to find out more. #### 10.1 Documentation A suite of documentation, to ensure that you can find answers to your questions quickly, supports the CY8C54 family. This section contains a list of some of the key documents. **Software User Guide**: A step-by-step guide for using PSoC Creator. The software user guide shows you how the PSoC Creator build process works in detail, how to use source control with PSoC Creator, and much more. Component data sheets: The flexibility of PSoC allows the creation of new peripherals (components) long after the device has gone into production. Component data sheets provide all of the information needed to select and use a particular component, including a functional description, API documentation, example code, and AC/DC specifications. **Application Notes**: PSoC application notes discuss a particular application of PSoC in depth; examples include brushless DC motor control and on-chip filtering. Application notes often include example projects in addition to the application note document. **Technical Reference Manual**: PSoC Creator makes designing with PSoC as easy as dragging a peripheral onto a schematic, but, when low level details of the PSoC device are required, use the technical reference manual (TRM) as your guide. **Note** Visit www.arm.com for detailed documentation about the Cortex-M3 CPU. #### 10.2 Online In addition to print documentation, the Cypress PSoC forums connect you with fellow PSoC users and experts in PSoC from around the world, 24 hours a day, 7 days a week. #### 10.3 Tools With industry standard cores, programming, and debugging interfaces, the CY8C54 family is part of a development tool ecosystem. Visit us at www.cypress.com/go/psoccreator for the latest information on the revolutionary, easy to use PSoC Creator IDE, supported third party compilers, programmers, debuggers, and development kits. ### 11.4.3 USBIO For operation in GPIO mode, the standard range for V_{DDD} applies, see Device Level Specifications on page 55. Table 11-10. USBIO DC Specifications | Parameter | Description | Conditions | Min | Тур | Max | Units | |----------------------|---|--|----------------|-----|----------------|-------| | Rusbi | USB D+ pull-up resistance | With idle bus | 0.900 | _ | 1.575 | kΩ | | Rusba | USB D+ pull-up resistance | While receiving traffic | 1.425 | _ | 3.090 | kΩ | | Vohusb | Static output high | 15 k Ω ±5% to Vss, internal pull-up enabled | 2.8 | _ | 3.6 | V | | Volusb | Static output low | 15 k Ω ±5% to Vss, internal pull-up enabled | - | _ | 0.3 | V | | Vihgpio | Input voltage high, GPIO mode | $V_{DDD} \ge 3 \text{ V}$ | 2 | _ | _ | V | | Vilgpio | Input voltage low, GPIO mode | $V_{DDD} \ge 3 \text{ V}$ | - | _ | 0.8 | V | | Vohgpio | Output voltage high, GPIO mode | I_{OH} = 4 mA, $V_{DDD} \ge 3 \text{ V}$ | 2.4 | _ | _ | V | | Volgpio | Output voltage low, GPIO mode | I_{OL} = 4 mA, $V_{DDD} \ge 3 \text{ V}$ | _ | _ | 0.3 | V | | Vdi | Differential input sensitivity | (D+)-(D-) | - | _ | 0.2 | V | | Vcm | Differential input common mode range | | 8.0 | _ | 2.5 | V | | Vse | Single ended receiver threshold | | 8.0 | _ | 2 | V | | Rps2 | PS/2 pull-up resistance | In PS/2 mode, with PS/2 pull-up enabled | 3 | _ | 7 | kΩ | | Rext | External USB series resistor | In series with each USB pin | 21.78
(–1%) | 22 | 22.22
(+1%) | Ω | | Zo | USB driver output impedance ^[32] | Including Rext | 28 | _ | 44 | Ω | | C _{IN} | USB transceiver input capacitance | | - | _ | 20 | pF | | I _{IL} [33] | Input leakage current (absolute value) | 25 °C, V _{DDD} = 3.0 V | _ | _ | 2 | nA | Figure 11-14. USBIO Output High Voltage and Current, **GPIO Mode** Figure 11-15. USBIO Output Low Voltage and Current, **GPIO Mode** #### Notes - 32. This parameter is not production tested and cannot be guaranteed over all temperatures. 33. Based on device characterization (Not production tested). Figure 11-29. SAR ADC Noise Histogram, 1000 samples, 700 ksps, External Reference, $\rm V_{IN} = \rm VREF/2$ # 11.5.4 Analog Globals # Table 11-20. Analog Globals DC Specifications | Parameter | Description | Conditions | Min | Тур | Max | Units | |-----------|--|--------------------------|-----|------|------|-------| | Rppag | Resistance pin-to-pin through analog global | V _{DDA} = 3.0 V | - | 1200 | 1500 | Ω | | Rppmuxbus | Resistance pin-to-pin through analog mux bus | V _{DDA} = 3.0 V | _ | 700 | 1000 | Ω | #### 11.6.3 Pulse Width Modulation The following specifications apply to the Timer/Counter/PWM peripheral, in PWM mode. PWM components can also be implemented in UDBs; for more information, see the PWM component data sheet in PSoC Creator. # Table 11-39. PWM DC Specifications | Parameter | Description | Conditions | Min | Тур | Max | Units | |-----------|-------------|--------------------------------|-----|-----|-----|-------| | | concumption | Input clock frequency – 3 MHz | _ | 65 | _ | μΑ | | | | Input clock frequency –12 MHz | _ | 170 | _ | μΑ | | | | Input clock frequency – 48 MHz | _ | 650 | - | μΑ | | | | Input clock frequency – 67 MHz | _ | 900 | - | μΑ | # Table 11-40. PWM AC Specifications | Parameter | Description | Conditions | Min | Тур | Max | Units | |-----------|-------------------------------|------------|-----|-----|-------|-------| | | Operating frequency | | DC | _ | 67.01 | MHz | | | Pulse width | | 13 | _ | - | ns | | | Pulse width (external) | | 30 | _ | - | ns | | | Kill pulse width | | 13 | - | _ | ns | | | Kill pulse width (external) | | 30 | _ | - | ns | | | Enable pulse width | | 13 | _ | - | ns | | | Enable pulse width (external) | | 30 | - | _ | ns | | | Reset pulse width | | 13 | _ | - | ns | | | Reset pulse width (external) | | 30 | _ | _ | ns | # 11.6.4 PC # Table 11-41. Fixed I²C DC Specifications | Parameter | Description | Conditions | Min | Тур | Max | Units | |-----------|---------------------------|----------------------------------|-----|-----|-----|-------| | | Block current consumption | Enabled, configured for 100 kbps | - | 90 | 250 | μΑ | | | | Enabled, configured for 400 kbps | _ | 100 | 250 | μΑ | # Table 11-42. Fixed I²C AC Specifications | Parameter | Description | Conditions | Min | Тур | Max | Units | |-----------|-------------|------------|-----|-----|-----|-------| | | Bit rate | | - | _ | 400 | Kbps | Document Number: 001-66238 Rev. *D Page 84 of 103 # 11.7.4 Write Once Latch (WOL) # Table 11-53. WOL DC Specifications | Parameter | Description | Conditions | Min | Тур | Max | Units | |-----------|---------------------|----------------------|-----|-----|-----|-------| | | Program voltage | V _{DDD} pin | 2.7 | _ | 3.3 | V | | | Program temperature | T _J | 10 | 25 | 40 | °C | ### 11.8 PSoC System Resources Specifications are valid for $-40~^{\circ}\text{C} \le T_A \le 85~^{\circ}\text{C}$ and $T_J \le 100~^{\circ}\text{C}$, except where noted. Specifications are valid for 2.7 V to 5.5 V, except where noted. ### 11.8.1 Voltage Monitors ### Table 11-54. Voltage Monitors DC Specifications | Parameter | Description | Conditions | Min | Тур | Max | Units | |-----------|--------------------------|------------|------|------|------|-------| | LVI | Trip voltage | | | | | | | | LVI_A/D_SEL[3:0] = 0011b | | 2.38 | 2.45 | 2.53 | V | | | LVI_A/D_SEL[3:0] = 0100b | | 2.62 | 2.71 | 2.79 | V | | | LVI_A/D_SEL[3:0] = 0101b | | 2.87 | 2.95 | 3.04 | V | | | LVI_A/D_SEL[3:0] = 0110b | | 3.11 | 3.21 | 3.31 | V | | | LVI_A/D_SEL[3:0] = 0111b | | 3.35 | 3.46 | 3.56 | V | | | LVI_A/D_SEL[3:0] = 1000b | | 3.59 | 3.70 | 3.81 | V | | | LVI_A/D_SEL[3:0] = 1001b | | 3.84 | 3.95 | 4.07 | V | | | LVI_A/D_SEL[3:0] = 1010b | | 4.08 | 4.20 | 4.33 | V | | | LVI_A/D_SEL[3:0] = 1011b | | 4.32 | 4.45 | 4.59 | V | | | LVI_A/D_SEL[3:0] = 1100b | | 4.56 | 4.70 | 4.84 | V | | | LVI_A/D_SEL[3:0] = 1101b | | 4.83 | 4.98 | 5.13 | V | | | LVI_A/D_SEL[3:0] = 1110b | | 5.05 | 5.21 | 5.37 | V | | | LVI_A/D_SEL[3:0] = 1111b | | 5.30 | 5.47 | 5.63 | V | | HVI | Trip voltage | | 5.57 | 5.75 | 5.92 | V | # Table 11-55. Voltage Monitors AC Specifications | Parameter | Description | Conditions | Min | Тур | Max | Units | |-------------------------------|-------------|------------|-----|-----|-----|-------| | Response time ^[43] | | | _ | 1 | 1 | μs | #### 11.8.2 Interrupt Controller # Table 11-56. Interrupt Controller AC Specifications | Parameter | Description | Conditions | Min | Тур | Max | Units | |-----------|---|------------|-----|-----|-----|---------| | | Delay from interrupt signal input to ISR code execution from main line code ^[44] | | _ | _ | 12 | Tcy CPU | | | Delay from interrupt signal input to ISR code execution from ISR code (tail-chaining) ^[44] | | _ | _ | 6 | Tcy CPU | #### Notes ^{43.} Based on device characterization (Not production tested). ^{44.} ARM Cortex-M3 NVIC spec. Visit www.arm.com for detailed documentation about the Cortex-M3 CPU. **BOTTOM VIEW** # 13. Packaging ### Table 13-1. Package Characteristics | Parameter | Description | Conditions | Min | Тур | Max | Units | |----------------|--------------------------------|------------|-----|-----|-----|---------| | T _A | Operating ambient temperature | | -40 | 25 | 85 | °C | | T _J | Operating junction temperature | | -40 | _ | 100 | °C | | Tja | Package θJA (68-pin QFN) | | _ | 15 | - | °C/Watt | | Tja | Package θJA (100-pin TQFP) | | - | 34 | - | °C/Watt | | Tjc | Package θJC (68-pin QFN) | | _ | 13 | _ | °C/Watt | | Tjc | Package θJC (100-pin TQFP) | | _ | 10 | - | °C/Watt | Table 13-2. Solder Reflow Peak Temperature TOP VIEW | Package | Maximum Peak
Temperature | Maximum Time at
Peak Temperature | |--------------|-----------------------------|-------------------------------------| | 68-pin QFN | 260 °C | 30 seconds | | 100-pin TQFP | 260 °C | 30 seconds | Table 13-3. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2 | Package | MSL | |--------------|-------| | 68-pin QFN | MSL 3 | | 100-pin TQFP | MSL 3 | Figure 13-1. 68-pin QFN 8 × 8 with 0.4 mm Pitch Package Outline (Sawn Version) SIDE VIEW - 1. XX HATCH AREA IS SOLDERABLE EXPOSED METAL. - 2. REFERENCE JEDEC#: MO-220 - 3. PACKAGE WEIGHT: 0.17g - 4. ALL DIMENSIONS ARE IN MILLIMETERS 001-09618 *D # 14. Acronyms Table 14-1. Acronyms Used in this Document | Acronym | Description | |------------------|---| | abus | analog local bus | | ADC | analog-to-digital converter | | AG | analog global | | AHB | AMBA (advanced microcontroller bus architecture) high-performance bus, an ARM data transfer bus | | ALU | arithmetic logic unit | | AMUXBUS | analog multiplexer bus | | API | application programming interface | | APSR | application program status register | | ARM [®] | advanced RISC machine, a CPU architecture | | ATM | automatic thump mode | | BW | bandwidth | | CMRR | common-mode rejection ratio | | CPU | central processing unit | | CRC | cyclic redundancy check, an error-checking protocol | | DAC | digital-to-analog converter, see also IDAC, VDAC | | DFB | digital filter block | | DIO | digital input/output, GPIO with only digital capabilities, no analog. See GPIO. | | DMA | direct memory access, see also TD | | DNL | differential nonlinearity, see also INL | | DNU | do not use | | DR | port write data registers | | DSI | digital system interconnect | | DWT | data watchpoint and trace | | ECO | external crystal oscillator | | EEPROM | electrically erasable programmable read-only memory | | EMI | electromagnetic interference | | EOC | end of conversion | | EOF | end of frame | | EPSR | execution program status register | | ESD | electrostatic discharge | | FIR | finite impulse response, see also IIR | | FPB | flash patch and breakpoint | | FS | full-speed | | GPIO | general-purpose input/output, applies to a PSoC pin | Table 14-1. Acronyms Used in this Document (continued) | Acronym | Description | |--------------------------|--| | HVI | high-voltage interrupt, see also LVI, LVD | | IC | integrated circuit | | IDAC | current DAC, see also DAC, VDAC | | IDE | integrated development environment | | I ² C, or IIC | | | I-C, or IIC | Inter-Integrated Circuit, a communications protocol | | IIR | infinite impulse response, see also FIR | | ILO | internal low-speed oscillator, see also IMO | | IMO | internal main oscillator, see also ILO | | INL | integral nonlinearity, see also DNL | | I/O | input/output, see also GPIO, DIO, SIO, USBIO | | IPOR | initial power-on reset | | IPSR | interrupt program status register | | IRQ | interrupt request | | ITM | instrumentation trace macrocell | | LCD | liquid crystal display | | LIN | Local Interconnect Network, a communications protocol. | | LR | link register | | LUT | lookup table | | LVD | low-voltage detect, see also LVI | | LVI | low-voltage interrupt, see also HVI | | LVTTL | low-voltage transistor-transistor logic | | MAC | multiply-accumulate | | MCU | microcontroller unit | | MISO | master-in slave-out | | NC | no connect | | NMI | nonmaskable interrupt | | NRZ | non-return-to-zero | | NVIC | nested vectored interrupt controller | | NVL | nonvolatile latch, see also WOL | | opamp | operational amplifier | | PAL | programmable array logic, see also PLD | | PC | program counter | | PCB | printed circuit board | | PGA | programmable gain amplifier | | PHUB | peripheral hub | | PHY | physical layer | | PICU | port interrupt control unit | | PLA | programmable logic array | Document Number: 001-66238 Rev. *D Page 98 of 103 # 16. Document Conventions # 16.1 Units of Measure # Table 16-1. Units of Measure | Symbol | Unit of Measure | |--------|------------------------| | °C | degrees Celsius | | dB | decibels | | fF | femtofarads | | Hz | hertz | | KB | 1024 bytes | | kbps | kilobits per second | | Khr | kilohours | | kHz | kilohertz | | kΩ | kilohms | | ksps | kilosamples per second | | LSB | least significant bit | | Mbps | megabits per second | | MHz | megahertz | | ΜΩ | megaohms | | Msps | megasamples per second | | μΑ | microamperes | | μF | microfarads | | μΗ | microhenrys | | μs | microseconds | | μV | microvolts | | μW | microwatts | | mA | milliamperes | | ms | milliseconds | | mV | millivolts | | nA | nanoamperes | | ns | nanoseconds | | nV | nanovolts | | Ω | ohms | | pF | picofarads | | ppm | parts per million | | ps | picoseconds | | s | seconds | | sps | samples per second | | sqrtHz | square root of hertz | | ٧ | volts |