



Welcome to E-XFL.COM

### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

### Details

| Product Status             | Obsolete                                                                   |
|----------------------------|----------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M3                                                            |
| Core Size                  | 32-Bit Single-Core                                                         |
| Speed                      | 67MHz                                                                      |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART, USB                             |
| Peripherals                | CapSense, DMA, LCD, POR, PWM, WDT                                          |
| Number of I/O              | 36                                                                         |
| Program Memory Size        | 256KB (256K x 8)                                                           |
| Program Memory Type        | FLASH                                                                      |
| EEPROM Size                | 2K x 8                                                                     |
| RAM Size                   | 64K x 8                                                                    |
| Voltage - Supply (Vcc/Vdd) | 2.7V ~ 5.5V                                                                |
| Data Converters            | A/D 2x12b; D/A 4x8b                                                        |
| Oscillator Type            | Internal                                                                   |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                          |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 68-VFQFN Exposed Pad                                                       |
| Supplier Device Package    | 68-QFN (8×8)                                                               |
| Purchase URL               | https://www.e-xfl.com/product-detail/infineon-technologies/cy8c5468lti-037 |
|                            |                                                                            |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong





make the SIO function as a general purpose analog comparator. For devices with FS USB the USB physical interface is also provided (USBIO). When not using USB these pins may also be used for limited digital functionality and device programming. All the features of the PSoC I/Os are covered in detail in the "I/O System and Routing" section on page 24 of this data sheet.

The PSoC device incorporates flexible internal clock generators, designed for high stability and factory trimmed for high accuracy. The Internal Main Oscillator (IMO) is the master clock base for the system, and has 5% accuracy at 3 MHz. The IMO can be configured to run from 3 MHz up to 48 MHz. Multiple clock derivatives can be generated from the main clock frequency to meet application needs. The device provides a PLL to generate system clock frequencies up to 67 MHz from the IMO, external crystal, or external reference clock. It also contains a separate, very low power Internal Low Speed Oscillator (ILO) for the sleep and watchdog timers. A 32.768 kHz external watch crystal is also supported for use in RTC applications. The clocks, together with programmable clock dividers, provide the flexibility to integrate most timing requirements.

The CY8C54 family supports a wide supply operating range from 2.7 to 5.5 V. This allows operation from regulated supplies such as 3.3 V  $\pm$  10% or 5.0 V  $\pm$  10%, or directly from a wide range of battery types.

PSoC supports a wide range of low power modes. These include a 300-nA hibernate mode with RAM retention and a 2- $\mu$ A sleep mode.

Power to all major functional blocks, including the programmable digital and analog peripherals, can be controlled independently by firmware. This allows low power background processing when some peripherals are not in use. This, in turn, provides a total device current of only 6 mA when the CPU is running at 6 MHz.

The details of the PSoC power modes are covered in the "Power System" section on page 21 of this data sheet.

PSoC uses a a SWD interface for programming, debug, and test. Using this standard interface enables the designer to debug or program the PSoC with a variety of hardware solutions from Cypress or third party vendors. The Cortex-M3 debug and trace modules include Flash Patch and Breakpoint (FPB), Data Watchpoint and Trace (DWT) and Instrumentation Trace Macrocell (ITM). These modules have many features to help solve difficult debug and trace problems. Details of the programming, test, and debugging interfaces are discussed in the "Programming, Debug Interfaces, Resources" section on page 50 of this data sheet.

## 2. Pinouts

The VDDIO pin that supplies a particular set of pins is indicated by the black lines drawn on the pinout diagrams in Figure 2-1 and Figure 2-2. Using the VDDIO pins, a single PSoC can support multiple interface voltage levels, eliminating the need for off-chip level shifters. Each VDDIO may sink up to 20 mA total to its associated I/O pins and opamps, and each set of VDDIO associated pins may sink up to 100 mA.



# 4. CPU

## 4.1 ARM Cortex-M3 CPU

The CY8C54 family of devices has an ARM Cortex-M3 CPU core. The Cortex-M3 is a low power 32-bit three-stage pipelined Harvard architecture CPU that delivers 1.25 DMIPS/MHz. It is intended for deeply embedded applications that require fast interrupt handling features.





The Cortex-M3 CPU subsystem includes these features:

- ARM Cortex-M3 CPU
- Programmable Nested Vectored Interrupt Controller (NVIC), tightly integrated with the CPU core
- Full featured debug and trace module, tightly integrated with the CPU core
- Up to 256 KB of flash memory, 2 KB of EEPROM, and 64 KB of SRAM
- Cache controller with 128 bytes of memory
- Peripheral HUB (PHUB)
- DMA controller

4.1.1 Cortex-M3 Features

The Cortex-M3 CPU features include:

- 4 GB address space. Predefined address regions for code, data, and peripherals. Multiple buses for efficient and simultaneous accesses of instructions, data, and peripherals.
- The Thumb<sup>®</sup>-2 instruction set, which offers ARM-level performance at Thumb-level code density. This includes 16-bit and 32-bit instructions. Advanced instructions include:
  - Bit-field control
  - Hardware multiply and divide
  - Saturation
  - If-Then
  - Wait for events and interrupts
  - Exclusive access and barrier
  - Special register access

The Cortex-M3 does not support ARM instructions.



There are two PHUB masters: the CPU and the DMA controller. Both masters may initiate transactions on the bus. The DMA channels can handle peripheral communication without CPU intervention. The arbiter in the central hub determines which DMA channel is the highest priority if there are multiple requests.

### 4.3.1 PHUB Features

- CPU and DMA controller are both bus masters to the PHUB
- Eight Multi-layer AHB Bus parallel access paths (spokes) for peripheral access
- Simultaneous CPU and DMA access to peripherals located on different spokes
- Simultaneous DMA source and destination burst transactions on different spokes
- Supports 8, 16, 24, and 32-bit addressing and data

### Table 4-3. PHUB Spokes and Peripherals

| PHUB Spokes | Peripherals                                                                                    |
|-------------|------------------------------------------------------------------------------------------------|
| 0           | SRAM                                                                                           |
| 1           | IOs, PICU                                                                                      |
| 2           | PHUB local configuration, Power manager,<br>Clocks, IC, EEPROM, Flash programming<br>interface |
| 3           | Analog interface and trim, Decimator                                                           |
| 4           | USB, I <sup>2</sup> C, Timers, Counters, and PWMs                                              |
| 5           | DFB                                                                                            |
| 6           | UDBs group 1                                                                                   |
| 7           | UDBs group 2                                                                                   |

### 4.3.2 DMA Features

- 24 DMA channels
- Each channel has one or more Transaction Descriptors (TDs) to configure channel behavior. Up to 127 total TDs can be defined
- TDs can be dynamically updated
- Eight levels of priority per channel
- Any digitally routable signal, the CPU, or another DMA channel, can trigger a transaction
- Each channel can generate up to two interrupts per transfer
- Transactions can be stalled or canceled
- Supports transaction size of infinite or 1 to 64k bytes
- Large transactions may be broken into smaller bursts of 1 to 127 bytes
- TDs may be nested and/or chained for complex transactions

### 4.3.3 Priority Levels

The CPU always has higher priority than the DMA controller when their accesses require the same bus resources. Due to the system architecture, the CPU can never starve the DMA. DMA channels of higher priority (lower priority number) may interrupt current DMA transfers. In the case of an interrupt, the current transfer is allowed to complete its current transaction. To ensure latency limits when multiple DMA accesses are requested simultaneously, a fairness algorithm guarantees an interleaved minimum percentage of bus bandwidth for priority levels 2 through 7. Priority levels 0 and 1 do not take part in the fairness algorithm and may use 100% of the bus bandwidth. If a tie occurs on two DMA requests of the same priority level, a simple round robin method is used to evenly share the allocated bandwidth. The round robin allocation can be disabled for each DMA channel, allowing it to always be at the head of the line. Priority levels 2 to 7 are guaranteed the minimum bus bandwidth shown in Table 4-4 after the CPU and DMA priority levels 0 and 1 have satisfied their requirements.

| Priority Level | % Bus Bandwidth |
|----------------|-----------------|
| 0              | 100.0           |
| 1              | 100.0           |
| 2              | 50.0            |
| 3              | 25.0            |
| 4              | 12.5            |
| 5              | 6.2             |
| 6              | 3.1             |
| 7              | 1.5             |

### Table 4-4. Priority Levels

When the fairness algorithm is disabled, DMA access is granted based solely on the priority level; no bus bandwidth guarantees are made.

### 4.3.4 Transaction Modes Supported

The flexible configuration of each DMA channel and the ability to chain multiple channels allow the creation of both simple and complex use cases. General use cases include, but are not limited to:

### 4.3.4.1 Simple DMA

In a simple DMA case, a single TD transfers data between a source and sink (peripherals or memory location). The basic timing diagrams of DMA read and write cycles are shown in Figure 4-2. For more description on other transfer modes, refer to the Technical Reference Manual.









### 7.2.2 Datapath Module

The datapath contains an 8-bit single cycle ALU, with associated compare and condition generation logic. This datapath block is optimized to implement embedded functions, such as timers, counters, integrators, PWMs, PRS, CRC, shifters and dead band generators and many others.



### 7.2.2.6 Working Registers

The datapath contains six primary working registers, which are accessed by CPU firmware or DMA during normal operation.

### Table 7-1. Working Datapath Registers

| Name      | Function       | Description                                                                                                                                                                                                                   |
|-----------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A0 and A1 | Accumulators   | These are sources and sinks for the ALU and also sources for the compares.                                                                                                                                                    |
| D0 and D1 | Data Registers | These are sources for the ALU and sources for the compares.                                                                                                                                                                   |
| F0 and F1 | FIFOs          | These are the primary interface<br>to the system bus. They can be a<br>data source for the data registers<br>and accumulators or they can<br>capture data from the accumu-<br>lators or ALU. Each FIFO is four<br>bytes deep. |

## 7.2.2.7 Dynamic Datapath Configuration RAM

Dynamic configuration is the ability to change the datapath function and internal configuration on a cycle-by-cycle basis, under sequencer control. This is implemented using the 8-word x 16-bit configuration RAM, which stores eight unique 16-bit wide configurations. The address input to this RAM controls the sequence, and can be routed from any block connected to the UDB routing matrix, most typically PLD logic, I/O pins, or from the outputs of this or other datapath blocks.





### Figure 7-12. Function Mapping Example in a Bank of UDBs

### 7.4 DSI Routing Interface Description

The DSI routing interface is a continuation of the horizontal and vertical routing channels at the top and bottom of the UDB array core. It provides general purpose programmable routing between device peripherals, including UDBs, I/Os, analog peripherals, interrupts, DMA and fixed function peripherals.

Figure 7-13 illustrates the concept of the digital system interconnect, which connects the UDB array routing matrix with other device peripherals. Any digital core or fixed function peripheral that needs programmable routing is connected to this interface.

Signals in this category include:

- Interrupt requests from all digital peripherals in the system.
- DMA requests from all digital peripherals in the system.
- Digital peripheral data signals that need flexible routing to I/Os.
- Digital peripheral data signals that need connections to UDBs.
- Connections to the interrupt and DMA controllers.
- Connection to I/O pins.
- Connection to analog system digital signals.



Interrupt and DMA routing is very flexible in the CY8C54 programmable architecture. In addition to the numerous fixed function peripherals that can generate interrupt requests, any data signal in the UDB array routing can also be used to generate a request. A single peripheral may generate multiple independent interrupt requests simplifying system and firmware design. Figure 7-14 shows the structure of the IDMUX (Interrupt/DMA Multiplexer).

### Figure 7-14. Interrupt and DMA Processing in the IDMUX

Interrupt and DMA Processing in IDMUX





## 7.6 Timers, Counters, and PWMs

The Timer/Counter/PWM peripheral is a 16-bit dedicated peripheral providing three of the most common embedded peripheral features. As almost all embedded systems use some combination of timers, counters, and PWMs. Four of them have been included on this PSoC device family. Additional and more advanced functionality timers, counters, and PWMs can also be instantiated in Universal Digital Blocks (UDBs) as required. PSoC Creator allows designers to choose the timer, counter, and PWM features that they require. The tool set utilizes the most optimal resources available.

The Timer/Counter/PWM peripheral can select from multiple clock sources, with input and output signals connected through the DSI routing. DSI routing allows input and output connections to any device pin and any internal digital signal accessible through the DSI. Each of the four instances has a compare output and terminal count output (optional complementary compare output). The Timer/Counter/PWMs are configurable as free running, one shot, or Enable input controlled. The peripheral has timer reset and capture inputs, and a kill input for control of the comparator outputs. The peripheral supports full 16-bit capture.

Timer/Counter/PWM features include:

- 16-bit Timer/Counter/PWM (down count only)
- Selectable clock source
- PWM comparator (configurable for LT, LTE, EQ, GTE, GT)
- Period reload on start, reset, and terminal count
- Dynamic counter reads
- Timer capture mode
- Count while enable signal is asserted mode
- Free run mode
- One Shot mode (stop at end of period)
- Complementary PWM outputs with deadband
- PWM output kill

### Figure 7-19. Timer/Counter/PWM



## 7.7 I<sup>2</sup>C

The I<sup>2</sup>C peripheral provides a synchronous two wire interface designed to interface the PSoC device with a two wire I<sup>2</sup>C serial communication bus. The bus is compliant with Philips 'The I<sup>2</sup>C Specification' version 2.1. Additional I<sup>2</sup>C interfaces can be instantiated using Universal Digital Blocks (UDBs) in PSoC Creator, as required.

To eliminate the need for excessive CPU intervention and overhead, I<sup>2</sup>C specific support is provided for status detection and generation of framing bits. I<sup>2</sup>C operates as a slave, a master, or multimaster (Slave and Master)<sup>[14]</sup>. In slave mode, the unit always listens for a start condition to begin sending or receiving data. Master mode supplies the ability to generate the Start and Stop conditions and initiate transactions. Multimaster mode provides clock synchronization and arbitration to allow multiple masters on the same bus. If Master mode is enabled and Slave mode is not enabled, the block does not generate interrupts on externally generated Start conditions. I<sup>2</sup>C interfaces through the DSI routing and allows direct connections to any GPIO or SIO pins.

### I<sup>2</sup>C features include:

- Slave and Master, Transmitter, and Receiver operation
- Byte processing for low CPU overhead
- Interrupt or polling CPU interface
- Support for bus speeds up to 400 Kbps
- 7 or 10-bit addressing (10-bit addressing requires firmware support)



### Figure 7-20. I<sup>2</sup>C Complete Transfer Timing

### Note

14. Fixed-block I2C does not support undefined bus conditions. These conditions should be avoided, or the UDB-based I2C component should be used instead.



Figure 8-1. Analog Subsystem Block Diagram



The PSoC Creator software program provides a user friendly interface to configure the analog connections between the GPIO and various analog resources and also connections from one analog resource to another. PSoC Creator also provides component libraries that allow you to configure the various analog blocks to perform application specific functions (PGA, transimpedance amplifier, voltage DAC, current DAC, and so on). The tool also generates API interface libraries that allow you to write firmware that allows the communication between the analog peripheral and CPU/Memory.

### 8.1 Analog Routing

The PSoC 5 family of devices has a flexible analog routing architecture that provides the capability to connect GPIOs and different analog blocks, and also route signals between different analog blocks. One of the strong points of this flexible routing architecture is that it allows dynamic routing of input and output connections to the different analog blocks. All analog routing switches are open when the device is in sleep or hibernate mode.

For information on how to make pin selections for optimal analog routing, refer to the application note,  $AN58304 - PSoC^{®} 3$  and  $PSoC^{®} 5$  - Pin Selection for Analog Designs.

### 8.1.1 Features

- Flexible, configurable analog routing architecture
- 16 Analog globals (AG) and two analog mux buses (AMUXBUS) to connect GPIOs and the analog blocks
- Each GPIO is connected to one analog global and one analog mux bus
- 8 Analog local buses (abus) to route signals between the different analog blocks
- Multiplexers and switches for input and output selection of the analog blocks

### 8.1.2 Functional Description

Analog globals (AGs) and analog mux buses (AMUXBUS) provide analog connectivity between GPIOs and the various analog blocks. There are 16 AGs in the PSoC 5 family. The analog routing architecture is divided into four quadrants as shown in Figure 8-2. Each quadrant has four analog globals (AGL[0..3], AGL[4..7], AGR[0..3], AGR[4..7]). Each GPIO is connected to the corresponding AG through an analog switch. The analog mux bus is a shared routing resource that connects to every GPIO through an analog switch. There are two AMUXBUS routes in PSoC 5, one in the left half (AMUXBUSL) and one in the right half (AMUXBUSR), as shown in Figure 8-2.



Analog local buses (abus) are routing resources located within the analog subsystem and are used to route signals between different analog blocks. There are eight abus routes in PSoC 5, four in the left half (abusl [0:3]) and four in the right half (abusr [0:3]) as shown in Figure 8-2. Using the abus saves the analog globals and analog mux buses from being used for interconnecting the analog blocks.

Multiplexers and switches exist on the various buses to direct signals into and out of the analog blocks. A multiplexer can have only one connection on at a time, whereas a switch can have multiple connections on simultaneously. In Figure 8-2, multiplexers are indicated by grayed ovals and switches are indicated by transparent ovals.

### 8.2 Successive Approximation ADCs

The CY8C54 family of devices has two Successive Approximation (SAR) ADCs. These ADCs are 12-bit at up to 700 ksps, with single-ended or differential inputs, making them useful for a wide variety of sampling and control applications.

### 8.2.1 Functional Description

In a SAR ADC an analog input signal is sampled and compared with the output of a DAC. A binary search algorithm is applied to the DAC and used to determine the output bits in succession from MSB to LSB. A block diagram of one SAR ADC is shown in Figure 8-3.

### Figure 8-3. SAR ADC Block Diagram



The input is connected to the analog globals and muxes. The maximum clock rate is 14 MHz.

### 8.2.2 Conversion Signals

Writing a start bit or assertion of a Start of Frame (SOF) signal is used to start a conversion. SOF can be used in applications

where the sampling period is longer than the conversion time, or when the ADC needs to be synchronized to other hardware. This signal is optional and does not need to be connected if the SAR ADC is running in a continuous mode. A digital clock or UDB output can be used to drive this input. When the SAR is first powered up or awakened from any of the sleeping modes, there is a power up wait time of 10 µs before it is ready to start the first conversion.

When the conversion is complete, a status bit is set and the output signal End of Frame (EOF) asserts and remains asserted until the value is read by either the DMA controller or the CPU. The EOF signal may be used to trigger an interrupt or a DMA request.

### 8.2.3 Operational Modes

A ONE\_SHOT control bit is used to set the SAR ADC conversion mode to either continuous or one conversion per SOF signal. DMA transfer of continuous samples, without CPU intervention, is supported.

### 8.3 Comparators

The CY8C54 family of devices contains four comparators. Comparators have these features:

- Input offset factory trimmed to less than 15 mV
- Rail-to-rail common mode input range (V<sub>SSA</sub> to V<sub>CCA</sub>)
- Speed and power can be traded off by using one of three modes: fast, slow, or ultra low power
- Comparator outputs can be routed to look up tables to perform simple logic functions and then can also be routed to digital blocks
- The positive input of the comparators may be optionally passed through a low pass filter. Two filters are provided
- Comparator inputs can be connections to GPIO, DAC outputs and SC block outputs

### 8.3.1 Input and Output Interface

The positive and negative inputs to the comparators come from the analog global buses, the analog mux line, the analog local bus and precision reference through multiplexers. The output from each comparator could be routed to any of the two input LUTs. The output of that LUT is routed to the UDB Digital System Interface.



# 10. Development Support

The CY8C54 family has a rich set of documentation, development tools, and online resources to assist you during your development process. Visit psoc.cypress.com/getting-started to find out more.

### 10.1 Documentation

A suite of documentation, to ensure that you can find answers to your questions quickly, supports the CY8C54 family. This section contains a list of some of the key documents.

**Software User Guide**: A step-by-step guide for using PSoC Creator. The software user guide shows you how the PSoC Creator build process works in detail, how to use source control with PSoC Creator, and much more.

**Component data sheets**: The flexibility of PSoC allows the creation of new peripherals (components) long after the device has gone into production. Component data sheets provide all of the information needed to select and use a particular component, including a functional description, API documentation, example code, and AC/DC specifications.

**Application Notes**: PSoC application notes discuss a particular application of PSoC in depth; examples include brushless DC

motor control and on-chip filtering. Application notes often include example projects in addition to the application note document.

**Technical Reference Manual**: PSoC Creator makes designing with PSoC as easy as dragging a peripheral onto a schematic, but, when low level details of the PSoC device are required, use the technical reference manual (TRM) as your guide.

**Note** Visit www.arm.com for detailed documentation about the Cortex-M3 CPU.

### 10.2 Online

In addition to print documentation, the Cypress PSoC forums connect you with fellow PSoC users and experts in PSoC from around the world, 24 hours a day, 7 days a week.

### 10.3 Tools

With industry standard cores, programming, and debugging interfaces, the CY8C54 family is part of a development tool ecosystem. Visit us at www.cypress.com/go/psoccreator for the latest information on the revolutionary, easy to use PSoC Creator IDE, supported third party compilers, programmers, debuggers, and development kits.



## 11.3.2 Analog Core Regulator

## Table 11-5. Analog Core Regulator DC Specifications

| Parameter        | Description                                | Conditions                  | Min | Тур  | Max | Units |
|------------------|--------------------------------------------|-----------------------------|-----|------|-----|-------|
| V <sub>DDA</sub> | Input voltage                              |                             | 2.7 | -    | 5.5 | V     |
| V <sub>CCA</sub> | Output voltage                             |                             | -   | 1.80 | _   | V     |
|                  | Regulator output capacitor <sup>[26]</sup> | ±10%, X5R ceramic or better | -   | 1    | 10  | μF    |

## Figure 11-4. Analog Regulator PSRR vs Frequency and V<sub>DD</sub>



## 11.4 Inputs and Outputs

Specifications are valid for –40 °C  $\leq$  T<sub>A</sub>  $\leq$  85 °C and T<sub>J</sub>  $\leq$  100 °C, except where noted. Specifications are valid for 2.7 V to 5.5 V, except where noted. Unless otherwise specified, all charts and graphs show typical values.

### 11.4.1 GPIO

### Table 11-6. GPIO DC Specifications

| Parameter       | Description                                                   | Conditions                                                                         | Min                     | Тур | Max                   | Units |
|-----------------|---------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------|-----|-----------------------|-------|
| V <sub>IH</sub> | Input voltage high threshold                                  | CMOS Input, PRT[x]CTL = 0                                                          | $0.7 \times V_{DDIO}$   | _   | -                     | V     |
| V <sub>IL</sub> | Input voltage low threshold                                   | CMOS Input, PRT[x]CTL = 0                                                          | -                       | _   | $0.3 \times V_{DDIO}$ | V     |
| V <sub>IH</sub> | Input voltage high threshold                                  | LVTTL Input, PRT[x]CTL = 1                                                         | 2.0                     | _   | -                     | V     |
| V <sub>IL</sub> | Input voltage low threshold                                   | LVTTL Input, PRT[x]CTL = 1                                                         | -                       | _   | 0.8                   | V     |
| V <sub>OH</sub> | Output voltage high                                           | I <sub>OH</sub> = 4 mA at 3.3 V <sub>DDIO</sub>                                    | V <sub>DDIO</sub> – 0.6 | _   | -                     | V     |
| V <sub>OL</sub> | Output voltage low                                            | I <sub>OL</sub> = 8 mA at 3.3 V <sub>DDIO</sub>                                    | -                       | _   | 0.6                   | V     |
| Rpullup         | Pull up resistor                                              |                                                                                    | 3.5                     | 5.6 | 8.5                   | kΩ    |
| Rpulldown       | Pull down resistor                                            |                                                                                    | 3.5                     | 5.6 | 8.5                   | kΩ    |
| IIL             | Input leakage current<br>(absolute value) <sup>[24]</sup>     | 25 °C, V <sub>DDIO</sub> = 3.0 V                                                   | -                       | _   | 2                     | nA    |
| C <sub>IN</sub> | Input capacitance <sup>[24]</sup>                             | GPIOs not shared with opamp outputs or kHzECO or SAR ADC external reference inputs | -                       | 4   | 7                     | pF    |
|                 |                                                               | GPIOs shared with kHzECO <sup>[25]</sup>                                           | _                       | 5   | 7                     | pF    |
|                 |                                                               | GPIOs shared with opamp outputs                                                    | _                       | _   | 18                    | pF    |
|                 |                                                               | GPIOs shared with SAR ADC external reference inputs                                | -                       | -   | 30                    | pF    |
| V <sub>H</sub>  | Input voltage hysteresis<br>(Schmitt–Trigger) <sup>[27]</sup> |                                                                                    | -                       | 150 | -                     | mV    |

### Notes

24. Based on device characterization (Not production tested). 25. For information on designing with PSoC 3 oscillators, refer to the application note, AN54439 - PSoC<sup>®</sup> 3 and PSoC 5 External Oscillator.

26. 10  $\mu$ F is required for sleep mode. See Table 11-3.



Figure 11-7. GPIO Output Rise and Fall Times, Fast Strong Mode,  $V_{DDIO} = 3.3 V$ , 25 pF Load



# Figure 11-8. GPIO Output Rise and Fall Times, Slow Strong Mode, $V_{DDIO} = 3.3 V$ , 25 pF Load

## 11.4.2 SIO

Note that under certain conditions an SIO pin may cause up to 1 mA of additional current to be drawn from the related  $V_{DDIO}$  pin. If an SIO pin's voltage exceeds its  $V_{DDIO}$  supply by 0.5 V, the trigger condition is set. After the trigger condition is set, the SIO pin causes increased current when its voltage is between  $V_{SSD}$  + 0.5 V and  $V_{DDIO}$  – 0.5 V. The trigger condition is reset when the SIO pin is brought within the range of  $V_{SSD}$  to  $V_{SSD}$  + 0.5 V. The trigger condition may unknowningly be met during device powerup due to differences in supply ramps.

| Parameter                            | Description                                       | Conditions                                                      | Min                     | Тур                                                    | Max                     | Units |  |  |  |
|--------------------------------------|---------------------------------------------------|-----------------------------------------------------------------|-------------------------|--------------------------------------------------------|-------------------------|-------|--|--|--|
| Vinmax                               | Maximum input voltage                             | All allowed values of Vddio and Vddd, see <i>Section 11.2.1</i> | -                       | _                                                      | 5.5                     | V     |  |  |  |
| Vinref                               | Input voltage reference (Differential input mode) |                                                                 | 0.5                     | -                                                      | $0.52 \times V_{DDIO}$  | V     |  |  |  |
|                                      | Output voltage reference (Regulate                | d output mode)                                                  |                         |                                                        |                         |       |  |  |  |
| Voutref                              |                                                   | V <sub>DDIO</sub> > 3.7                                         | 1                       | _                                                      | V <sub>DDIO</sub> -1    | V     |  |  |  |
|                                      |                                                   | V <sub>DDIO</sub> < 3.7                                         | 1                       | -                                                      | V <sub>DDIO</sub> – 0.5 | V     |  |  |  |
|                                      | Input voltage high threshold                      | •                                                               | •                       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  |                         |       |  |  |  |
| VIH                                  | GPIO mode                                         | CMOS input                                                      | $0.7 \times V_{DDIO}$   | _                                                      | _                       | V     |  |  |  |
|                                      | Differential input mode <sup>[28]</sup>           | Hysteresis disabled                                             | SIO_ref + 0.2           | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | V                       |       |  |  |  |
|                                      | Input voltage low threshold                       |                                                                 |                         |                                                        |                         |       |  |  |  |
| V <sub>IL</sub>                      | GPIO mode                                         | CMOS input                                                      | -                       | _                                                      | $0.3 \times V_{DDIO}$   | V     |  |  |  |
| Vinref<br>Voutref<br>V <sub>IH</sub> | Differential input mode <sup>[28]</sup>           | Hysteresis disabled                                             | -                       | _                                                      | SIO_ref - 0.2           | V     |  |  |  |
|                                      | Output voltage high                               | +                                                               | • • •                   |                                                        | 1                       |       |  |  |  |
| V                                    | Unregulated mode                                  | I <sub>OH</sub> = 4 mA, V <sub>DDIO</sub> = 3.3 V               | V <sub>DDIO</sub> - 0.4 | _                                                      | _                       | V     |  |  |  |
| ∨он                                  | Regulated mode <sup>[28]</sup>                    | I <sub>OH</sub> = 1 mA                                          | SIO_ref - 0.65          | _                                                      | SIO_ref + 0.2           | V     |  |  |  |
| V <sub>OH</sub>                      | Regulated mode <sup>[28]</sup>                    | I <sub>OH</sub> = 0.1 mA                                        | SIO_ref - 0.3           | _                                                      | SIO_ref + 0.2           | V     |  |  |  |
| V <sub>OL</sub>                      | Output voltage low                                | V <sub>DDIO</sub> = 3.30 V, I <sub>OL</sub> = 25 mA             | -                       | -                                                      | 0.8                     | V     |  |  |  |
| Rpullup                              | Pull up resistor                                  |                                                                 | 3.5                     | 5.6                                                    | 8.5                     | kΩ    |  |  |  |
| Rpulldown                            | Pull down resistor                                |                                                                 | 3.5                     | 5.6                                                    | 8.5                     | kΩ    |  |  |  |

### Table 11-8. SIO DC Specifications

### Note

<sup>28.</sup> See Figure 6-8 on page 26 and Figure 6-11 on page 29 for more information on SIO reference.

<sup>29.</sup> Based on device characterization (Not production tested).



## Table 11-12. USB Driver AC Specifications

| Parameter | Description                     | Conditions                                                                          | Min | Тур | Max  | Units |
|-----------|---------------------------------|-------------------------------------------------------------------------------------|-----|-----|------|-------|
| Tr        | Transition rise time            |                                                                                     | -   | -   | 20   | ns    |
| Tf        | Transition fall time            |                                                                                     | -   | I   | 20   | ns    |
| TR        | Rise/fall time matching         | V <sub>USB_5</sub> , V <sub>USB_3.3</sub> , see USB DC<br>Specifications on page 85 | 80% | _   | 135% |       |
| Vcrs      | Output signal crossover voltage |                                                                                     | 1.1 | -   | 2.3  | V     |

### 11.4.4 XRES

## Table 11-13. XRES DC Specifications

| Parameter       | Description                                                   | Conditions | Min                   | Тур | Max                   | Units |
|-----------------|---------------------------------------------------------------|------------|-----------------------|-----|-----------------------|-------|
| V <sub>IH</sub> | Input voltage high threshold                                  |            | $0.7 \times V_{DDIO}$ | -   | -                     | V     |
| V <sub>IL</sub> | Input voltage low threshold                                   |            | -                     | -   | $0.3 \times V_{DDIO}$ | V     |
| Rpullup         | Pull up resistor                                              |            | 3.5                   | 5.6 | 8.5                   | kΩ    |
| C <sub>IN</sub> | Input capacitance <sup>[34]</sup>                             |            | -                     | 3   |                       | pF    |
| V <sub>H</sub>  | Input voltage hysteresis<br>(Schmitt-trigger) <sup>[34]</sup> |            | -                     | 100 | -                     | mV    |
| Idiode          | Current through protection diode to $V_{DDIO}$ and $V_{SSIO}$ |            | -                     | -   | 100                   | μA    |

## Table 11-14. XRES AC Specifications

| Parameter          | Description       | Conditions | Min | Тур | Max | Units |
|--------------------|-------------------|------------|-----|-----|-----|-------|
| T <sub>RESET</sub> | Reset pulse width |            | 1   | -   | -   | μs    |



### 11.5.6 Current Digital-to-analog Converter (IDAC)

All specifications are based on use of the low-resistance IDAC output pins (see Pin Descriptions on page 9 for details). See the IDAC component data sheet in PSoC Creator for full electrical specifications and APIs.

Unless otherwise specified, all charts and graphs show typical values.

## Table 11-23. IDAC DC Specifications

| Parameter        | Description                                 | Conditions                                                                             | Min | Тур    | Max  | Units |
|------------------|---------------------------------------------|----------------------------------------------------------------------------------------|-----|--------|------|-------|
|                  | Resolution                                  |                                                                                        | _   | -      | 8    | bits  |
| I <sub>OUT</sub> | Output current at code = 255                | Range = 2.04 mA, code = 255,<br>Rload = $600 \Omega$                                   | _   | 2.04   | -    | mA    |
|                  |                                             | Range = 255 $\mu$ A, code = 255, Rload<br>= 600 $\Omega$                               | -   | 255    | _    | μA    |
|                  |                                             | Range = 31.875 $\mu$ A, code = 255,<br>Rload = 600 $\Omega$                            | -   | 31.875 | -    | μA    |
|                  | Monotonicity                                |                                                                                        | _   | -      | Yes  |       |
| Ezs              | Zero scale error                            |                                                                                        | _   | 0      | ±2.5 | LSB   |
| Eg               | Gain error                                  |                                                                                        | -   | -      | ±5   | %     |
| TC_Eg            | Temperature coefficient of gain             | Range = 2.04 mA                                                                        | -   | _      | 0.04 | %/°C  |
|                  | error                                       | Range = 255 µA                                                                         | _   | _      | 0.04 | %/°C  |
| NII              |                                             | Range = 31.875 µA                                                                      | _   | _      | 0.05 | %/°C  |
| INL              | Integral nonlinearity                       | Range = 255 μA, Codes 8 – 255,<br>Rload = 600 Ω, Cload = 15 pF                         | -   | -      | ±3   | LSB   |
| DNL              | Differential nonlinearity,<br>non-monotonic | Range = 255 $\mu$ A, Rload = 600 $\Omega$ ,<br>Cload = 15 pF                           | -   | -      | ±1.6 | LSB   |
| Vcompliance      | Dropout voltage, source or sink mode        | Voltage headroom at max current,<br>Rload to Vdda or Rload to Vssa,<br>Vdiff from Vdda | 1   | -      | _    | V     |
| I <sub>DD</sub>  | Operating current, code = 0                 | Slow mode, source mode, range = 31.875 µA                                              | -   | 44     | 100  | μA    |
|                  |                                             | Slow mode, source mode, range = 255 µA,                                                | -   | 33     | 100  | μA    |
|                  |                                             | Slow mode, source mode, range = 2.04 mA                                                | -   | 33     | 100  | μA    |
|                  |                                             | Slow mode, sink mode, range =<br>31.875 μA                                             | -   | 36     | 100  | μA    |
|                  |                                             | Slow mode, sink mode, range =<br>255 μΑ                                                | -   | 33     | 100  | μA    |
|                  |                                             | Slow mode, sink mode, range = 2.04 mA                                                  | -   | 33     | 100  | μA    |
|                  |                                             | Fast mode, source mode, range = 31.875 µA                                              | -   | 310    | 500  | μA    |
|                  |                                             | Fast mode, source mode, range = 255 µA                                                 | -   | 305    | 500  | μA    |
|                  |                                             | Fast mode, source mode, range = 2.04 mA                                                | -   | 305    | 500  | μA    |
|                  |                                             | Fast mode, sink mode, range = 31.875 µA                                                | -   | 310    | 500  | μA    |
|                  |                                             | Fast mode, sink mode, range = 255 µA                                                   | -   | 300    | 500  | μA    |
|                  |                                             | Fast mode, sink mode, range = 2.04 mA                                                  | -   | 300    | 500  | μA    |



Figure 11-56. Bandwidth vs. Temperature, Gain = 1, Power Mode = High

Figure 11-57. Noise vs. Frequency,  $V_{DDA} = 5 V$ , Power Mode = High



### 11.5.11 LCD Direct Drive

## Table 11-33. LCD Direct Drive DC Specifications

| Parameter           | Description                                                                         | Conditions                                                                                                                   | Min  | Тур  | Max  | Units |
|---------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------|------|------|-------|
| I <sub>CC</sub>     | LCD system operating current                                                        | Bus clock = 3 MHz, Vddio = Vdda =<br>3 V, 4 commons, 16 segments, 1/4<br>duty cycle, 50 Hz frame rate, no<br>glass connected | -    | 63   | _    | μA    |
| I <sub>CC SEG</sub> | Current per segment driver                                                          |                                                                                                                              | -    | 148  | -    | μA    |
| V <sub>BIAS</sub>   | LCD bias range (V <sub>BIAS</sub> refers to the main output voltage(V0) of LCD DAC) | $3~V \leq V_{BIAS} \leq V_{DDIO}$ for the drive pin                                                                          | 2.09 | _    | 5.2  | V     |
|                     | LCD bias step size                                                                  | $3 \text{ V} \le \text{V}_{BIAS} \le \text{V}_{DDIO}$ for the drive pin                                                      | -    | 25.8 | -    | mV    |
|                     | LCD capacitance per segment/common driver                                           | Drivers may be combined                                                                                                      | _    | 500  | 5000 | pF    |
|                     | Long term segment offset                                                            | $V_{BIAS} \le V_{DDA} - 0.5 V$                                                                                               | -    | -    | 20   | mV    |
| IOUT                | Output drive current per segment driver                                             | Vddio = 5.5V                                                                                                                 | 90   | -    | 165  | μA    |

## Table 11-34. LCD Direct Drive AC Specifications

| Parameter        | Description    | Conditions | Min | Тур | Max | Units |
|------------------|----------------|------------|-----|-----|-----|-------|
| f <sub>LCD</sub> | LCD frame rate |            | 10  | 50  | 150 | Hz    |



## **11.6 Digital Peripherals**

Specifications are valid for –40 °C  $\leq$  T<sub>A</sub>  $\leq$  85 °C and T<sub>J</sub>  $\leq$  100 °C, except where noted. Specifications are valid for 2.7 V to 5.5 V, except where noted.

## 11.6.1 Timer

The following specifications apply to the Timer/Counter/PWM peripheral in timer mode. Timers can also be implemented in UDBs; for more information, see the Timer component data sheet in PSoC Creator.

### Table 11-35. Timer DC Specifications

| Parameter | Description | Conditions                     | Min | Тур | Max | Units |
|-----------|-------------|--------------------------------|-----|-----|-----|-------|
|           | consumption | Input clock frequency – 3 MHz  | -   | 65  | _   | μA    |
|           |             | Input clock frequency –12 MHz  | -   | 170 | _   | μA    |
|           |             | Input clock frequency – 48 MHz | -   | 650 | -   | μA    |
|           |             | Input clock frequency – 67 MHz | -   | 900 | -   | μA    |

### Table 11-36. Timer AC Specifications

| Parameter | Description                    | Conditions | Min | Тур | Max   | Units |
|-----------|--------------------------------|------------|-----|-----|-------|-------|
|           | Operating frequency            |            | DC  | -   | 67.01 | MHz   |
|           | Capture pulse width (Internal) |            | 13  | -   | -     | ns    |
|           | Capture pulse width (external) |            | 30  | -   | -     | ns    |
|           | Timer resolution               |            | 13  | _   | _     | ns    |
|           | Enable pulse width             |            | 13  | -   | -     | ns    |
|           | Enable pulse width (external)  |            | 30  | -   | -     | ns    |
|           | Reset pulse width              |            | 13  | _   | _     | ns    |
|           | Reset pulse width (external)   |            | 30  | -   | -     | ns    |

## 11.6.2 Counter

The following specifications apply to the Timer/Counter/PWM peripheral, in counter mode. Counters can also be implemented in UDBs; for more information, see the Counter component data sheet in PSoC Creator.

## Table 11-37. Counter DC Specifications

| Parameter | Description               | Conditions                                      | Min | Тур | Max | Units |
|-----------|---------------------------|-------------------------------------------------|-----|-----|-----|-------|
|           | Block current consumption | 16-bit counter, at listed input clock frequency | -   | _   | -   | μA    |
|           | 3 MHz                     |                                                 | _   | 15  | _   | μA    |
|           | 12 MHz                    |                                                 | _   | 60  | _   | μA    |
|           | 48 MHz                    |                                                 | -   | 260 | -   | μA    |
|           | 67 MHz                    |                                                 | -   | 350 | _   | μA    |

### Table 11-38. Counter AC Specifications

| Parameter | Description                   | Conditions | Min | Тур | Max   | Units |
|-----------|-------------------------------|------------|-----|-----|-------|-------|
|           | Operating frequency           |            | DC  | -   | 67.01 | MHz   |
|           | Capture pulse                 |            | 13  | -   | -     | ns    |
|           | Resolution                    |            | 13  | -   | -     | ns    |
|           | Pulse width                   |            | 13  | -   | -     | ns    |
|           | Pulse width (external)        |            | 30  |     |       | ns    |
|           | Enable pulse width            |            | 13  | -   | -     | ns    |
|           | Enable pulse width (external) |            | 30  | -   | -     | ns    |
|           | Reset pulse width             |            | 13  | -   | -     | ns    |
|           | Reset pulse width (external)  |            | 30  | -   | -     | ns    |



## 11.6.5 Digital Filter Block

## Table 11-43. DFB DC Specifications

| Parameter | Description           | Conditions                     | Min | Тур  | Max   | Units |
|-----------|-----------------------|--------------------------------|-----|------|-------|-------|
|           | DFB operating current | 64-tap FIR at F <sub>DFB</sub> |     |      |       |       |
|           |                       | 100 kHz (1.3 ksps)             | -   | 0.03 | 0.075 | mA    |
|           |                       | 500 kHz (6.7 ksps)             | -   | 0.16 | 0.3   | mA    |
|           |                       | 1 MHz (13.4 ksps)              | _   | 0.33 | 0.57  | mA    |
|           |                       | 10 MHz (134 ksps)              | -   | 3.3  | 5.5   | mA    |
|           |                       | 48 MHz (644 ksps)              | _   | 15.7 | 26    | mA    |
|           |                       | 67 MHz (900 ksps)              | -   | 21.8 | 35.6  | mA    |

### Table 11-44. DFB AC Specifications

| Parameter        | Description             | Conditions | Min | Тур | Max   | Units |
|------------------|-------------------------|------------|-----|-----|-------|-------|
| F <sub>DFB</sub> | DFB operating frequency |            | DC  | _   | 67.01 | MHz   |

### 11.6.6 USB

## Table 11-45. USB DC Specifications

| Parameter            | Description                     | Conditions                                | Min  | Тур | Max  | Units |
|----------------------|---------------------------------|-------------------------------------------|------|-----|------|-------|
| V <sub>USB_5</sub>   | Device supply for USB operation | USB configured, USB regulator<br>enabled  | 4.35 | -   | 5.25 | V     |
| V <sub>USB_3.3</sub> |                                 | USB configured, USB regulator bypassed    | 3.15 | -   | 3.6  | V     |
| IUSB_Configured      |                                 | $V_{DDD}$ = 5 V, bus clock $\ge$ 33 MHz   | -    | 55  | -    | mA    |
|                      | active mode                     | $V_{DDD}$ = 3.3 V, bus clock $\ge$ 33 MHz | -    | 40  | -    | mA    |
| IUSB_Suspended       | Device supply current in device | $V_{DDD}$ = 5 V, connected to USB host    | -    | 0.5 | -    | mA    |
|                      | sleep mode                      | $V_{DDD}$ = 3.3 V, connected to USB host  | _    | 0.5 | _    | mA    |

40. Refer to ISO 11898 specification for details.
41. Rise/fall time matching (TR) not guaranteed, see USB Driver AC Specifications on page 65.



### 11.7.4 Write Once Latch (WOL)

### Table 11-53. WOL DC Specifications

| Parameter | Description         | Conditions           | Min | Тур | Max | Units |
|-----------|---------------------|----------------------|-----|-----|-----|-------|
|           | Program voltage     | V <sub>DDD</sub> pin | 2.7 | -   | 3.3 | V     |
|           | Program temperature | TJ                   | 10  | 25  | 40  | °C    |

### 11.8 PSoC System Resources

Specifications are valid for –40 °C  $\leq$  T<sub>A</sub>  $\leq$  85 °C and T<sub>J</sub>  $\leq$  100 °C, except where noted. Specifications are valid for 2.7 V to 5.5 V, except where noted.

11.8.1 Voltage Monitors

## Table 11-54. Voltage Monitors DC Specifications

| Parameter | Description              | Conditions | Min  | Тур  | Max  | Units |
|-----------|--------------------------|------------|------|------|------|-------|
| LVI       | Trip voltage             |            |      |      |      |       |
|           | LVI_A/D_SEL[3:0] = 0011b |            | 2.38 | 2.45 | 2.53 | V     |
|           | LVI_A/D_SEL[3:0] = 0100b |            | 2.62 | 2.71 | 2.79 | V     |
|           | LVI_A/D_SEL[3:0] = 0101b |            | 2.87 | 2.95 | 3.04 | V     |
|           | LVI_A/D_SEL[3:0] = 0110b |            | 3.11 | 3.21 | 3.31 | V     |
|           | LVI_A/D_SEL[3:0] = 0111b |            | 3.35 | 3.46 | 3.56 | V     |
|           | LVI_A/D_SEL[3:0] = 1000b |            | 3.59 | 3.70 | 3.81 | V     |
|           | LVI_A/D_SEL[3:0] = 1001b |            | 3.84 | 3.95 | 4.07 | V     |
|           | LVI_A/D_SEL[3:0] = 1010b |            | 4.08 | 4.20 | 4.33 | V     |
|           | LVI_A/D_SEL[3:0] = 1011b |            | 4.32 | 4.45 | 4.59 | V     |
|           | LVI_A/D_SEL[3:0] = 1100b |            | 4.56 | 4.70 | 4.84 | V     |
|           | LVI_A/D_SEL[3:0] = 1101b |            | 4.83 | 4.98 | 5.13 | V     |
|           | LVI_A/D_SEL[3:0] = 1110b |            | 5.05 | 5.21 | 5.37 | V     |
|           | LVI_A/D_SEL[3:0] = 1111b |            | 5.30 | 5.47 | 5.63 | V     |
| HVI       | Trip voltage             |            | 5.57 | 5.75 | 5.92 | V     |

### Table 11-55. Voltage Monitors AC Specifications

| Parameter | Description                   | Conditions | Min | Тур | Max | Units |
|-----------|-------------------------------|------------|-----|-----|-----|-------|
|           | Response time <sup>[43]</sup> |            | _   | 1   | _   | μs    |

### 11.8.2 Interrupt Controller

## Table 11-56. Interrupt Controller AC Specifications

| Parameter | Description                                                                                                 | Conditions | Min | Тур | Max | Units   |
|-----------|-------------------------------------------------------------------------------------------------------------|------------|-----|-----|-----|---------|
|           | Delay from interrupt signal input to ISR code execution from main line code <sup>[44]</sup>                 |            | _   | -   | 12  | Tcy CPU |
|           | Delay from interrupt signal input to ISR<br>code execution from ISR code<br>(tail-chaining) <sup>[44]</sup> |            | -   | _   | 6   | Tcy CPU |

Notes

44. ARM Cortex-M3 NVIC spec. Visit www.arm.com for detailed documentation about the Cortex-M3 CPU.

<sup>43.</sup> Based on device characterization (Not production tested).



| Acronym           | Description                                                  |
|-------------------|--------------------------------------------------------------|
| PLD               | programmable logic device, see also PAL                      |
| PLL               | phase-locked loop                                            |
| PMDD              | package material declaration data sheet                      |
| POR               | power-on reset                                               |
| PRS               | pseudo random sequence                                       |
| PS                | port read data register                                      |
| PSoC <sup>®</sup> | Programmable System-on-Chip™                                 |
| PSRR              | power supply rejection ratio                                 |
| PWM               | pulse-width modulator                                        |
| RAM               | random-access memory                                         |
| RISC              | reduced-instruction-set computing                            |
| RMS               | root-mean-square                                             |
| RSVD              | reserved                                                     |
| RTC               | real-time clock                                              |
| RTL               | register transfer language                                   |
| RTR               | remote transmission request                                  |
| RX                | receive                                                      |
| SAR               | successive approximation register                            |
| SC/CT             | switched capacitor/continuous time                           |
| SCL               | l <sup>2</sup> C serial clock                                |
| SDA               | l <sup>2</sup> C serial data                                 |
| S/H               | sample and hold                                              |
| SIO               | special input/output, GPIO with advanced features. See GPIO. |
| SNR               | signal-to-noise ratio                                        |
| SOC               | start of conversion                                          |
| SOF               | start of frame                                               |

## Table 14-1. Acronyms Used in this Document (continued)

## Table 14-1. Acronyms Used in this Document (continued)

| Acronym | Description                                                               |
|---------|---------------------------------------------------------------------------|
| SPI     | Serial Peripheral Interface, a communications protocol                    |
| SR      | slew rate                                                                 |
| SRAM    | static random access memory                                               |
| SRES    | software reset                                                            |
| SWD     | serial wire debug, a test protocol                                        |
| SWV     | single-wire viewer                                                        |
| TD      | transaction descriptor, see also DMA                                      |
| THD     | total harmonic distortion                                                 |
| TIA     | transimpedance amplifier                                                  |
| TRM     | technical reference manual                                                |
| TTL     | transistor-transistor logic                                               |
| TX      | transmit                                                                  |
| UART    | Universal Asynchronous Transmitter Receiver, a<br>communications protocol |
| UDB     | universal digital block                                                   |
| USB     | Universal Serial Bus                                                      |
| USBIO   | USB input/output, PSoC pins used to connect to a USB port                 |
| VDAC    | voltage DAC, see also DAC, IDAC                                           |
| WDT     | watchdog timer                                                            |
| WOL     | write once latch, see also NVL                                            |
| WRES    | watchdog timer reset                                                      |
| XRES    | external reset I/O pin                                                    |
| XTAL    | crystal                                                                   |

## **15. Reference Documents**

PSoC® 3, PSoC® 5 Architecture TRM PSoC® 5 Registers TRM



## 18. Sales, Solutions, and Legal Information

### Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturers' representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

#### Products Automotive cypress.com/go/automotive Clocks & Buffers cypress.com/go/clocks Interface cypress.com/go/interface Lighting & Power Control cypress.com/go/powerpsoc cypress.com/go/plc Memory cypress.com/go/memory **Optical & Image Sensing** cypress.com/go/image **PSoC** cypress.com/go/psoc Touch Sensing cypress.com/go/touch **USB** Controllers cypress.com/go/USB Wireless/RF cypress.com/go/wireless

### **PSoC Solutions**

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2011-2012. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-66238 Rev. \*D

Revised February 15, 2012

Page 103 of 103

CapSense<sup>®</sup>, PSoC<sup>®</sup>3, PSoC<sup>®</sup>5, and PSoC<sup>®</sup> Creator<sup>™</sup> are trademarks and PSoC<sup>®</sup> is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are property of the respective corporations.

Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips. ARM is a registered trademark, and Keil, and RealView are trademarks, of ARM Limited. All products and company names mentioned in this document may be the trademarks of their respective holders.