

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	M16C/60
Core Size	16-Bit
Speed	24MHz
Connectivity	CANbus, I ² C, IEBus, SIO, UART/USART
Peripherals	DMA, WDT
Number of I/O	85
Program Memory Size	384KB (384K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	31K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m306nkfhgp-u3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.5 Pin Assignments

Figures 1.3 and 1.4 show the Pin Assignment (Top View). Tables 1.4 to 1.8 list the List of Pin Names.

3. Memory

Figure 3.1 shows a Memory Map. The address space extends the 1 Mbyte from address 00000h to FFFFFh. The internal ROM is allocated in a lower address direction beginning with address FFFFh. For example, a 512-Kbyte internal ROM is allocated to the addresses from 80000h to FFFFh.

As for the flash memory version, 4-Kbyte space (block A) exists in 0F000h to 0FFFFh. 4-Kbyte space is mainly for storing data. In addition to storing data, 4-Kbyte space also can store programs.

The fixed interrupt vector table is allocated to the addresses from FFFDCh to FFFFFh. Therefore, store the start address of each interrupt routine here.

The internal RAM is allocated in an upper address direction beginning with address 00400h. For example, a 31-Kbyte internal RAM is allocated to the addresses from 00400h to 07FFFh. In addition to storing data, the internal RAM also stores the stack used when calling subroutines and when interrupts are generated.

The Special Function Registers (SFRs) are allocated to the addresses from 00000h to 003FFh. Peripheral function control registers are located here. Of the SFR, any area which has no functions allocated is reserved for future use and cannot be accessed by user.

The special page vector table is allocated to the addresses from FFE00h to FFFDBh. This vector is used by the JMPS or JSRS instruction. For details, refer to M16C/60, M16C/20, M16C/Tiny Series Software Manual. In memory expansion and microprocessor modes, some areas are reserved for future use and cannot be used by users.

Use T/V-ver. in single-chip mode. The memory expansion and microprocessor modes cannot be used.

2. In memory expansion mode, cannot be used.

3. As for the flash memory version, 4-Kbyte space (block A) exists.

4. When using the masked ROM version, write nothing to internal ROM area.

5. Shown here is a memory map for the case where the PM10 bit in the PM1 register is 1 (block A enabled, addresses 10000h to 26FFFh for CS2 area) and the PM13 bit in the PM1 register is 1 (internal RAM area is expanded over 192 Kbytes).

* Not available memory expansion and microprocessor modes in T/V-ver.. And not available external area in T/V-ver..

Figure 3.1 Memory Map

M16C/6N Group (M16C/6NK, M16C/6NM)

Table 4.6 SFR Information (6) (1)

Address	Register	Symbol	After Reset
0140h			XXh
0141h			XXh
0142h			XXh
0143h	CAN0 Message Box 14: Identifier /DLC		XXh
01//h			XXh
0145h			XXh
0145h			XXh
014011			XXII XXh
0147h			
0148h			XXn
0149h	CAN0 Message Box 14: Data Field		XXh
014Ah			XXh
014Bh			XXh
014Ch			XXh
014Dh			XXh
014Eh	CANO Massaga Box 14: Tima Stamp		XXh
014Fh	CANO Message Dox 14. Time Stamp		XXh
0150h			XXh
0151h			XXh
0152h			XXh
0153h	CANU Message Box 15: Identifier /DLC		XXh
0154h			XXh
0155h			XXh
0156h			XXh
0157h			XXh
0150h			XXh
01501			XXII XXh
015911	CAN0 Message Box 15: Data Field		XXII XXh
015A1			XXII XXh
0150h			XXII XXb
01501			XXII XXb
	CAN0 Message Box 15: Time Stamp		
0100			
01600			
01610			
01620	CAN0 Global Mask Register	C0GMR	
0163h	, °		XXn
0164h			XXn
0165h			XXn
0166h			XXh
0167h			XXh
0168h	CAN0 Local Mask A Begister	COLMAR	XXh
0169h			XXh
016Ah			XXh
016Bh			XXh
016Ch			XXh
016Dh			XXh
016Eh	CANO Legal Mark B Deviator		XXh
016Fh	CAINU LUCAI MASK B REGISTER	CULIVIDR	XXh
0170h			XXh
0171h			XXh
0172h			
0173h			
0174h			
0175h			
0176h			
0177h			
0178h			
0179h			
017Ah			
017Bh			
017Ch			
017Dh			
017Eh			
017Eh			

X: Undefined

NOTE:

1. Blank spaces are reserved. No access is allowed.

Table 4.7 SFR Information (7) ⁽²⁾

Address	Register	Symbol	After Reset
0180h			
0181h			
0182h			
0183h			
0184h			
0185h			
0186h			
0187h			
0188h			
0189h			
018Ah			
018Bh			
018Ch			
018Eh			
0100h			
01901			
0192h			
0193h			
0194h			
0195h			
0196h			
0197h			
0198h			
0199h			
019Ah			
019Bh			
019Ch			
019Dh			
019Eh			
019Fh			
01A0h			
01A1h			
01A2h			
01A3h			
01A4n			
01450			
01476			
01A8h			
01A0h			
01AAh			
01ABh			
01ACh			
01ADh			
01AEh			
01AFh			
01B0h			
01B1h			
01B2h			
01B3h			
01B4h			
01B5h	Flash Memory Control Register 1 ⁽¹⁾	FMR1	0X00XX0Xb
01B6h			
01B7h	Flash Memory Control Register 0 ⁽¹⁾	FMR0	0000001b
01B8h			00h
01B9h	Address Match Interrupt Register 2	RMAD2	00h
01BAh	Address Match Internet Enable Desister 2		XUh
01BBh	Address Match Interrupt Enable Register 2	AIER2	
01BCh	Address Match Interrupt Register 2		
	Auuress match Interrupt Register 3	RIVIAD3	
VIBEN		1	

X: Undefined

NOTES:

These registers are included in the flash memory version. Cannot be accessed by users in the mask ROM version.
 Blank spaces are reserved. No access is allowed.

Table 4.8 SFR Information (8)⁽³⁾

Address	Register	Symbol	After Reset
01C0h	Timer B3, B4, B5 Count Start Flag	TBSR	000XXXXXb
01C1h			
01C2h			XXh
01C3h	Timer A1-1 Register	TA11	XXh
01C4h			XXh
01C5h	Timer A2-1 Register	TA21	XXh
01C6h			XXh
0107h	Timer A4-1 Register	TA41	XXh
010711	Three-Phase DWM Control Pegister 0		00b
0100h	Three Phase PWM Control Degister 1		00h
01C9h	Three Phase Putrici Duffer Desister 0		001111116
01CAh	Three-Phase Output Buller Register 0		001111110
01CBh	Inree-Phase Output Buffer Register 1		
01CCh			XXn
01CDh	Timer B2 Interrupt Generation Frequency Set Counter	ICTB2	XXh
01CEh			
01CFh	Interrupt Source Select Register 2	IFSR2	X000000b
01D0h	Timer B3 Begister	TB3	XXh
01D1h		100	XXh
01D2h	Timor B4 Pogistor	тви	XXh
01D3h		104	XXh
01D4h	Timer DE Devieter	TDE	XXh
01D5h	Timer do Register	IDO	XXh
01D6h	SI/O6 Transmit/Receive Register (1)	S6TRR	XXh
01D7h			
01D8h	SI/O6 Control Register (1)	S6C	0100000b
01D9h	SI/O6 Bit Rate Register (1)	S6BRG	XXh
01DAh	SI/O3, 4, 5, 6 Transmit/Receive Register (2)	S3456TRR	XXXX0000b
01DBh	Timer B3 Mode Register	TB3MR	00XX0000b
01DCh	Timer B4 Mode Register	TB4MR	00XX0000b
01DDh	Timer B5 Mode Register	TB5MR	00XX0000b
01DEh	Interrupt Source Select Register 0	IFSR0	00h
01DFh	Interrupt Source Select Register 1	IFSR1	00h
01E0h	SI/O3 Transmit/Receive Register	S3TRR	XXh
01E1h			
01E2h	SI/O3 Control Register	S3C	0100000b
01E3h	SI/O3 Bit Rate Register	S3BRG	XXh
01F4h	SI/O4 Transmit/Receive Register	S4TRR	XXh
01E5h			
01E6h	SI/O4 Control Register	S4C	0100000b
01E7h	SI/O4 Bit Rate Register	S4BRG	XXh
01E8h	SI/O5 Transmit/Receive Register (1)	S5TRR	XXh
01E9h			
01EAh	SI/O5 Control Register (1)	S5C	0100000b
01EBh	SI/O5 Bit Rate Register (1)	S5BRG	XXh
01ECh	UARTO Special Mode Register 4	U0SMR4	00h
01FDh	UART0 Special Mode Register 3	U0SMR3	000X0X0Xb
01FFh	UARTO Special Mode Register 2	U0SMB2	X000000b
01FFh	UABTO Special Mode Register	UOSMR	X000000b
01E0h	UABT1 Special Mode Register 4	U1SMR4	00h
01E1h	LIABT1 Special Mode Register 3	LI1SMR3	000X0X0Xb
01F2h	UABT1 Special Mode Register 2	U1SMB2	X000000b
01E3h	UABT1 Special Mode Register	UISMB	X000000b
01F4h	UABT2 Special Mode Register 4	U2SMR4	00h
01E5h	LIABT2 Special Mode Register 3	LI2SMB3	000X0X0Xb
01E6h	UABT2 Special Mode Register 2	U2SMR2	X000000b
01F7h	UABT2 Special Mode Register	U2SMR	X000000b
01F8h	UABT2 Transmit/Receive Mode Register	U2MB	00h
01Fah	UART2 Rit Bate Benister	U2BBG	χχh
01EAb		JEDING	XYh
01EBb	UART2 Transmit Buffer Register	U2TB	ХУЬ
01ECh	LIART2 Transmit/Receive Control Register 0	112C0	00001000b
	LIART2 Transmit/Beceive Control Register 1	1/201	00000105
		0201	XYh
	UART2 Receive Buffer Register	U2RB	XVh
VIITEII		1	

X: Undefined

NOTES:

These registers exist only in the 128-pin version.
 Bits S5TRF and S6TRF in the S3456TRR register are used in the 128-pin version.
 Blank spaces are reserved. No access is allowed.

Table 4.10 SFR Information (10) (1)

Address	Register	Symbol	After Reset
0240h			
0241h			
0242h	CANO Assestance Filter Support Register	COAFS	XXh
0243h		CUAFS	XXh
0244h	CANI Accortance Filter Support Register	CIAES	XXh
0245h		CIAIS	XXh
0246h			
0247h			
0248h			
0249h			
024Ah			
024Bh			
024Ch			
024Dh			
024Eh			
024Fh			
0250h			
02510			
02520			
02530			
0254H			
0256h			
0257h			
0258h			
0259h			
025Ah			
025Bh			
025Ch			
025Dh			
025Eh	Peripheral Clock Select Register	PCLKR	00h
025Fh	CAN0/1 Clock Select Register	CCLKR	00h
0260h			XXh
0261h			XXh
0262h	CAN1 Message Box 0: Identifier / DLC		XXh
0263h			XXh
0264h			XXh
0265h			XXh
0266h			XXh
0267h			XXh
0268h			XXh
0269h	CAN1 Message Box 0: Data Field		XXn
026An			
02000			
020011			XYh
026Eh			XXh
026Eh	CAN1 Message Box 0:Time Stamp		XXh
0270h			XXh
0271h			XXh
0272h	CANIT Magazara Bay 1: Identifiar / DLC		XXh
0273h	OANT WESSAGE DOX T. IDENUILE / DLO		XXh
0274h			XXh
0275h			XXh
0276h			XXh
0277h			XXh
0278h			XXh
0279h	CAN1 Message Box 1: Data Field		XXh
027Ah	of the moscage box 1. Data Flora		XXh
027Bh			XXh
027Ch			XXh
027Dh			XXh
027Eh	CAN1 Message Box 1:Time Stamp		XXh
027Fh		I	I XXh

X: Undefined

NOTE:

1. Blank spaces are reserved. No access is allowed.

Table 4.12 SFR Information (12)

Address	Register	Symbol	After Reset
02C0h			XXh
02C1h			XXh
02C2h			XXh
02C3h	CAN1 Message Box 6: Identifier / DLC		XXh
02C4h			XXh
02C5h			XXh
0200h			XXh
02C011			XXh
020711			XXII XXb
02080			XXII XXb
02C9n	CAN1 Message Box 6: Data Field		
02CAh			XXII
02CBh			XXn
02CCh			XXn
02CDh			XXh
02CEh	CAN1 Message Box 6 ⁻ Time Stamp		XXh
02CFh			XXh
02D0h			XXh
02D1h			XXh
02D2h	CAN1 Massage Box 7: Identifier / DLC		XXh
02D3h	CANT Message box 7. Identifier / DEC		XXh
02D4h			XXh
02D5h			XXh
02D6h			XXh
02D7h			XXh
02D8h			XXh
02D9h			XXh
02DAh	CAN1 Message Box 7: Data Field		XXh
02DBh			XXh
02DCh			XXh
02DDh			XXh
02DEh			XXh
02DEh	CAN1 Message Box 7: Time Stamp		XXh
02E0h			XXh
02E1h			XXh
02E2h			XXh
02E3h	CAN1 Message Box 8: Identifier / DLC		XXh
02E4h			XXh
02E5h			XXh
02E6h			XXh
02E7h			XXh
02E8h			XXh
02E9h			XXh
02EAh	CAN1 Message Box 8: Data Field		XXh
02E8h			XXh
02EDh			XXh
02E0h			XXh
02ED11			XYh
02000	CAN1 Message Box 8: Time Stamp		XVh
02E0h			XXII XXb
02F011			XXII XXb
02F111			XXII XXb
	CAN1 Message Box 9: Identifier / DLC		
02F30			
02F4h			
02F50		1	
02F60			
02F/N			
02F8h			<u> </u>
02F9h	CAN1 Message Box 9: Data Field		<u> </u>
02FAh	-		<u> </u>
U2FBh			<u> </u>
U2FCh			<u> </u>
U2FDh		1	AXN XXL
U2FEN	CAN1 Message Box 9: Time Stamp		<u> </u>
02FFh	, i		XXh

X: Undefined

M16C/6N Group (M16C/6NK, M16C/6NM)

Table 4.14 SFR Information (14) (1)

Address	Register	Symbol	After Reset
0340h			XXh
0341h			XXh
0342h			XXh
0242h	CAN1 Message Box 14: Identifier / DLC		XXh
03431			YYh
034411			
0345h			XXn
0346h			XXh
0347h			XXh
0348h			XXh
0349h	OANIA Maarana David A. Dala Fishi		XXh
034Ah	CAN1 Message Box 14: Data Fleid		XXh
034Bb			XXh
034DH			YYh
03401			XXII
034Dh			
034Eh	CAN1 Message Box 14 ⁻ Time Stamp		XXh
034Fh			XXh
0350h			XXh
0351h			XXh
0352h			XXh
0353h	CAN1 Message Box 15: Identifier / DLC		XXh
0354h			XXh
035411			
0355h			XXn
0356h			XXh
0357h			XXh
0358h			XXh
0359h	OANIA Maarana Davide, Dala Etala		XXh
035Ah	CANT Message Box 15: Data Field		XXh
035Bh			XXh
035Ch			XXh
03501			XXII XXb
035Dh			
035Eh	CAN1 Message Box 15: Time Stamp		XXn
035Fh			XXh
0360h			XXh
0361h			XXh
0362h	OANH Oldest Made Davister	01010	XXh
0363h	CAN1 Global Mask Register	CIGMR	XXh
0364h			XXh
0365h			YYh
030511			
03660			
0367h			XXh
0368h	CAN1 Local Mask A Begister	C1LMAR	XXh
0369h			XXh
036Ah			XXh
036Bh			XXh
036Ch			XXh
036Dh			XXh
0300011			YVh
036En	CAN1 Local Mask B Register	C1LMBR	
036Fh			XXn
0370h			XXh
0371h			XXh
0372h			
0373h			
0374h			
0375h			1
037311			1
03760			1
0377h			
0378h			
0379h			
037Ah			
037Bh			
037Ch			
037Dh			1
00701			1
037En			1
03/Fh			

X: Undefined

NOTE:

1. Blank spaces are reserved. No access is allowed.

5. Electrical Characteristics

5.1 Electrical Characteristics (Normal-ver.)

Table 5.1 Absolute Maximum Ratings

Symbol			Parameter	Condition	Rated Value	Unit
Vcc	Supply vo	Itage (VC	CC1 = VCC2)	VCC = AVCC	-0.3 to 6.5	V
AVcc	Analog su	Analog supply voltage			-0.3 to 6.5	V
Vi	Input	RESET,	CNVSS, BYTE,		-0.3 to VCC+0.3	V
	voltage	P0_0 to	P0_7, P1_0 to P1_7, P2_0 to P2_7,			
		P3_0 to	P3_7, P4_0 to P4_7, P5_0 to P5_7,			
		P6_0 to F	P6_7, P7_0, P7_2 to P7_7, P8_0 to P8_7,			
		P9_0, P	9_2 to P9_7, P10_0 to P10_7,			
		P11_0 to	P11_7, P12_0 to P12_7, P13_0 to P13_7,			
		P14_0,	P14_1, VREF, XIN			
		P7_1, P	9_1		-0.3 to 6.5	V
Vo	Output	P0_0 to	P0_7, P1_0 to P1_7, P2_0 to P2_7,		-0.3 to VCC+0.3	V
	voltage	P3_0 to	P3_7, P4_0 to P4_7, P5_0 to P5_7,			
		P6_0 to	P6_7, P7_0, P7_2 to P7_7,			
		P8_0 to I	P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7,			
		P10_0 to	P10_7, P11_0 to P11_7, P12_0 to P12_7,			
		P13_0 t	o P13_7, P14_0, P14_1, XOUT			
		P7_1, P	9_1		-0.3 to 6.5	V
Pd	Power dis	sipation		Topr = 25°C	700	mW
Topr	Operating	ambient	During MCU operation		-40 to 85	°C
	temperatu	ire	During flash memory program and		0 to 60	
			erase operation			
Tstg	Storage te	emperatu	re		-65 to 150	°C

NOTE:

1. Ports P11 to P14 are only in the 128-pin version.

			StandardUMin.Typ.Max.			
Symbol		Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply voltage	ge (VCC1 = VCC2)	3.0	5.0	5.5	V
AVcc	Analog supp	ly voltage		Vcc		V
Vss	Supply voltage	ge		0		V
AVss	Analog supp	ly voltage		0		V
Vін	HIGH input	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7,	0.8 Vcc		Vcc	V
	voltage	P7_0, P7_2 to P7_7, P8_0 to P8_7, P9_0, P9_2 to P9_7,				
		P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0				
		to P13_7, P14_0, P14_1,				
		XIN, RESET, CNVSS, BYTE				
		P7_1, P9_1	0.8 Vcc		6.5	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0.8 Vcc		Vcc	V
		(During single-chip mode)				
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0.5 Vcc		Vcc	
		(Data input during memory expansion and microprocessor modes)				
VIL	LOW input	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7,	0		0.2 Vcc	V
	voltage	P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to				V
		P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7,				
		P14_0, P14_1, XIN, RESET, CNVSS, BYTE				
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0		0.2 Vcc	V
		(During single-chip mode)				
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0		0.16 Vcc	V
		(Data input during memory expansion and microprocessor modes)				
OH(peak)	HIGH peak	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			-10.0	mA
	output current	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0, P7_2 to				
		P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7,				
		P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0				
		to P13_7, P14_0, P14_1				
IOH(avg)	HIGH average	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			-5.0	mA
	output current	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0, P7_2 to				
		P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7,				
		P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0				
		to P13_7, P14_0, P14_1				
OL(peak)	LOW peak	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			10.0	mA
	output current	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7,				
		P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7,				
		P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7,				
		P14_0, P14_1				
IOL(avg)	LOW average	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			5.0	mA
	output current	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7,				
		P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7,				
		P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7,				
		P14 0 P14 1				

Table 5.2 Recommended Operating Conditions (1)

NOTES:

- 1. Referenced to VCC = 3.0 to 5.5 V at Topr = -40 to 85° C unless otherwise specified.
- 2. Average output current values during 100 ms period.
- 3. The total IoL(peak) for ports P0, P1, P2, P8_6, P8_7, P9, P10, P11, P14_0, and P14_1 must be 80 mA max.
- The total IoL(peak) for ports P3, P4, P5, P6, P7, P8_0 to P8_4, P12, and P13 must be 80 mA max.

The total IOH(peak) for ports P0, P1, and P2 must be -40 mA max.

- The total IOH(peak) for ports P3, P4, P5, P12, and P13 must be -40 mA max.
- The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40 mA max.

The total IOH(peak) for ports P8_6, P8_7, P9, P10, P11, P14_0, and P14_1 must be -40 mA max.

4. P11 to P14 are only in the 128-pin version.

Symbol	Pa	ramator	Moasur	ing Condition	S	tandar	d	Lloit
Symbol	Га		Measur		Min.	Typ.	Max.	
Icc	Power supply	In single-chip mode,	Mask ROM	f(BCLK) = 24 MHz,		21	37	mA
	current	the output pins are		PLL operation,				
	(VCC = 3.0 to 5.5 V)	open and other pins		No division				
		are VSS.		On-chip oscillation,		1		mA
				No division				
			Flash memory	f(BCLK) = 24 MHz,		23	39	mA
				PLL operation,				
				No division				
				On-chip oscillation,		1.8		mA
				No division				
			Flash memory	f(BCLK) = 10 MHz,		15		mA
			program	VCC = 5 V				
			Flash memory	f(BCLK) = 10 MHz,		25		mA
			erase	VCC = 5 V				
			Mask ROM	f(BCLK) = 32 kHz,		25		μA
				Low power dissipation				
				mode, ROM ⁽²⁾				
			Flash memory	f(BCLK) = 32 kHz,		25		μA
				Low power dissipation				
				mode, RAM ⁽²⁾				
				f(BCLK) = 32 kHz,		420		μA
				Low power dissipation				
				mode,				
				Flash memory (2)				
			Mask ROM	On-chip oscillation,		50		μA
			Flash memory	Wait mode				
				f(BCLK) = 32 kHz,		8.5		μA
				Wait mode ⁽³⁾ ,				
				Oscillation capacity High				
				f(BCLK) = 32 kHz,		3.0		μA
				Wait mode (3),				
				Oscillation capacity Low				
				Stop mode,		0.8	3.0	μA
				Topr = 25°C				

Table 5.5 Electrical Characteristics (2)

NOTES:

1. Referenced to VCC = 3.0 to 5.5 V, VSS = 0 V at Topr = -40 to 85° C, f(BCLK) = 24 MHz unless otherwise specified.

2. This indicates the memory in which the program to be executed exists.

3. With one timer operated using fC32.

Timing Requirements VCC = 5 V(Referenced to VCC = 5 V, VSS = 0 V, at Topr = -40 to 85°C unless otherwise specified)

Table 5.11 External Clock Input (XIN Input)

Symbol	Parameter		Standard		
Symbol	Symbol Parameter External clock input cycle time H) External clock input HIGH pulse width L) External clock input LOW pulse width External clock rise time	Min.	Max.	Unit	
tc	External clock input cycle time	62.5		ns	
tw(H)	External clock input HIGH pulse width	25		ns	
tw(L)	External clock input LOW pulse width	25		ns	
tr	External clock rise time		15	ns	
tr	External clock fall time		15	ns	

Table 5.12 Memory Expansion Mode and Microprocessor Mode

Symbol	Doromotor		Standard		
Symbol	(RD-DB) Data input access time (for setting with no wait) (RD-DB) Data input access time (for setting with wait) (RD-DB) Data input access time (when accessing multiplexed bus area) DB-RD) Data input setup time RDY-BCLK) RDY input setup time	Min.	Max.	Unit	
tac1(RD-DB)	Data input access time (for setting with no wait)		(NOTE 1)	ns	
tac2(RD-DB)	Data input access time (for setting with wait)		(NOTE 2)	ns	
tac3(RD-DB)	Data input access time (when accessing multiplexed bus area)		(NOTE 3)	ns	
tsu(DB-RD)	Data input setup time	40		ns	
tsu(RDY-BCLK)	RDY input setup time	30		ns	
tsu(HOLD-BCLK)	HOLD input setup time	40		ns	
th(RD-DB)	Data input hold time	0		ns	
th(BCLK-RDY)	RDY input hold time	0		ns	
th(BCLK-HOLD)	HOLD input hold time	0		ns	

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 45 [ns]$$

2. Calculated according to the BCLK frequency as follows:

 $\frac{(n-0.5) \times 10^9}{f(BCLK)} - 45 \text{ [ns]}$ n is "2" for 1-wait setting, "3" for 2-wait setting and "4" for 3-wait setting.

3. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5) \times 10^9}{f(BCLK)} - 45 \text{ [ns]} \qquad n \text{ is "2" for 2-wait setting, "3" for 3-wait setting.}$$

Timing Requirements VCC = 5 V(Referenced to VCC = 5 V, VSS = 0 V, at Topr = -40 to 85°C unless otherwise specified)

Table 5.13 Timer A Input (Counter Input in Event Counter Mode)

Symbol	Parameter		Standard		
Symbol			Max.		
tc(TA)	TAIIN input cycle time	100		ns	
tw(TAH)	TAIIN input HIGH pulse width	40		ns	
tw(TAL)	TAiIN input LOW pulse width	40		ns	

Table 5.14 Timer A Input (Gating Input in Timer Mode)

Symbol	Parameter	Stan	Linit	
		Min.	Max.	
tc(TA)	TAiIN input cycle time			ns
tw(TAH)	TAIIN input HIGH pulse width			ns
tw(TAL)	TAiIN input LOW pulse width			ns

Table 5.15 Timer A Input (External Trigger Input in One-shot Timer Mode)

Symbol	Parameter		Standard		
Symbol			Max.		
tc(TA)	TAIIN input cycle time	200		ns	
tw(TAH)	TAIIN input HIGH pulse width			ns	
tw(TAL)	TAIIN input LOW pulse width	100		ns	

Table 5.16 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Dorometer		Standard	
	Parameter	Min.	Max.	Unit
tw(TAH)	TAIIN input HIGH pulse width	100		ns
tw(TAL)	TAIIN input LOW pulse width	100		ns

Table 5.17 Timer A Input (Counter Increment/decrement Input in Event Counter Mode)

Symbol	Parameter	Stan	Unit	
	Parameter			Max.
tc(UP)	TAiOUT input cycle time	2000		ns
tw(UPH)	TAiOUT input HIGH pulse width	1000		ns
tw(UPL)	TAiOUT input LOW pulse width	1000		ns
tsu(UP-TIN)	TAiOUT input setup time	400		ns
th(TIN-UP)	TAiOUT input hold time	400		ns

Table 5.18 Timer A Input (Two-phase Pulse Input in Event Counter Mode)

Symbol	Parameter	Standard		Unit
Symbol	Falainetei		Max.	
t _{c(TA)}	TAIIN input cycle time			ns
tsu(TAIN-TAOUT)	TAiOUT input setup time			ns
tsu(taout-tain)	TAIIN input setup time			ns

Switching Characteristics VCC = 5 V (Referenced to VCC = 5 V, VSS = 0 V, at Topr = -40 to 85 °C unless otherwise specified)

Standard Measuring Symbol Parameter Unit Condition Min. Max. td(BCLK-AD) Address output delay time Figure 5.2 25 ns th(BCLK-AD) Address output hold time (in relation to BCLK) 4 ns th(RD-AD) Address output hold time (in relation to RD) 0 ns th(WR-AD) Address output hold time (in relation to WR) (NOTE 1) ns Chip select output delay time td(BCLK-CS) 25 ns th(BCLK-CS) Chip select output hold time (in relation to BCLK) 4 ns td(BCLK-ALE) ALE signal output delay time ns 15 -4 th(BCLK-ALE) ALE signal output hold time ns td(BCLK-RD) RD signal output delay time 25 ns th(BCLK-RD) RD signal output hold time ns 0 td(BCLK-WR) WR signal output delay time ns 25 WR signal output hold time 0 ns th(BCLK-WR) td(BCLK-DB) Data output delay time (in relation to BCLK) 40 ns th(BCLK-DB) Data output hold time (rin relation to BCLK) (3) 4 ns td(DB-WR) Data output delay time (in relation to WR) (NOTE 2) ns Data output hold time (in relation to WR) (3) ns th(WR-DB) (NOTE 1) HLDA output delay time td(BCLK-HLDA) 40 ns

Table 5.26 Memory Expansion Mode and Microprocessor Mode (for 1- to 3-wait setting and external area access)

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10 [ns]$$

2. Calculated according to the BCLK frequency as follows:

 $\frac{(n-0.5) \times 10^9}{f(BCLK)} - 40 \text{ [ns]}$

n is "1" for 1-wait setting, "2" for 2-wait setting and "3" for 3-wait setting. When n = 1, f(BCLK) is 12.5 MHz or less.

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.

Hold time of data bus is expressed in

 $t = -CR \times ln (1 - V_{OL} / V_{CC})$

by a circuit of the right figure.

For example, when $V_{OL} = 0.2 V_{CC}$, C = 30 pF,

R =1 k Ω , hold time of output "L" level is

t = $-30 \text{ pF} \times 1 \text{ k}\Omega \times \text{ln} (1 - 0.2 \text{ Vcc} / \text{Vcc}) = 6.7 \text{ ns.}$

Figure 5.5 Timing Diagram (3)

RENESAS

Figure 5.8 Timing Diagram (6)

RENESAS

Figure 5.10 Timing Diagram (8)

RENESAS

Table 5.28 Electrical Characteristics (1)

VCC = 3.3 V

Symbol		Pa	ramatar	Massuring Condition	Standard			Unit
Symbol		га	Tameter	Measuring Condition	Min.	Тур.	Max.	
Vон	HIGH output	P0_0 to P	0_7, P1_0 to P1_7, P2_0 to P2_7,	Iон = −1 mA	Vcc-0.5		Vcc	V
	voltage	P3_0 to P3_7, P4_0 to P4_7, P5_0 to						
		P6_0 to P6	_7, P7_0, P7_2 to P7_7, P8_0 to P8_4,					
		P8_6, P8_7	7, P9_0, P9_2 to P9_7, P10_0 to P10_7,					
		P11_0toP	11_7,P12_0 to P12_7, P13_0 to P13_7,					
		P14_0, P	14_1					
Vон	HIGH output	XOUT	HIGHPOWER	Іон = -0.1 mA	Vcc-0.5		Vcc	V
	voltage		LOWPOWER	Іон = –50 µА	Vcc-0.5		Vcc	
	HIGH output	XCOUT	HIGHPOWER	With no load applied		2.5		V
	voltage		LOWPOWER	With no load applied		1.6		
Vol	LOW output	P0_0 to P	0_7, P1_0 to P1_7, P2_0 to P2_7,	lo∟ = 1 mA			0.5	V
	voltage	P3_0 to P	3_7, P4_0 to P4_7, P5_0 to P5_7,					
		P6_0 to P	6_7, P7_0 to P7_7, P8_0 to P8_4,					
		P8_6, P8_	_7, P9_0 to P9_7, P10_0 to P10_7,					
		P11_0 to P	11_7,P12_0 to P12_7, P13_0 to P13_7,					
		P14_0, P	914_1					
Vol	LOW output	XOUT	HIGHPOWER	IoL = 0.1 mA			0.5	V
	voltage		LOWPOWER	Ιοι = 50 μΑ			0.5	
	LOW output	XCOUT	HIGHPOWER	With no load applied		0		V
	voltage		LOWPOWER	With no load applied		0		
VT+-VT-	Hysteresis	HOLD, RD	Y, TAOIN to TA4IN, TB0IN to TB5IN,		0.2	-	0.8	V
		INTO to IN	IT8, NMI, ADTRG, CTS0 to CTS2,					
		SCL0 to S	CL2, SDA0 to SDA2, CLK0 to CLK6.					
		TAOOUT	to TA4OUT. $\overline{KI0}$ to $\overline{KI3}$.					
		RXD0 to	RXD2, SIN3 to SIN6					
VT+-VT-	Hysteresis	RESET	,		0.2		1.8	V
Ін	HIGH input	P0 0 to P	0 7, P1 0 to P1 7, P2 0 to P2 7,	VI = 3.3 V	0.2		4.0	μA
	current	P3 0 to P	3 7, P4 0 to P4 7, P5 0 to P5 7,					P
		 P6_0 to P	6_7, P7_0 to P7_7, P8_0 to P8_7,					
		P9 0 to	P9 7, P10 0 to P10 7,					
		P11 0 to	P11 7. P12 0 to P12 7.					
		P13 0 to	P13 7. P14 0. P14 1.					
		XIN. RES	SET. CNVSS. BYTE					
lı.	LOW input	P0 0 to P	0 7. P1 0 to P1 7. P2 0 to P2 7.	$V_{1} = 0 V$			-4.0	μА
	current	P3 0 to P	3 7. P4 0 to P4 7. P5 0 to P5 7.					
	ourront	P6 0 to P	6 7. P7 0 to P7 7. P8 0 to P8 7.					
		P9 0 to F	P9 7. P10 0 to P10 7.					
		P11 0 to	P11 7. P12 0 to P12 7.					
		P13_0 to	P13 7. P14 0. P14 1.					
		XIN RES	SET CNVSS BYTE					
RPULLUP	Pull-up	P0_0 to P	0 7 P1 0 to P1 7 P2 0 to P2 7	$\lambda = 0 \lambda $	50	100	500	kO
	resistance	P3 0 to P	3 7 P4 0 to P4 7 P5 0 to P5 7	$\mathbf{v}_1 = 0 \cdot \mathbf{v}$		100	000	1122
		P6_0 to P	6 7 P7 0 P7 2 to P7 7 P8 0 to					
		P8 4 P8	6 P8 7 P9 0 P9 2 to P9 7					
		P10_0 to	$P_{10} = 0, 10, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0$					
		P12 0 to	P12 7 P13 0 to P13 7					
		P14 0 P	14 1					
R fxin	Feedback resis	tance	XIN			30		MO
Rfxcin	Feedback resis	tance	XCIN			25		MO
VRAM	RAM retention	voltage		At stop mode	20	20		V
					2.0	1		l *

NOTES:

1. Referenced to VCC = 3.0 to 3.6 V, VSS = 0 V at Topr = -40 to 85° C, f(BCLK) = 24 MHz unless otherwise specified. 2. P11 to P14, $\overline{INT6}$ to $\overline{INT8}$, CLK5, CLK6, SIN5, and SIN6 are only in the 128-pin version.

Switching Characteristics

VCC = 3.3 V

(Referenced to VCC = 3.3 V, VSS = 0 V, at Topr = -40 to 85 °C unless otherwise specified)

Symbol	Parameter	Measuring	Stan	dard	Llnit
Symbol	i arameter	Condition	Min.	Max.	
td(BCLK-AD)	Address output delay time	Figure 5.11		30	ns
th(BCLK-AD)	Address output hold time (in relation to BCLK)		4		ns
th(RD-AD)	Address output hold time (in relation to RD)		0		ns
th(WR-AD)	Address output hold time (in relation to WR)		(NOTE 1)		ns
$t_{\text{d}(\text{BCLK-CS})}$	Chip select output delay time			30	ns
$t_{h(\text{BCLK-CS})}$	Chip select output hold time (in relation to BCLK)		4		ns
$t_{d(BCLK-ALE)}$	ALE signal output delay time			25	ns
$t_{h(BCLK-ALE)}$	ALE signal output hold time		-4		ns
$t_{d(BCLK-RD)}$	RD signal output delay time			30	ns
$t_{h(BCLK-RD)}$	RD signal output hold time		0		ns
$t_{d(BCLK-WR)}$	WR signal output delay time			30	ns
$t_{h(BCLK-WR)}$	WR signal output hold time		0		ns
$t_{\text{d}(\text{BCLK-DB})}$	Data output delay time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data output hold time (in relation to BCLK) (3)		4		ns
td(DB-WR)	Data output delay time (in relation to WR)		(NOTE 2)		ns
th(WR-DB)	Data output hold time (in relation to WR) (3)		(NOTE 1)		ns
td(BCLK-HLDA)	HLDA output delay time			40	ns

Table 5.44 Memory Expansion Mode and Microprocessor Mode (for 1- to 3-wait setting and external area access)

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10 [ns]$$

2. Calculated according to the BCLK frequency as follows:

 $\frac{(n-0.5) \times 10^9}{f(BCLK)} - 40 \text{ [ns]}$

n is "1" for 1-wait setting, "2" for 2-wait setting and "3" for 3-wait setting. When n = 1, f(BCLK) is 12.5 MHz or less.

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.

Hold time of data bus is expressed in

 $t = -CR \times ln (1 - V_{OL} / V_{CC})$

by a circuit of the right figure.

For example, when $V_{OL} = 0.2 V_{CC}$, C = 30 pF,

R =1 k Ω , hold time of output "L" level is

t = $-30 \text{ pF} \times 1 \text{ k}\Omega \times \text{ln} (1 - 0.2 \text{ Vcc} / \text{Vcc}) = 6.7 \text{ ns.}$

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials
 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to

- Nonne page (http://www.renessas.com).
 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or ther loss resulting from the information contained herein.
 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com