

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	SH-3
Core Size	32-Bit Single-Core
Speed	133MHz
Connectivity	EBI/EMI, FIFO, IrDA, SCI, SmartCard
Peripherals	DMA, POR, WDT
Number of I/O	96
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 2.05V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	240-LFBGA
Supplier Device Package	240-LFBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/d6417709sbp133bv

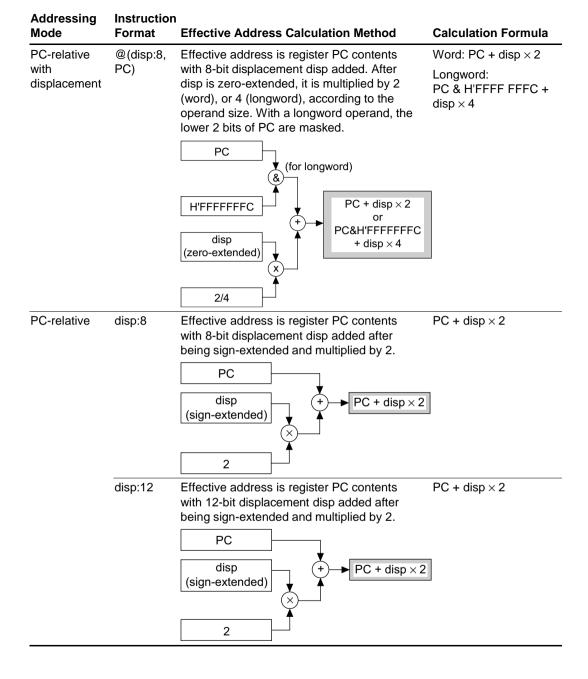
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Renesas 32-Bit RISC Microcomputer SuperH[™] RISC engine Family/SH7700 Series

SH7709S Group

Hardware Manual



REJ09B0081-0500O

Section	Page	Description
10.2.13 MCS0 Control	258	Description added
Register (MCSCR0)		Bit 6—CS2/CS0 Select (CS2/0) Only 0 should be used for the CS2/0 bit in MCSCR0. Either 0 or 1 may be used for MCSCR1 to MCSCR7.
10.3.4 Synchronous	290	Bank Active description added
DRAM Interface		In bank active mode, too, all banks become inactive after a refresh cycle or after the bus is released as the result of bus arbitration. The bank active mode should not be used unless the bus width for all areas is 32 bits.
10.3.6 PCMCIA Interface	310	Figure amended
Figure 10.32 Basic		D15 to D0
Timing for PCMCIA Memory Card Interface		(Write)
10.3.7 Waits between Access Cycles	320	Figure amended
Figure 10.40 Waits between Access Cycles		CKIO A25 to A0
10.3.10 MCS[0] to	323	Description amended
MCS[7] Pin Control		This enables 32-, 64-, 128-, or 256-Mbit memory to be connected to area 0 or area 2. However, only $CS2/0 = 0$ (area 0) should be used for MCSCR0. Table 10.15 shows MCSCR0–MCSCR7 settings and $\overline{MCS[0]}$ – $\overline{MCS[7]}$ assertion conditions.
11.6 Usage Notes	387	Description added
		 DMAC transfers should not be performed in the sleep mode under conditions other than when the clock ratio of lφ (on- chip clock) to Bφ (bus clock) is 1:1.
		14. When the following three conditions are all met, the frequency control register (FRQCR) should not be changed while a DMAC transfer is in progress.
		 Bits IFC2 to IFC0 are changed.
		 STC2 to STC0 in FRQCR are not changed.
		 The clock ratio of lφ (on-chip clock) to Bφ (bus clock) after the change is other than 1:1.
13.4.3 Precautions when Using RTC Module Standby	426	Newly added

Figure 23.47	TCLK Input Timing	
Figure 23.48	TCLK Clock Input Timing	
Figure 23.49	Oscillation Settling Time at RTC Crystal Oscillator Power-on	
Figure 23.50	SCK Input Clock Timing	
Figure 23.51	SCI I/O Timing in Clock Synchronous Mode	
Figure 23.52	I/O Port Timing	
Figure 23.53	DREQ Input Timing	
Figure 23.54	DRAK Output Timing	
Figure 23.55	TCK Input Timing	709
Figure 23.56	TRST Input Timing (Reset Hold)	710
Figure 23.57	UDI Data Transfer Timing	710
Figure 23.58	ASEMD0 Input Timing	710
Figure 23.59	Output Load Circuit	
Figure 23.60	Load Capacitance vs. Delay Time	
Figure D.1	Package Dimensions (FP-208C)	
Figure D.2	Package Dimensions (FP-208E)	759
Figure D.3	Package Dimensions (BP-240A)	

2.4 Instruction Set

2.4.1 Instruction Set Classified by Function

The SH7709S instruction set includes 68 basic instruction types, as listed in table 2.4.

Table 2.4 Classification of Instructions

Classification	Types	Operation Code	Function	No. of Instructions
Data transfer	5	MOV	Data transfer	39
		MOVA	Effective address transfer	_
		MOVT	T bit transfer	_
		SWAP	Swap of upper and lower bytes	_
		XTRCT	Extraction of middle of linked registers	_
Arithmetic	21	ADD	Binary addition	33
operations		ADDC	Binary addition with carry	_
		ADDV	Binary addition with overflow check	_
		CMP/cond	Comparison	_
		DIV1	Division	_
		DIV0S	Initialization of signed division	_
		DIV0U	Initialization of unsigned division	_
		DMULS	Signed double-precision multiplication	_
		DMULU	Unsigned double-precision multiplication	_
		DT	Decrement and test	_
		EXTS	Sign extension	_
		EXTU	Zero extension	_
		MAC	Multiply-and-accumulate operation, double-precision multiply-and-accumulate operation	_

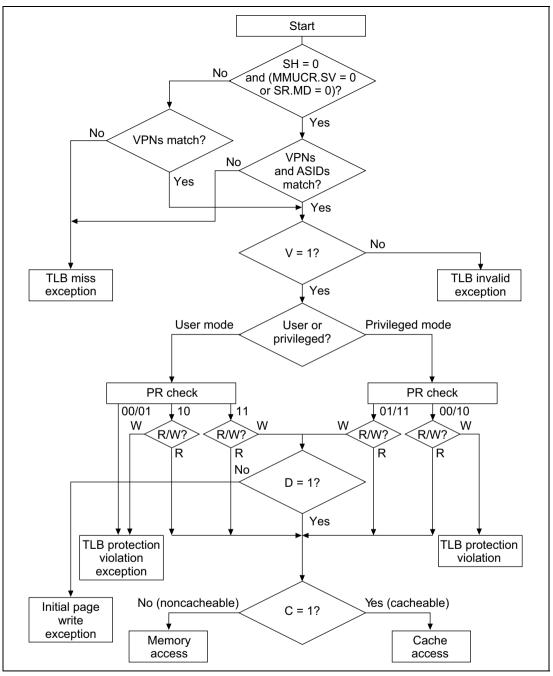


Figure 3.11 MMU Exception Generation Flowchart

10.3 BSC Operation

10.3.1 Endian/Access Size and Data Alignment

The SH7709S supports both big endian, in which the 0 address is the most significant byte in the byte data, and little endian, in which the 0 address is the least significant byte. Switching between the two is designated by an external pin (MD5 pin) at the time of a power-on reset. After a power-on reset, big endian is engaged when MD5 is low; little endian is engaged when MD5 is high.

Three data bus widths are available for ordinary memory (byte, word, longword) and two data bus widths (word and longword) for synchronous DRAM. For the PCMCIA interface, choose from byte and word. This means data alignment is done by matching the device's data width and endian. The access unit must also be matched to the device's bus width. This also means that when longword data is read from a byte-width device, four read operations must be performed. In the SH7709S, data alignment and conversion of data length is performed automatically between the respective interfaces.

Tables 10.7 to 10.12 show the relationship between endian, device data width, and access unit.

	Data Bus			Strobe Signals				
Operation	D31–D24	D23–D16	D15–D8	D7-D0	WE3, DQMUU	WE2, DQMUL	WE1, DQMLU	WEO, DQMLL
Byte access at 0	Data 7–0	_	_	_	Asserted			
Byte access at 1	_	Data 7–0	_	_		Asserted		
Byte access at 2	—	_	Data 7–0	_			Asserted	
Byte access at 3	—	_	_	Data 7–0				Asserted
Word access at 0	Data 15–8	Data 7–0	_	_	Asserted	Asserted		
Word access at 2	_	_	Data 15–8	Data 7–0			Asserted	Asserted
Longword access at 0	Data 31–24	Data 23–16	Data 15–8	Data 7–0	Asserted	Asserted	Asserted	Asserted

Table 10.7	32-Bit External Device/	Big-Endian Access and Da	ata Alignment
-------------------	-------------------------	--------------------------	---------------

SH7709S Address Pin		Synchronous DRAM Address Pin		
	RAS Cycle	CAS Cycle		Function
A15	A23	A23	A13(BA1)	BANK select bank address
A14	A22	A22	A12(BA0)	
A13	A21	A13	A11	Address
A12	A20	L/H	A10	Address precharge setting
A11	A19	A11	A9	Address
A10	A18	A10	A8	
A9	A17	A9	A7	
A8	A16	A8	A6	
A7	A15	A7	A5	
A6	A14	A6	A4	
A5	A13	A5	A3	
A4	A12	A4	A2	
A3	A11	A3	A1	
A2	A10	A2	A0	
A1	A9	A1	Not used	
A0	A0	A0	Not used	

Table 10.14 Example of Correspondence between SH7709S and Synchronous DRAM Address Pins (AMX [3:0] = 0100 (32-Bit Bus Width))

Burst Read: In the example in figure 10.15 it is assumed that four 2M × 8-bit synchronous DRAMs are connected and a 32-bit data width is used, and the burst length is 1. Following the Tr cycle in which ACTV command output is performed, a READ command is issued in the Tc1, Tc2, and Tc3 cycles, and a READA command in the Tc4 cycle, and the read data is accepted at the rising edge of the external command clock (CKIO) from cycle Td1 to cycle Td4. The Tpc cycle is used to wait for completion of auto-precharge based on the READA command inside the synchronous DRAM; no new access command can be issued to the same bank during this cycle, but access to synchronous DRAM for another area is possible. In the SH7709S, the number of Tpc cycles is determined by the TPC bit specification in MCR, and commands cannot be issued for the same synchronous DRAM during this interval.

The example in figure 10.14 shows the basic cycle. To connect low-speed synchronous DRAM, the cycle can be extended by setting WCR2 and MCR bits. The number of cycles from the ACTV command output cycle, Tr, to the READ command output cycle, Tc1, can be specified by the RCD bits in MCR, with values of 0 to 3 specifying 1 to 4 cycles, respectively. In case of 2 or more cycles, a Trw cycle, in which an NOP command is issued for the synchronous DRAM, is inserted between the Tr cycle and the Tc cycle. The number of cycles from READ and READA command output cycles Tc1-Tc4 to the first read data latch cycle, Td1, can be specified as 1 to 3 cycles

Rev. 5.00, 09/03, page 281 of 760

Renesas

Power-On Sequence: In order to use synchronous DRAM, mode setting must first be performed after powering on. To perform synchronous DRAM initialization correctly, the bus state controller registers must first be set, followed by a write to the synchronous DRAM mode register. In synchronous DRAM mode register setting, the address signal value at that time is latched by a combination of the RAS, CAS, and RD/WR signals. If the value to be set is X, the bus state controller provides for value X to be written to the synchronous DRAM mode register by performing a write to address H'FFFFD000 + X for area 2 synchronous DRAM, and to address H'FFFFE000 + X for area 3 synchronous DRAM. In this operation the data is ignored, but the mode write is performed as a byte-size access. To set burst read/single write, CAS latency 1 to 3, wrap type = sequential, and burst length 1 supported by the SH7709S, arbitrary data is written in a byte-size access.

With 32-bit bus width:

	Area 2	Area 3
CAS latency 1	FFFFD840	FFFFE840
CAS latency 2	FFFFD880	FFFFE880
CAS latency 3	FFFFD8C0	FFFFE8C0
With 16-bit bus width:		
	Area 2	Area 3
CAS latency 1	FFFFD420	FFFFE420
CAS latency 2	FFFFD440	FFFFE440
CAS latency 3	FFFFD460	FFFFE460

Mode register setting timing is shown in figure 10.28.

As a result of the write to address H'FFFFD000 + X or H'FFFFE000 + X, a precharge all banks (PALL) command is first issued in the TRp1 cycle, then a mode register write command is issued in the TMw1 cycle.

Address signals, when the mode-register write command is issued, are as follows:

32-bit bus width:

A15–A9 = 0000100 (burst read and single write)

A8-A6 = CAS latency

A5 = 0 (burst type = sequential)

A4-A2 = 000 (burst length 1)

16-bit bus width:

A14-A8 = 0000100 (burst read and single write) A7-A5 = CAS latency A4 = 0 (burst type = sequential) A3-A1 = 000 (burst length 1)

10.3.5 Burst ROM Interface

Setting bits A0BST1–0, A5BST1–0, and A6BST1–0 in BCR1 to a non-zero value allows burst ROM to be connected to areas 0, 5, and 6. The burst ROM interface provides high-speed access to ROM that has a nibble access function. The timing for nibble access to burst ROM is shown in figure 10.29. Two wait cycles are set. Basically, access is performed in the same way as for normal space, but when the first cycle ends the $\overline{CS0}$ signal is not negated, and only the address is changed before the next access is executed. When 8-bit ROM is connected, the number of consecutive accesses can be set as 4, 8, or 16 by bits A0BST1–0, A5BST1–0, or A6BST1–0. When 16-bit ROM is connected, 4 or 8 can be set in the same way. When 32-bit ROM is connected, only 4 can be set.

 $\overline{\text{WAIT}}$ pin sampling is performed in the first access if one or more wait states are set, and is always performed in the second and subsequent accesses.

The second and subsequent access cycles also comprise two cycles when a burst ROM setting is made and the wait specification is 0. The timing in this case is shown in figure 10.30.

However, the \overline{WAIT} signal is ignored in the following three cases:

- A write to external address space in dual address mode with 16-byte DMA transfer
- Transfer from an external device with DACK to external address space in single address mode with 16-byte DMA transfer
- Cache write-back access

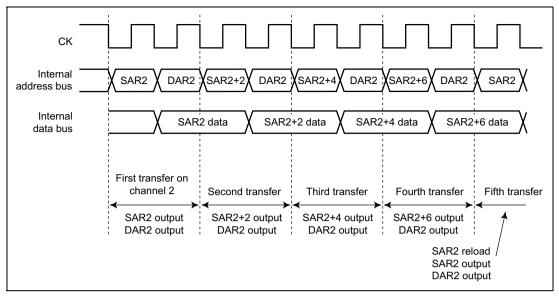


Figure 11.23 Timing Chart of Source Address Reload Function

The reload function can be executed with a transfer data size of 8, 16, or 32 bits.

DMATCR2, which specifies the transfer count, decrements 1 each time a transfer ends regardless of whether the reload function is on or off. Consequently, a multiple of four must be specified in DMATCR2 when the reload function is on. Operation is not guaranteed if other values are specified.

The counter that counts the execution of four transfers for the address reload function is reset by clearing the DME bit in DMAOR or the DE bit in CHCR2, by setting the transfer end flag (TE bit in CHCR2), by DMAC address error, and by NMI input, as well as by a reset, but the SAR2, DAR2, and DMATCR2 registers are not reset. Therefore, if these sources are generated, there will be a mix of an initialized counter and uninitialized registers in the DMAC, and a malfunction will be caused by restarting the DMAC in that state. Consequently, if one of these sources other than setting of the TE bit occurs during use of the address reload function, set SAR2, DAR2, and DMATCR2 again.

Renesas

11.4 Compare Match Timer (CMT)

11.4.1 Overview

The DMAC has an on-chip compare match timer (CMT) to generate DMA transfer requests. The CMT has a 16-bit counter.

Features

The CMT has the following features:

- Four types of counter input clock can be selected
 - One of four internal clocks ($P\phi/4$, $P\phi/8$, $P\phi/16$, $P\phi/64$) can be selected.
- Generates a DMA transfer request when compare match occurs.

Block Diagram

Figure 11.24 shows a block diagram of the CMT.

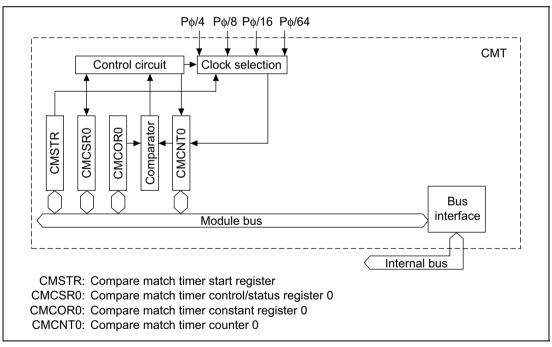


Figure 11.24 Block Diagram of CMT

Rev. 5.00, 09/03, page 388 of 760

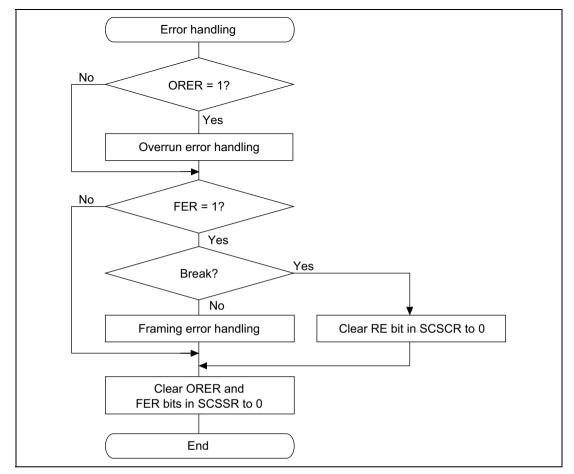


Figure 14.15 Sample Flowchart for Receiving Multiprocessor Serial Data (cont)

Rev. 5.00, 09/03, page 488 of 760

Bit 3—Framing Error (FER): Indicates a framing error in the data read from the receive FIFO data register (SCFRDR).

Bit 3: FER	Description				
0	No receive framing error occurred in the data read from SCFRDR (Initial value)				
	[Clearing conditions]				
	(1) When the chip undergoes a power-on reset or enters standby mode				
	(2) When no framing error is present in the data read from SCFRDR				
1	A receive framing error occurred in the data read from SCFRDR				
	[Setting condition]				
	When a framing error is present in the data read from SCFRDR				

Bit 2—Parity Error (PER): Indicates a parity error in the data read from the receive FIFO data register (SCFRDR).

Bit 2: PER	Description				
0	No receive parity error occurred in the data read from SCFRDR (Initial value)				
	[Clearing conditions]				
	(1) When the chip undergoes a power-on reset or enters standby mode				
	(2) When no parity error is present in the data read from SCFRDI	۲			
1	A receive framing error occurred in the data read from SCFRDR				
	[Setting condition]				
	When a parity error is present in the data read from SCFRDR				

SCPnMD1	SCPnMD0	Pin State	Read	Write
0	0	Other function (see table 18.1)	SCPDR value	Value is written to SCPDR, but does not affect pin state
	1	Output	SCPDR value	Write value is output from pin
1	0	Input (Pull-up MOS on)	Pin state	Value is written to SCPDR, but does not affect pin state
	1	Input (Pull-up MOS off)	Pin state	Value is written to SCPDR, but does not affect pin state
				(n = 0 to 6)

Table 19.24 Read/Write Operation of the SC Port Data Register (SCPDR)

Write SCPnMD1 SCPnMD0 **Pin State** Read Other function Ignored (no effect on pin state) 0 Low level 0 (see table 18.1) 1 Output Ignored (no effect on pin state) Low level Input (Pull-up Ignored (no effect on pin state) 1 0 Pin state MOS on) 1 Input (Pull-up Ignored (no effect on pin state) Pin state MOS off)

(n = 7)

23.3.2 Control Signal Timing

Table 23.6 Control Signal Timing

Vcc = 3.3 ± 0.3 V, Vcc = 1.55 to 2.15 V, AVcc = 3.3 ± 0.3 V, Ta = -20 to 75° C

Item	Symbol	Min	Max	Unit	Figure
RESETP pulse width	t _{RESPW}	20 ^{*2}	_	tcyc	23.11,
RESETP setup time ^{*1}	t _{RESPS}	20	_	ns	23.12
RESETP hold time	t _{RESPH}	4		ns	
RESETM pulse width	t _{RESMW}	20 * ³		tcyc	
RESETM setup time	t _{RESMS}	6		ns	
RESETM hold time	t _{RESMH}	34		ns	
BREQ setup time	t _{BREQS}	6	_	ns	23.14
BREQ hold time	t _{BREQH}	4		ns	
NMI setup time *1	t _{NMIS}	10		ns	23.12
NMI hold time	t _{NMIH}	4	_	ns	
IRQ5–IRQ0 setup time *1	t _{IRQS}	10		ns	
IRQ5–IRQ0 hold time	t _{IRQH}	4		ns	
IRQOUT delay time	t _{IRQOD}	—	10	ns	23.13
BACK delay time	t BACKD	_	10	ns	23.14,
STATUS1, STATUS0 delay time	t _{STD}	—	10	ns	23.15
Bus tri-state delay time 1	t _{BOFF1}	0	15	ns	
Bus tri-state delay time 2	t _{BOFF2}	0	15	ns	
Bus buffer-on time 1	t _{BON1}	0	15	ns	
Bus buffer-on time 2	t _{BON2}	0	15	ns	

Notes: 1. RESETP, NMI, and IRQ5 to IRQ0 are asynchronous. Changes are detected at the clock fall when the setup shown is used. When the setup cannot be used, detection can be delayed until the next clock falls.

2. In the standby mode, $t_{RESPW} = t_{OSC1}$ (100 µs) when XTAL oscillation is continued and $t_{RESPW} = t_{OSC2}$ (10 ms) when XTAL oscillation is off. In the sleep mode, $t_{RESPW} = t_{PLL1}$ (100 µs).

When the clock multiplication ratio is changed, $t_{RESPW} = t_{PLL1}$ (100 µs).

3. In the standby mode, $t_{RESMW} = t_{OSC2}$ (10 ms). In the sleep mode, \overline{RESETM} must be kept low until STATUS (0-1) changes to reset (HH). When the clock multiplication ratio is changed, \overline{RESETM} must be kept low until STATUS (0-1) changes to reset (HH).

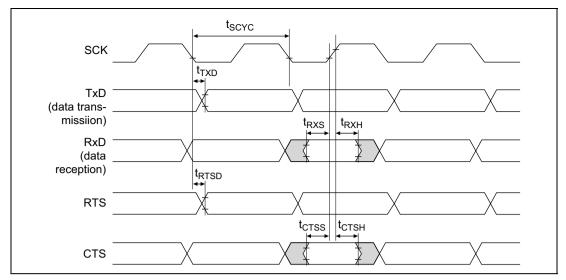
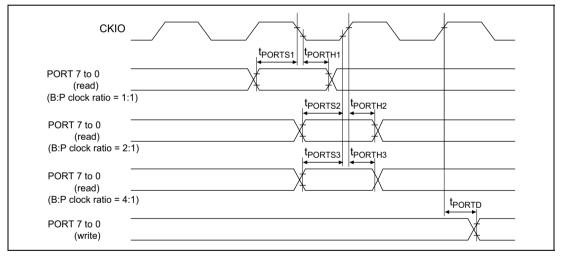
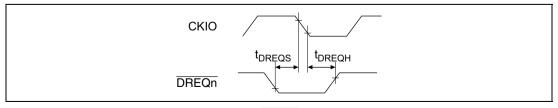




Figure 23.51 SCI I/O Timing in Clock Synchronous Mode

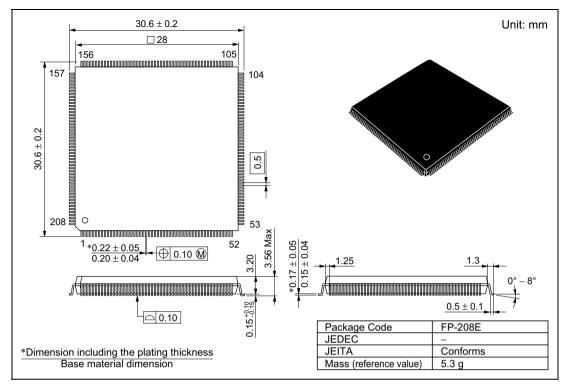


Figure D.2 Package Dimensions (FP-208E)