

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	SH-3
Core Size	32-Bit Single-Core
Speed	133MHz
Connectivity	EBI/EMI, FIFO, IrDA, SCI, SmartCard
Peripherals	DMA, POR, WDT
Number of I/O	96
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 2.05V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	208-LQFP
Supplier Device Package	208-LQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/d6417709sf133bv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Secti	on 7	User Break Controller	149
7.1	Overvie	ew	149
	7.1.1	Features	149
	7.1.2	Block Diagram	150
	7.1.3	Register Configuration	151
7.2	Registe	r Descriptions	152
	7.2.1	Break Address Register A (BARA)	152
	7.2.2	Break Address Mask Register A (BAMRA)	153
	7.2.3	Break Bus Cycle Register A (BBRA)	154
	7.2.4	Break Address Register B (BARB)	156
	7.2.5	Break Address Mask Register B (BAMRB)	157
	7.2.6	Break Data Register B (BDRB)	158
	7.2.7	Break Data Mask Register B (BDMRB)	159
	7.2.8	Break Bus Cycle Register B (BBRB)	160
	7.2.9	Break Control Register (BRCR)	162
	7.2.10	Execution Times Break Register (BETR)	166
	7.2.11	Branch Source Register (BRSR)	167
	7.2.12	Branch Destination Register (BRDR)	168
	7.2.13	Break ASID Register A (BASRA)	169
	7.2.14	Break ASID Register B (BASRB)	169
7.3	Operati	on Description	170
	7.3.1	Flow of the User Break Operation	170
	7.3.2	Break on Instruction Fetch Cycle	170
	7.3.3	Break by Data Access Cycle	171
	7.3.4	Sequential Break	172
	7.3.5	Value of Saved Program Counter	172
	7.3.6	PC Trace	173
	7.3.7	Usage Examples	174
	7.3.8	Notes	179
Secti	on 8 l	Power-Down Modes	181
8.1	Overvie	2W	181
	8.1.1	Power-Down Modes	181
	8.1.2	Pin Configuration	183
	8.1.3	Register Configuration	183
8.2	Registe	r Descriptions	183
	8.2.1	Standby Control Register (STBCR)	183
	8.2.2	Standby Control Register 2 (STBCR2)	185
8.3	Sleep M	10de	187
	8.3.1	Transition to Sleep Mode	187
	8.3.2	Canceling Sleep Mode	187
	8.3.3	Precautions when Using the Sleep Mode	187
8.4	Standb	y Mode	188

Rev. 5.00, 09/03, page xx of xliv

3.3.2 TLB Indexing

The TLB uses a 4-way set associative scheme, so entries must be selected by index. VPN bits 16 to 12 and ASID bits 4 to 0 in PTEH are used as the index number regardless of the page size. The index number can be generated in two different ways depending on the setting of the IX bit in MMUCR.

- 1. When IX = 0, VPN bits 16–12 alone are used as the index number
- 2. When IX = 1, VPN bits 16–12 are EX-ORed with ASID bits 4–0 to generate a 5-bit index number

The second method is used to prevent lowered TLB efficiency that results when multiple processes run simultaneously in the same virtual address space (multiple virtual memory) and a specific entry is selected by generating an index number for each process. Figures 3.6 and 3.7 show the indexing schemes.

Figure 3.6 TLB Indexing (IX = 1)

3.4 MMU Functions

3.4.1 MMU Hardware Management

There are two kinds of MMU hardware management as follows:

- 1. The MMU decodes the virtual address accessed by a process and performs address translation by controlling the TLB in accordance with the MMUCR settings.
- 2. In address translation, the MMU receives page management information from the TLB, and determines the MMU exception and whether the cache is to be accessed (using the C bit). For details of the determination method and the hardware processing, see section 3.5, MMU Exceptions.

3.4.2 MMU Software Management

There are three kinds of MMU software management, as follows.

- MMU register setting. MMUCR setting, in particular, should be performed in areas P1 and P2 for which address translation is not performed. Also, since SV and IX bit changes constitute address translation system changes, in this case, TLB flushing should be performed by simultaneously writing 1 to the TF bit also. Since MMU exceptions are not generated in the MMU disabled state with the AT bit cleared to 0, use in the disabled state must be avoided with software that does not use the MMU.
- TLB entry recording, deletion, and reading. TLB entry recording can be done in two ways by using the LDTLB instruction, or by writing directly to the memory-mapped TLB. For TLB entry deletion and reading, the memory allocation TLB can be accessed. See section 3.4.3, MMU Instruction (LDTLB), for details of the LDTLB instruction, and section 3.6, Configuration of Memory-Mapped TLB, for details of the memory-mapped TLB.
- 3. MMU exception processing. When an MMU exception is generated, it is handled on the basis of information set from the hardware side. See section 3.5, MMU Exceptions, for details.

When single virtual memory mode is used, it is possible to create a state in which physical memory access is enabled in the privileged mode only by clearing the share status bit (SH) to 0 to specify recording of all TLB entries. This strengthens inter-process memory protection, and enables special access levels to be created in the privileged mode only.

Recording a 1-kbyte page TLB entry may result in a synonym problem. See section 3.4.4, Avoiding Synonym Problems.

Rev. 5.00, 09/03, page 69 of 760

Renesas

3.5.3 TLB Invalid Exception

A TLB invalid exception results when the virtual address is compared to a selected TLB entry address array and a match is found but the entry is not valid (the V bit is 0). TLB invalid exception processing includes both hardware and software operations.

Hardware Operations: In a TLB invalid exception, the SH7709S hardware executes a set of prescribed operations, as follows:

- 1. The VPN number of the virtual address causing the exception is written to the PTEH register.
- 2. The virtual address causing the exception is written to the TEA register.
- 3. The way number causing the exception is written to RC in MMUCR.
- 4. Either exception code H'040 for a load access, or H'060 for a store access, is written to the EXPEVT register.
- 5. The PC value indicating the address of the instruction in which the exception occurred is written to the SPC. If the exception occurred in a delay slot, the PC value indicating the address of the delayed branch instruction is written to the SPC.
- 6. The contents of SR at the time of the exception are written into SSR.
- 7. The mode (MD) bit in SR is set to 1 to place the SH7709S in the privileged mode.
- 8. The block (BL) bit in SR is set to 1 to mask any further exception requests.
- 9. The register bank (RB) bit in SR is set to 1.
- 10. Execution branches to the address obtained by adding the value of the VBR contents and H'00000100, and the TLB protection violation exception handler starts.

Software (TLB Invalid Exception Handler) Operations: The software searches the page tables in external memory and assigns the required page table entry. Upon retrieving the required page table entry, software must execute the following operations:

- 1. Write the values of the physical page number (PPN) field and the values of the protection key (PR), page size (SZ), cacheable (C), dirty (D), share status (SH), and valid (V) bits of the page table entry recorded in the external memory to the PTEL register.
- 2. If using software for way selection for entry replacement, write the desired value to the RC field in MMUCR.
- 3. Issue the LDTLB instruction to load the contents of PTEH and PTEL into the TLB.
- 4. Issue the RTE instruction to terminate the handler and return to the instruction stream. The RTE instruction should be issued after two LDTLB instructions.

7.2.4 Break Address Register B (BARB)

BARB is a 32-bit read/write register. BARB specifies the address used as a break condition in channel B. A power-on reset initializes BARB to H'00000000.

Bit:	31	30	29	28	27	26	25	24
	BAB31	BAB30	BAB29	BAB28	BAB27	BAB26	BAB25	BAB24
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W							
Bit:	23	22	21	20	19	18	17	16
	BAB23	BAB22	BAB21	BAB20	BAB19	BAB18	BAB17	BAB16
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W							
Bit:	15	14	13	12	11	10	9	8
	BAB15	BAB14	BAB13	BAB12	BAB11	BAB10	BAB9	BAB8
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W							
Bit:	7	6	5	4	3	2	1	0
	BAB7	BAB6	BAB5	BAB4	BAB3	BAB2	BAB1	BAB0
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W							

4. Register specifications

BARA = H'00037226, BAMRA = H'00000000, BBRA = H'005A, BARB = H'0003722E, BAMRB = H'00000000, BBRB = H'0056, BDRB = H'00000000, BDMRB = H'00000000, BRCR = H'00000008, BASRA = H'80, BASRB = H'70

Specified conditions: Channel A/channel B sequence mode

•	Channel A	
	Address:	H'00037226, Address mask: H'00000000, ASID: H'80
	Bus cycle:	CPU/instruction fetch (before instruction execution)/write/word
•	Channel B	
	Address:	H'0003722E, Address mask: H'00000000, ASID: H'70

Data: H'00000000, Data mask: H'00000000 Bus cvcle: CPU/instruction fetch (before instruction execution)/read/word

Since instruction fetch is not a write cycle on channel A, a sequence condition does not match. Therefore, no user break occurs.

5. Register specifications

BARA = H'00000500, BAMRA = H'00000000, BBRA = H'0057, BARB = H'00001000, BAMRB = H'00000000, BBRB = H'0057, BDRB = H'00000000, BDMRB = H'00000000, BRCR = H'00300001, BETR = H'0005

Specified conditions: Channel A/channel B independent mode

- Channel A Address: H'00000500, Address mask: H'00000000
 Bus cycle: CPU/instruction fetch (before instruction execution)/read/longword
- Channel B

Address:H'00001000, Address mask: H'0000000Data:H'0000000, Data mask: H'00000000Bus cycle:CPU/instruction fetch (before instruction execution)/read/longwordThe number of execution-times break enable (5 times)

On channel A, a user break occurs before an instruction of address H'00000500 is executed. On channel B, a user break occurs before the fifth instruction execution after instructions of address H'00001000 are executed four times.

Bits 5 to 3—Clock Select Bits (CKS2 to CKS0): Select the clock input to RTCNT. The source clock is the external bus clock (CKIO). The RTCNT count clock is CKIO divided by the specified ratio. RTCOR must be set before setting CKS2-CKS0.

			Description	
Bit 5: CKS2	Bit 4: CKS1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Bit 3: CKS0	Normal external bus clock	
0	0	0	Clock input disabled	
		1	Bus clock (CKIO)/4	
	1	0	CKIO/16	
		1	CKIO/64	
1	0	0	CKIO/256	
		1	CKIO/1024	
	1	0	CKIO/2048	
		1	CKIO/4096	

Bit 2—Refresh Count Overflow Flag (OVF): Indicates when the number of refresh requests indicated in the refresh count register (RFCR) exceeds the limit set in the LMTS bit in RTCSR.

Bit 2: OVF	Description
0	RFCR has not exceeded the count limit value set in LMTS (Initial value)
	Clearing condition: When 0 is written to OVF
1	RFCR has exceeded the count limit value set in LMTS
	Setting condition: When the RFCR value has exceeded the count limit value set in ${\rm LMTS}^{\ast}$

Note: * Contents do not change when 1 is written to OVF.

Bit 1—Refresh Count Overflow Interrupt Enable (OVIE): Selects whether to suppress generation of interrupt requests by the OVF bit in RTCSR when OVF is set to 1.

Bit 1: OVIE	Description	
0	Interrupt request by OVF is disabled	(Initial value)
1	Interrupt request by OVF is enabled	

Rev. 5.00, 09/03, page 254 of 760

10.2.13 MCS0 Control Register (MCSCR0)

The MCS0 control register (MCSCR0) is a 16-bit readable/writable register that specifies the $\overline{\text{MCS}[0]}$ pin output conditions.

MCSCR0 is initialized to H'0000 by a power-on reset, but is not initialized by a manual reset or in standby mode.

As the $\overline{\text{MCS}[0]}$ pin is multiplexed as the PTC0 pin, when using the pin as $\overline{\text{MCS}[0]}$, bits PC0MD[1:0] in the PCCR register should be set to 00 (other function).

Bit:	15	14	13	12	11	10	9	8
	—	—	—	—	—	—	—	—
Initial value:	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	R
Bit:	7	6	5	4	3	2	1	0
		CS2/0	CAP1	CAP0	A25	A24	A23	A22
Initial value:	0	0	0	0	0	0	0	0
R/W:	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bits 15 to 7—Reserved: These bits are always read as 0. The write value should always be 0.

Bit 6—CS2/CS0 Select (CS2/0): Selects whether an area 2 or area 0 address is to be decoded.

Bit 6: CS2/0	Description
0	Area 0 is selected
1	Area 2 is selected

Only 0 should be used for the CS2/0 bit in MCSCR0. Either 0 or 1 may be used for MCSCR1 to MCSCR7.

Bits 5 and 4—Connected Memory Size Specification (CAP1, CAP0)

Bit 5: CAP1	Bit 4: CAP0	Description
0	0	32-Mbit memory is connected
0	1	64-Mbit memory is connected
1	0	128-Mbit memory is connected
1	1	256-Mbit memory is connected

Bits 3 to 0—Start Address Specification (A25, A24, A23, A22): These bits specify the start address of the memory area for which $\overline{MCS[0]}$ is asserted.

Rev. 5.00, 09/03, page 258 of 760

Memory Card Interface Burst Timing: In the SH7709S, when the IC memory card interface is selected, page mode burst access mode can be used, for read access only, by setting bits A5BST1 and A5BST0 in BCR1 for physical space area 5, or bits A6BST1 and A6BST0 in BCR1 for area 6. This burst access mode is not stipulated in JEIDA version 4.2 (PCMCIA2.1), but allows high-speed data access using ROM provided with a burst mode, etc.

Burst access mode timing is shown in figures 10.34 and 10.35.

Figure 10.34 Basic Timing for PCMCIA Memory Card Interface Burst Access

Channel	Name	Abbrevi- ation	R/W	Initial Value	Address	Register Size	Access Size
3	DMA source address register 3	SAR3	R/W	Undefined	H'04000050 (H'A4000050) ^{*4}	32	16, 32 ^{*2}
	DMA destination address register 3	DAR3	R/W	Undefined	H'04000054 (H'A4000054) ^{*4}	32	16, 32 ^{*2}
	DMA transfer count register 3	DMATCR3	R/W	Undefined	H'04000058 (H'A4000058) ^{*4}	24	16, 32 ^{*3}
	DMA channel control register 3	CHCR3	R/W*1	H'00000000	H'0400005C (H'A400005C) ^{*4}	32	8, 16, 32 ^{*2}
Shared	DMA operation register	DMAOR	R/W*1	H'0000	H'04000060 (H'A4000060) ^{*4}	16	8, 16 ^{*2}

Notes: These registers are located in area 1 of physical space. Therefore, when the cache is on, either access these registers from the P2 area of logical space or else make an appropriate setting using the MMU so that these registers are not cached.

1. Only 0 can be written to bit 1 of CHCR0 to CHCR3, and bits 1 and 2 of DMAOR to clear the flag after 1 is read.

2. If 16-bit access is used on SAR0 to SAR3, DAR0 to DAR3, and CHCR0 to CHCR3, the value in the 16 bits that were not accessed is retained.

3. DMATCR comprises the 24 bits from bit 0 to bit 23. The upper 8 bits, bits 24 to 31, cannot be written with 1 and are always read as 0.

4. When address translation by the MMU does not apply, the address in parentheses should be used.

13.3.4 Alarm Function

Figure 13.4 shows how to use the alarm function.

Alarms can be generated using seconds, minutes, hours, day of the week, date, month, or any combination of these. Set the ENB bit (bit 7) to 1 in the register to which the alarm applies, and then set the alarm time in the lower bits. Clear the ENB bit to 0 in registers to which the alarm does not apply.

When the clock and alarm times match, 1 is set in the AF bit (bit 0) in RCR1. Alarm detection can be checked by reading this bit, but normally it is done by interrupt. If 1 is placed in the AIE bit (bit 3) in RCR1, an interrupt is generated when an alarm occurs.

Figure 13.4 Using the Alarm Function

	Ρφ (MHz)									
		4.9152			5			6		
Bit Rate (bits/s)	n	Ν	Error (%)	n	Ν	Error (%)	n	Ν	Error (%)	
110	2	86	0.31	2	88	-0.25	2	106	-0.44	
150	1	255	0.00	2	64	0.16	2	77	0.16	
300	1	127	0.00	1	129	0.16	1	155	0.16	
600	0	255	0.00	1	64	0.16	1	77	0.16	
1200	0	127	0.00	0	129	0.16	0	155	0.16	
2400	0	63	0.00	0	64	0.16	0	77	0.16	
4800	0	31	0.00	0	32	-1.36	0	38	0.16	
9600	0	15	0.00	0	15	1.73	0	19	-2.34	
19200	0	7	0.00	0	7	1.73	0	9	-2.34	
31250	0	4	-1.70	0	4	0.00	0	5	0.00	
38400	0	3	0.00	0	3	1.73	0	4	-2.34	

		Ρφ (MHz)							
	6.144			7.3728			8		
Bit Rate (bits/s)	n	Ν	Error (%)	n	Ν	Error (%)	n	Ν	Error (%)
110	2	108	0.08	2	130	-0.07	2	141	0.03
150	2	79	0.00	2	95	0.00	2	103	0.16
300	1	159	0.00	1	191	0.00	1	207	0.16
600	1	79	0.00	1	95	0.00	1	103	0.16
1200	0	159	0.00	0	191	0.00	0	207	0.16
2400	0	79	0.00	0	95	0.00	0	103	0.16
4800	0	39	0.00	0	47	0.00	0	51	0.16
9600	0	19	0.00	0	23	0.00	0	25	0.16
19200	0	9	0.00	0	11	0.00	0	12	0.16
31250	0	5	2.40	0	6	5.33	0	7	0.00
38400	0	4	0.00	0	5	0.00	0	6	-6.99

Figure 14.16 shows an example of SCI receive operation using a multiprocessor format.

Figure 14.16 Example of SCI Receive Operation (8-Bit Data with Multiprocessor Bit and One Stop Bit)

Figure 17.3 SCPT[2]/TxD1 Pin

21.1.3 I/O Pins

Table 21.1 summarizes the D/A converter's input and output pins.

Table 21.1	D/A	Converter	Pins
-------------------	-----	-----------	------

Pin Name	Abbreviation	I/O	Function
Analog power supply pin	AVcc	Input	Analog power supply
Analog ground pin	AVss	Input	Analog ground and reference voltage
Analog output pin 0	DA0	Output	Analog output, channel 0
Analog output pin 1	DA1	Output	Analog output, channel 1

21.1.4 Register Configuration

Table 21.2 summarizes the D/A converter's registers.

Table 21.2 D/A Converter Registers

Name	Abbreviation	R/W	Initial Value	Address ^{*1}
D/A data register 0	DADR0	R/W	H'00	H'040000A0 (H'A40000A0) ^{*2}
D/A data register 1	DADR1	R/W	H'00	H'040000A2 (H'A40000A2) ^{*2}
D/A control register	DACR	R/W	H'1F	H'040000A4 (H'A40000A4) ^{*2}

Notes: These registers are located in area 1 of physical space. Therefore, when the cache is on, either access these registers from the P2 area of logical space or else make an appropriate setting using the MMU so that these registers are not cached.

- 1. Lower 16 bits of the address
- 2. When address translation by the MMU does not apply, the address in parentheses should be used.

	I	Bit 15 to 12			
TI3	TI2	TI1	TI0	Description	
0	0	0	0	EXTEST	
0	1	0	0	SAMPLE/PRELOAD	
0	1	0	1	Reserved	
0	1	1	0	UDI reset negate	
0	1	1	1	UDI reset assert	
1	0	0	_	Reserved	
1	0	1	_	UDI interrupt	
1	1	0	_	Reserved	
1	1	1	0	Reserved	
1	1	1	1	Bypass mode	(Initial value)
0	0	0	1	Recovery from sleep	

Table 22.2 UDI Commands

Bits 11 to 0—Reserved: These bits are always read as 1.

22.3.3 Boundary Scan Register (SDBSR)

The boundary scan register (SDBSR) is a shift register, located on the PAD, for controlling the input/output pins of the SH7709S.

Using the EXTEST and SAMPLE/PRELOAD commands, a boundary scan test conforming to the JTAG standard can be carried out. Table 22.3 shows the correspondence between the pins of this LSI and boundary scan register bits.

Figure 23.20 Burst ROM Bus Cycle (Two Waits)

Figure 23.31 Synchronous DRAM Burst Read Bus Cycle (RAS Down, Same Row Address, CAS Latency = 2)

		PCMCIA Memory Interface (Area 6)				PCMCIA/IO Interface (Area 6)			
Pin		8-Bit Bus Width	16-Bit Bus Width			8-Bit Bus Width	16-Bit Bus Width		
		Byte/ Word/ Long- word Access	Byte Access (Ad- dress 2n)	Byte Access (Ad- dress 2n + 1)	Word/ Long- word Access	Byte/ Word/ Long- word Access	Byte Access (Ad- dress 2n)	Byte Access (Ad- dress 2n+1)	Word/ Long- word Access
$\overline{\text{CS6}}$ to $\overline{\text{CS2}}$, $\overline{\text{CS0}}$		Enabled	Enabled	High	Enabled	Enabled	Enabled	High	Enabled
RD	R	Low	Low	Low	Low	High	High	High	High
	W	High	High	High	High	High	High	High	High
RD/WR	R	High	High	High	High	High	High	High	High
	W	Low	Low	Low	Low	Low	Low	Low	Low
BS		Enabled	Enabled	Enabled	Enabled	Enabled	Enabled	Enabled	Enabled
RAS3U/PTE[2]		High	High	High	High	High	High	High	High
RAS3L/PTJ[0]		High	High	High	High	High	High	High	High
CASL/PTJ[2]		High	High	High	High	High	High	High	High
CASU/PTJ[3]		High	High	High	High	High	High	High	High
WE0/DQMLL	R	High	High	High	High	High	High	High	High
	W	High	High	High	High	High	High	High	High
WE1/DQMLU/WE	R	High	High	High	High	High	High	High	High
	W	Low	Low	Low	Low	High	High	High	High
WE2/DQMUL/	R	High	High	High	High	Low	Low	Low	Low
ICIORD/PTK[6]	W	High	High	High	High	High	High	High	High
WE3/DQMUU/	R	High	High	High	High	High	High	High	High
ICIOWR/PTK[7]	W	High	High	High	High	Low	Low	Low	Low
CE2A/PTE[4]		High	High	High	High	High	High	High	High
CE2B/PTE[5]		High	High	Low	Low	High	High	Low	Low
CKE/PTK[5]		Disabled	Disabled	Disabled	Disabled	Disabled	Disabled	Disabled	Disabled
WAIT		Enabled*1	Enabled*1	Enabled*1	Enabled*1	Enabled*1	Enabled*1	Enabled*1	Enabled*1
IOIS16/PTG[7]		Disabled	Disabled	Disabled	Disabled	Disabled	Disabled	Enabled	Enabled
A25 to A0		Address	Address	Address	Address	Address	Address	Address	Address
D7 to D0		Valid data	Valid data	Invalid data	Valid data	Valid data	Valid data	Invalid data	Valid data
D15 to D8		High-Z ^{*2}	Invalid data	Valid data	Valid data	High-Z ^{*2}	Invalid data	Valid data	Valid data
D31 to D16		High-Z ^{*2}	High-Z ^{*2}	High-Z ^{*2}	High-Z ^{*2}	High-Z ^{*2}	High-Z ^{*2}	High-Z ^{*2}	High-Z ^{*2}

Notes: 1. Disabled when WCR2 register wait setting is 0.

2. Unused data pins should be switched to the port function, or pulled up.

Appendix D Package Dimensions

Figures D.1 to D.3 show the SH7709S package dimensions.

Figure D.1 Package Dimensions (FP-208C)