

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	R8C
Core Size	16-Bit
peed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
eripherals	POR, PWM, Voltage Detect, WDT
lumber of I/O	47
rogram Memory Size	16KB (16K x 8)
rogram Memory Type	FLASH
EPROM Size	4K x 8
AM Size	1.5K x 8
oltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
ata Converters	A/D 12x10b; D/A 2x8b
scillator Type	Internal
perating Temperature	-20°C ~ 85°C (TA)
ounting Type	Surface Mount
ackage / Case	52-LQFP
upplier Device Package	52-LQFP (10x10)
urchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21354cnfp-v2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

R8C/35C Group 1. Overview

1.2 Product List

Table 1.3 lists Product List for R8C/35C Group, and Figure 1.1 shows a Part Number, Memory Size, and Package of R8C/35C Group.

Table 1.3 Product List for R8C/35C Group

Current of Aug 2010

Part No.	ROM C	apacity	RAM	Package Type	Remarks
Pail No.	Program ROM	Data flash	Capacity	Package Type	Remarks
R5F21354CNFP	16 Kbytes	1 Kbyte × 4	1.5 Kbytes	PLQP0052JA-A	N version
R5F21355CNFP	24 Kbytes	1 Kbyte × 4	2 Kbytes	PLQP0052JA-A	
R5F21356CNFP	32 Kbytes	1 Kbyte × 4	2.5 Kbytes	PLQP0052JA-A	
R5F21357CNFP	48 Kbytes	1 Kbyte × 4	4 Kbytes	PLQP0052JA-A	
R5F21358CNFP	64 Kbytes	1 Kbyte × 4	6 Kbytes	PLQP0052JA-A	
R5F2135ACNFP	96 Kbytes	1 Kbyte × 4	8 Kbytes	PLQP0052JA-A	
R5F2135CCNFP	128 Kbytes	1 Kbyte × 4	10 Kbytes	PLQP0052JA-A	
R5F21354CDFP	16 Kbytes	1 Kbyte × 4	1.5 Kbytes	PLQP0052JA-A	D version
R5F21355CDFP	24 Kbytes	1 Kbyte × 4	2 Kbytes	PLQP0052JA-A	
R5F21356CDFP	32 Kbytes	1 Kbyte × 4	2.5 Kbytes	PLQP0052JA-A	
R5F21357CDFP	48 Kbytes	1 Kbyte × 4	4 Kbytes	PLQP0052JA-A	
R5F21358CDFP	64 Kbytes	1 Kbyte × 4	6 Kbytes	PLQP0052JA-A	
R5F2135ACDFP	96 Kbytes	1 Kbyte × 4	8 Kbytes	PLQP0052JA-A	
R5F2135CCDFP	128 Kbytes	1 Kbyte × 4	10 Kbytes	PLQP0052JA-A	

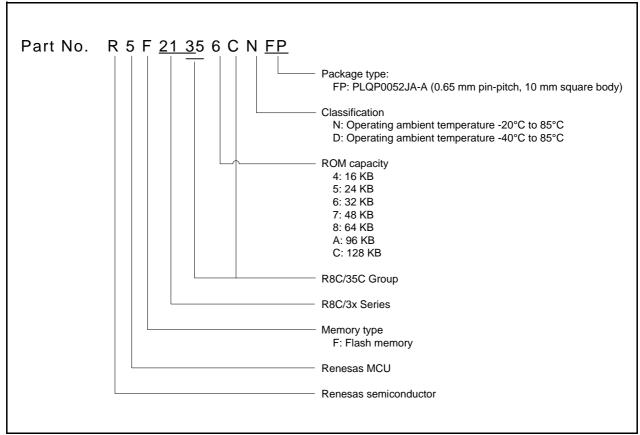


Figure 1.1 Part Number, Memory Size, and Package of R8C/35C Group

R8C/35C Group 1. Overview

1.4 Pin Assignment

Figure 1.3 shows the Pin Assignment (Top View). Tables 1.4 and 1.5 outline the Pin Name Information by Pin Number.

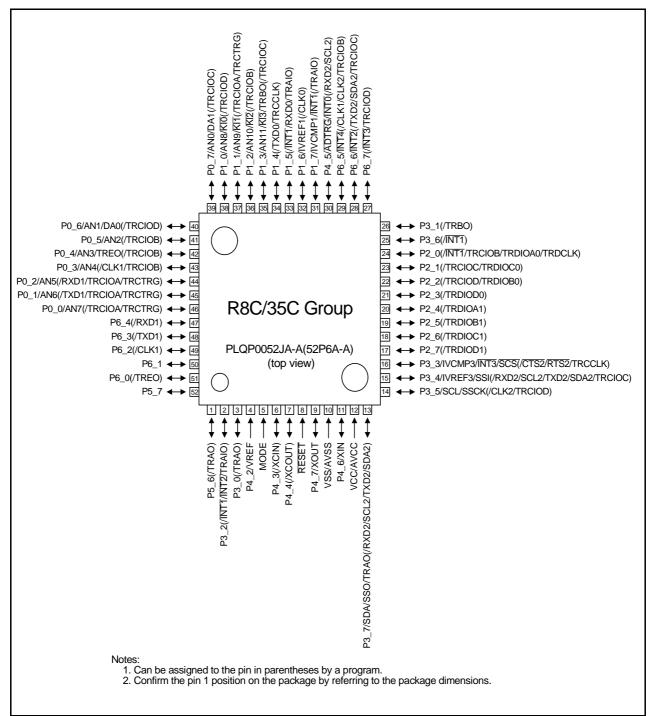


Figure 1.3 Pin Assignment (Top View)

R8C/35C Group 1. Overview

Table 1.7 Pin Functions (2)

Item	Pin Name	I/O Type	Description
Reference voltage input	VREF	I	Reference voltage input pin to A/D converter and D/A converter
A/D converter	AN0 to AN11	I	Analog input pins to A/D converter
	ADTRG	I	A/D external trigger input pin
D/A converter	DA0, DA1	0	D/A converter output pins
Comparator B	IVCMP1, IVCMP3	I	Comparator B analog voltage input pins
	IVREF1, IVREF3	I	Comparator B reference voltage input pins
I/O port	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_3 to P4_7, P5_6, P5_7, P6_0 to P6_7	I/O	CMOS I/O ports. Each port has an I/O select direction register, allowing each pin in the port to be directed for input or output individually. Any port set to input can be set to use a pull-up resistor or not by a program. All ports can be used as LED drive ports.
Input port	P4_2	I	Input-only port

I: Input O: Output

I/O: Input and output

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the starting address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 **Zero Flag (Z)**

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

SFR Information (12) (1) **Table 4.12**

Address	Register	Symbol	After Reset
2CF0h	DTC Control Data 22	DTCD22	XXh
2CF1h			XXh
2CF2h			XXh
2CF3h			XXh
2CF4h			XXh
2CF5h			XXh
2CF6h			XXh
2CF7h			XXh
2CF8h	DTC Control Data 23	DTCD23	XXh
2CF9h			XXh
2CFAh			XXh
2CFBh			XXh
2CFCh			XXh
2CFDh			XXh
2CFEh			XXh
2CFFh			XXh
2D00h			
:			•
2FFFh			

X: Undefined

ID Code Areas and Option Function Select Area Table 4.13

Address	Area Name	Symbol	After Reset
: FFDBh	Option Function Select Register 2	OFS2	(Note 1)
: FFDFh	ID1		(Note 2)
:			,
FFE3h :	ID2		(Note 2)
FFEBh	ID3		(Note 2)
: FFEFh	ID4		(Note 2)
: FFF3h	ID5		(Note 2)
: FFF7h	ID6		(Note 2)
: FFFBh	ID7		(Note 2)
: FFFFh	Option Function Select Register	OFS	(Note 1)

- The option function select area is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the option function select area. If the block including the option function select area is erased, the option function select
 - When blank products are shipped, the option function select area is set to FFh. It is set to the written value after written by the user.
- When factory-programming products are shipped, the value of the option function select area is the value programmed by the user.

 2. The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the ID code areas. If the block including the ID code areas is erased, the ID code areas are set to FFh. When blank products are shipped, the ID code areas are set to FFh. They are set to the written value after written by the user. When factory-programming products are shipped, the value of the ID code areas is the value programmed by the user.

Note:

1. The blank areas are reserved and cannot be accessed by users.

Table 5.4 D/A Converter Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Faranielei	Condition	Min.	Тур.	Max. 8 2.5 3 -	Offic
_	Resolution		=	_	8	Bit
_	Absolute accuracy		-	-	2.5	LSB
tsu	Setup time		-	-	3	μs
Ro	Output resistor		-	6	-	kΩ
lVref	Reference power input current	(Note 2)	-	-	1.5	mA

Notes:

- 1. Vcc/AVcc = Vref = 2.7 to 5.5 V and Topr = -20 to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version), unless otherwise specified.
- 2. This applies when one D/A converter is used and the value of the DAi register (i = 0 or 1) for the unused D/A converter is 00h. The resistor ladder of the A/D converter is not included.

 Table 5.5
 Comparator B Electrical Characteristics

Symbol	Parameter	Condition		Unit		
	Faranietei	Condition	Min.	Тур.	Max.	Offic
Vref	IVREF1, IVREF3 input reference voltage		0	-	Vcc - 1.4	V
Vı	IVCMP1, IVCMP3 input voltage		-0.3	=	Vcc + 0.3	V
_	Offset		-	5	100	mV
td	Comparator output delay time (2)	Vı = Vref ± 100 mV	-	0.1	1	μS
Ісмр	Comparator operating current	Vcc = 5.0 V	-	17.5	=	μΑ

- 1. VCC = 2.7 to 5.5 V, $T_{opr} = -20$ to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.
- 2. When the digital filter is disabled.

5. Electrical Characteristics R8C/35C Group

Table 5.6 Flash Memory (Program ROM) Electrical Characteristics

Symbol	Parameter	Conditions		Linit		
Symbol	Parameter	Conditions	Min.	Тур. Мах.		Unit
=	Program/erase endurance (2)		1,000 (3)	=	=	times
_	Byte program time		-	80	500	μS
_	Block erase time		-	0.3	-	S
td(SR-SUS)	Time delay from suspend request until suspend		_	_	5+CPU clock × 3 cycles	ms
=	Interval from erase start/restart until following suspend request		0	=	-	μS
=	Time from suspend until erase restart		=	=	30+CPU clock × 1 cycle	μS
td(CMDRST- READY)	Time from when command is forcibly terminated until reading is enabled		=	=	30+CPU clock × 1 cycle	μS
_	Program, erase voltage		2.7	_	5.5	V
=	Read voltage		1.8	-	5.5	V
=	Program, erase temperature		0	-	60	°C
=	Data hold time (7)	Ambient temperature = 55°C	20	=	-	year

- Notes:
 1. Vcc = 2.7 to 5.5 V and Topr = 0 to 60°C, unless otherwise specified.
 - 2. Definition of programming/erasure endurance
 - The programming and erasure endurance is defined on a per-block basis.
 - If the programming and erasure endurance is n (n = 1,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.
 - However, the same address must not be programmed more than once per erase operation (overwriting prohibited).
 - 3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
 - 4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.
 - 5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
 - 6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
 - 7. The data hold time includes time that the power supply is off or the clock is not supplied.

Table 5.8 Voltage Detection 0 Circuit Electrical Characteristics

Symbol	Parameter	Condition	Standard			Unit
Syllibol	Farameter	Condition	Min.	Тур.	Max.	Offic
Vdet0	Voltage detection level Vdet0_0 (2)		1.80	1.90	2.05	V
	Voltage detection level Vdet0_1 (2)		2.15	2.35	2.50	V
	Voltage detection level Vdet0_2 (2)		2.70	2.85	3.05	V
	Voltage detection level Vdet0_3 (2)		3.55	3.80	4.05	V
_	Voltage detection 0 circuit response time (4)	At the falling of Vcc from 5 V to (Vdet0_0 – 0.1) V	-	6	150	μS
=	Voltage detection circuit self power consumption	VCA25 = 1, Vcc = 5.0 V	-	1.5	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts (3)		-	-	100	μS

Notes:

- 1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version).
- 2. Select the voltage detection level with bits VDSEL0 and VDSEL1 in the OFS register.
- 3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.
- 4. Time until the voltage monitor 0 reset is generated after the voltage passes Vdeto.

Table 5.9 Voltage Detection 1 Circuit Electrical Characteristics

Symbol	Parameter	Condition	Standard			Unit
Symbol	Falameter	Condition	Min.	Тур.	Max.	Offic
Vdet1	Voltage detection level Vdet1_0 (2)	At the falling of Vcc	2.00	2.20	2.40	V
	Voltage detection level Vdet1_1 (2)	At the falling of Vcc	2.15	2.35	2.55	V
	Voltage detection level Vdet1_2 (2)	At the falling of Vcc	2.30	2.50	2.70	V
	Voltage detection level Vdet1_3 (2)	At the falling of Vcc	2.45	2.65	2.85	V
	Voltage detection level Vdet1_4 (2)	At the falling of Vcc	2.60	2.80	3.00	V
	Voltage detection level Vdet1_5 (2)	At the falling of Vcc	2.75	2.95	3.15	V
	Voltage detection level Vdet1_6 (2)	At the falling of Vcc	2.85	3.10	3.40	V
	Voltage detection level Vdet1_7 (2)	At the falling of Vcc	3.00	3.25	3.55	V
	Voltage detection level Vdet1_8 (2)	At the falling of Vcc	3.15	3.40	3.70	V
	Voltage detection level Vdet1_9 (2)	At the falling of Vcc	3.30	3.55	3.85	V
	Voltage detection level Vdet1_A (2)	At the falling of Vcc	3.45	3.70	4.00	V
	Voltage detection level Vdet1_B (2)	At the falling of Vcc	3.60	3.85	4.15	V
	Voltage detection level Vdet1_C (2)	At the falling of Vcc	3.75	4.00	4.30	V
	Voltage detection level Vdet1_D (2)	At the falling of Vcc	3.90	4.15	4.45	V
	Voltage detection level Vdet1_E (2)	At the falling of Vcc	4.05	4.30	4.60	V
	Voltage detection level Vdet1_F (2)	At the falling of Vcc	4.20	4.45	4.75	V
_	Hysteresis width at the rising of Vcc in voltage detection 1 circuit	Vdet1_0 to Vdet1_5 selected	-	0.07	-	V
		Vdet1_6 to Vdet1_F selected	-	0.10	-	V
_	Voltage detection 1 circuit response time (3)	At the falling of Vcc from 5 V to (Vdet1_0 - 0.1) V	-	60	150	μS
_	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	_	1.7	_	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts (4)		-	-	100	μS

- 1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr = -20 to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version).
- 2. Select the voltage detection level with bits VD1S0 to VD1S3 in the VD1LS register.
- ${\it 3.} \quad {\it Time until the voltage monitor 1 interrupt request is generated after the voltage passes V_{det1}.}$
- 4. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

Symbol	Parameter	Condition		l lait		
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Vdet2	Voltage detection level Vdet2_0	At the falling of Vcc	3.70	4.00	4.30	V
_	Hysteresis width at the rising of Vcc in voltage detection 2 circuit		-	0.10	-	V
_	Voltage detection 2 circuit response time (2)	At the falling of Vcc from 5 V to (Vdet2_0 - 0.1) V	-	20	150	μS
_	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	_	1.7	_	μА
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	_	100	μS

Notes:

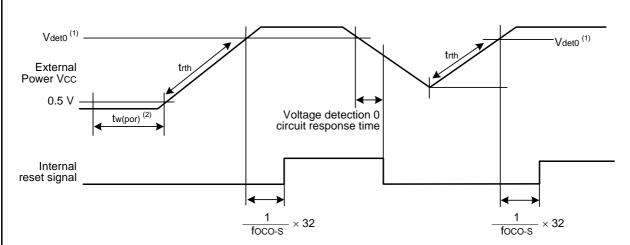

- 1. The measurement condition is Vcc = 1.8 V to 5.5 V and $T_{opr} = -20$ to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version).
- 2. Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.
- 3. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.

Table 5.11 Power-on Reset Circuit (2)

Symbol	Parameter	Condition		Unit		
Symbol Parameter	Falamete	Condition	Min.	Тур.	Max.	Offic
trth	External power Vcc rise gradient	(1)	0	_	50,000	mV/msec

Notes:

- 1. The measurement condition is Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.
- 2. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVDAS bit in the OFS register to 0.

- Vdeto indicates the voltage detection level of the voltage detection 0 circuit. Refer to 6. Voltage Detection Circuit of User's Manual: Hardware (REJ09B0567) for details.
- 2. tw(por) indicates the duration the external power Vcc must be held below the valid voltage (0.5 V) to enable a power-on reset. When turning on the power after it falls with voltage monitor 0 reset disabled, maintain tw(por) for 1 ms or more.

Figure 5.3 Power-on Reset Circuit Electrical Characteristics

Table 5.12 High-speed On-Chip Oscillator Circuit Electrical Characteristics

Symbol	Parameter	Condition			Unit	
Symbol	Farameter	Condition	Min.	40 41. 40 42. 36.864 38.3	Max.	Offit
_	High-speed on-chip oscillator frequency after reset	Vcc = 1.8 V to 5.5 V -20°C \le Topr \le 85°C	38.4	40	41.6	MHz
		Vcc = 1.8 V to 5.5 V -40°C \le Topr \le 85°C	38.0	40	42.0	MHz
	High-speed on-chip oscillator frequency when the FRA4 register correction value is written into	Vcc = 1.8 V to 5.5 V $-20^{\circ}\text{C} \le \text{Topr} \le 85^{\circ}\text{C}$	35.389	36.864	38.338	MHz
	the FRA1 register and the FRA5 register correction value into the FRA3 register (2)	Vcc = 1.8 V to 5.5 V -40°C ≤ Topr ≤ 85°C	35.020	36.864	38.707	MHz
	High-speed on-chip oscillator frequency when the FRA6 register correction value is written into	Vcc = 1.8 V to 5.5 V $-20^{\circ}\text{C} \le \text{Topr} \le 85^{\circ}\text{C}$	30.72	32	33.28	MHz
	the FRA1 register and the FRA7 register correction value into the FRA3 register	Vcc = 1.8 V to 5.5 V -40°C ≤ Topr ≤ 85°C	30.40	32	33.60	MHz
_	Oscillation stability time	Vcc = 5.0 V, Topr = 25°C	-	0.5	3	ms
-	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25°C	=	400	=	μΑ

Notes:

- 1. Vcc = 1.8 to 5.5 V, Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.
- 2. This enables the setting errors of bit rates such as 9600 bps and 38400 bps to be 0% when the serial interface is used in UART mode.

Table 5.13 Low-speed On-Chip Oscillator Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Farameter	Condition	Min.	- /r		Offit
fOCO-S	Low-speed on-chip oscillator frequency		60	125	250	kHz
-	Oscillation stability time	Vcc = 5.0 V, Topr = 25°C	=	30	100	μS
-	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25°C	-	2	-	μΑ

Note:

1. Vcc = 1.8 to 5.5 V, $T_{opr} = -20 \text{ to } 85^{\circ}\text{C}$ (N version) / $-40 \text{ to } 85^{\circ}\text{C}$ (D version), unless otherwise specified.

Table 5.14 Power Supply Circuit Timing Characteristics

Svmbol	Parameter	Condition	,	Unit		
Syllibol	Falametei	Condition	Min.	Тур.	Max.	Offic
td(P-R)	Time for internal power supply stabilization during		-	_	2,000	μS
	power-on (2)					

- 1. The measurement condition is Vcc = 1.8 to 5.5 V and Topr = 25°C.
- 2. Waiting time until the internal power supply generation circuit stabilizes during power-on.

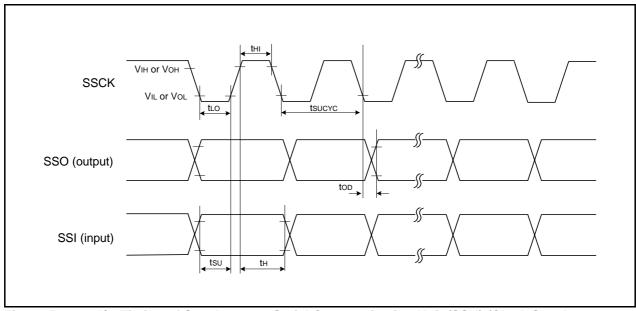


Figure 5.6 I/O Timing of Synchronous Serial Communication Unit (SSU) (Clock Synchronous Communication Mode)

Table 5.18 Electrical Characteristics (2) [3.3 V \leq Vcc \leq 5.5 V] (Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter		Condition	Min.	Standard Typ.	Max.	Unit
Icc	Power supply current (Vcc = 3.3 to 5.5 V)	High-speed clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	6.5	15	mA
	Single-chip mode, output pins are open, other pins		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	=	5.3	12.5	mA
	are Vss		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	3.6		mA
			XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3.0	ı	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2.2		mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5		mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	7.0	15	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3.0		mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16, MSTIIC = MSTTRD = MSTTRC = 1	=	1		mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	-	90	400	μА
		Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division, FMR27 = 1, VCA20 = 0	-	85	400	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division, Program operation on RAM Flash memory off, FMSTP = 1, VCA20 = 0	-	47		μА
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	15	100	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	4	90	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (peripheral clock off) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	3.5	-	μА
		Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1, Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	2.0	5.0	μА
			XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1, Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	5.0 ⁽¹⁾	-	μА

- 1. Value when the program ROM capacity of the product is 16 Kbytes to 32 Kbytes.
- 2. Value when the program ROM capacity of the product is 48 Kbytes to 128 Kbytes.

Timing Requirements

(Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = 25°C)

Table 5.19 External Clock Input (XOUT, XCIN)

Symbol	Parameter		Standard		
Symbol	Faranietei	Min.	Max.	Unit	
tc(XOUT)	XOUT input cycle time	50	-	ns	
twh(xout)	XOUT input "H" width	24	-	ns	
tWL(XOUT)	XOUT input "L" width	24	-	ns	
tc(XCIN)	XCIN input cycle time	14	-	μS	
twh(xcin)	XCIN input "H" width	7	=	μS	
tWL(XCIN)	XCIN input "L" width	7	_	μS	

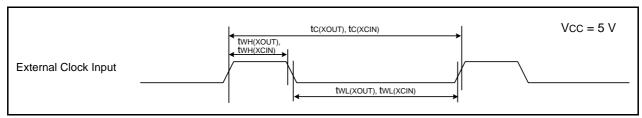


Figure 5.8 External Clock Input Timing Diagram when VCC = 5 V

Table 5.20 TRAIO Input

Symbol	Parameter	Stan	Unit	
Symbol	oi Falanielei		Max.	Offic
tc(TRAIO)	TRAIO input cycle time	100	=	ns
twh(traio)	TRAIO input "H" width	40	=	ns
twl(traio)	TRAIO input "L" width	40	_	ns

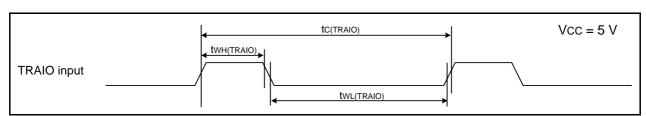


Figure 5.9 TRAIO Input Timing Diagram when Vcc = 5 V

Table	5.21	Serial I	nterface

Symbol	Parameter		Standard		
Symbol	Falanetei	Min.	Max.	Unit	
tc(CK)	CLKi input cycle time	200	=	ns	
tw(ckh)	CLKi input "H" width	100	-	ns	
tW(CKL)	CLKi input "L" width	100	-	ns	
td(C-Q)	TXDi output delay time	-	50	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	50	-	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0 to 2

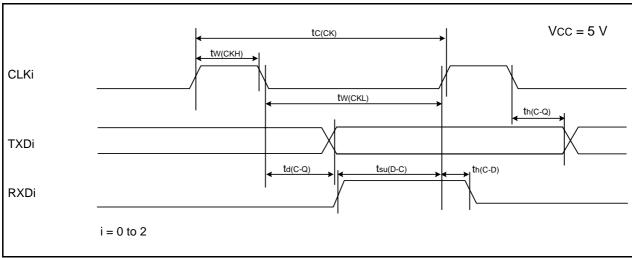


Figure 5.10 Serial Interface Timing Diagram when Vcc = 5 V

Table 5.22 External Interrupt INTi (i = 0 to 4) Input, Key Input Interrupt Kli (i = 0 to 3)

Symbol	Parameter	Stan	Unit	
Symbol	Symbol		Max.	Offic
tw(INH)	ĪNTi input "H" width, Kli input "H" width	250 (1)	-	ns
tw(INL)	INTi input "L" width, Kli input "L" width	250 ⁽²⁾	-	ns

- 1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.
- 2. When selecting the digital filter by the $\overline{\text{INTi}}$ input filter select bit, use an $\overline{\text{INTi}}$ input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

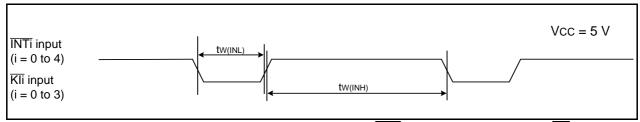


Figure 5.11 Input Timing Diagram for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 5 V

Electrical Characteristics (4) [2.7 V \leq Vcc < 3.3 V] **Table 5.24** (Topr = -20 to 85° C (N version) / -40 to 85° C (D version), unless otherwise specified.)

Symbol	Parameter		Condition		Standard	d Max.	Unit
Icc	Power supply current	High-speed	XIN = 10 MHz (square wave)	Min.	Typ. 3.5	10 10	mA
	(Vcc = 2.7 to 3.3 V) Single-chip mode,	clock mode	High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	3.5	10	ША
	output pins are open, other pins are Vss		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	7.5	mA
		High-speed on-chip oscillator	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	7.0	15	mA
		mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3.0	=	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	4.0	=	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	=	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16 MSTIIC = MSTTRD = MSTTRC = 1	-	1	-	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	=	90	390	μА
		Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division, FMR27 = 1, VCA20 = 0	-	80	400	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division, Program operation on RAM Flash memory off, FMSTP = 1, VCA20 = 0	_	40	_	μА
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	15	90	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	4	80	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (peripheral clock off) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	3.5	_	μА
		Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	=	2.0	5.0	μА
			XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1	-	5.0 ⁽¹⁾	_	μА
			Peripheral clock off VCA27 = VCA26 = VCA25 = 0				

- Value when the program ROM capacity of the product is 16 Kbytes to 32 Kbytes.
 Value when the program ROM capacity of the product is 48 Kbytes to 128 Kbytes.

Table 5.29 Electrical Characteristics (5) [1.8 $V \le Vcc < 2.7 V$]

Symbol	Dor	ameter	Condition	-n	S	tandard		Unit
Symbol	Fai	ametei	Condition	Condition Min. Typ. Ma				Offic
Vон	Output "H" voltage	Other than XOUT	Drive capacity High	Iон = −2 mA	Vcc - 0.5	1	Vcc	V
			Drive capacity Low	Iон = −1 mA	Vcc - 0.5	-	Vcc	V
		XOUT		$IOH = -200 \mu A$	1.0	-	Vcc	V
Vol	Output "L" voltage	Other than XOUT	Drive capacity High	IoL = 2 mA	-	-	0.5	V
			Drive capacity Low	IoL = 1 mA	-	-	0.5	V
		XOUT		IoL = 200 μA	-	-	0.5	V
VT+-VT-	Hysteresis	INTO, INT1, INT2, INT3, INT4, KIO, KI1, KI2, KI3, TRAIO, TRBO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRDIOAO, TRDIOBO, TRDIOCO, TRDIOBO, TRDIOCO, TRDIOBI, TRDIOC1, TRDIOD1, TRCTRG, TRCCLK, ADTRG, RXD0, RXD1, RXD2, CLK0, CLK1, CLK2, SSI, SCL, SDA, SSO RESET			0.05	0.20	_	V
lін	Input "H" current	•	VI = 2.2 V, Vcc = 2.2	! V	-	-	4.0	μΑ
lıL	Input "L" current		VI = 0 V, Vcc = 2.2 V	/	-	-	-4.0	μΑ
RPULLUP	Pull-up resistance		VI = 0 V, Vcc = 2.2 V	/	70	140	300	kΩ
RfXIN	Feedback resistance	XIN			-	0.3	_	МΩ
RfXCIN	Feedback resistance	XCIN			-	8	-	МΩ
VRAM	RAM hold voltage	•	During stop mode		1.8	=	-	V

^{1.} $1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$ and $\text{Topr} = -20 \text{ to } 85^{\circ}\text{C}$ (N version) / -40 to 85°C (D version), f(XIN) = 5 MHz, unless otherwise specified.

Table 5.30 Electrical Characteristics (6) [1.8 V \leq Vcc < 2.7 V] (Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter	Condition		Standard			Unit
Symbol	raiametei		Condition	Min.	Тур.	Max.	Unit
Icc	(Vcc = 1.8 to 2.7 V) Single-chip mode, output pins are open, other pins are Vss High on-osci mod Low	High-speed clock mode	XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	=	2.2	=	mA
			XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	0.8	ı	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 5 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	2.5	10	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 5 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	1.7	-	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16 MSTIIC = MSTTRD = MSTTRC = 1	-	1	-	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	-	90	300	μА
		Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division, FMR27 = 1, VCA20 = 0	=	80	350	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division, Program operation on RAM Flash memory off, FMSTP = 1, VCA20 = 0	_	40		μА
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	15	90	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	4	80	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (peripheral clock off) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	=	3.5	=	μА
		Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	2.0	5	μА
			XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off	_	5.0 ⁽¹⁾	-	μА

- 1. Value when the program ROM capacity of the product is 16 Kbytes to 32 Kbytes.
- 2. Value when the program ROM capacity of the product is 48 Kbytes to 128 Kbytes.

Timing Requirements

(Unless Otherwise Specified: Vcc = 2.2 V, Vss = 0 V at Topr = 25°C)

Table 5.31 External Clock Input (XOUT, XCIN)

Symbol	Parameter	Stan	Unit	
	Parameter		Max.	Offic
tc(XOUT)	XOUT input cycle time	200	-	ns
twh(xout)	XOUT input "H" width	90	-	ns
tWL(XOUT)	XOUT input "L" width	90	-	ns
tc(XCIN)	XCIN input cycle time	14	-	μS
twh(xcin)	XCIN input "H" width	7	=	μS
tWL(XCIN)	XCIN input "L" width	7	_	μS

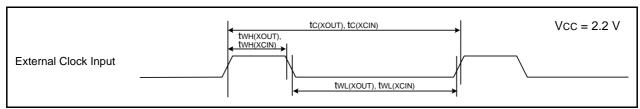


Figure 5.16 External Clock Input Timing Diagram when Vcc = 2.2 V

Table 5.32 TRAIO Input

Symbol	Parameter	Stan	Unit	
	Falameter			Max.
tc(TRAIO)	TRAIO input cycle time	500	-	ns
twh(traio)	TRAIO input "H" width	200	=	ns
tWL(TRAIO)	TRAIO input "L" width	200	-	ns

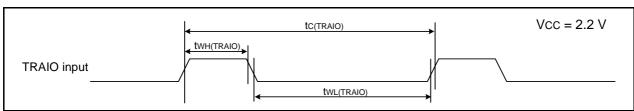


Figure 5.17 TRAIO Input Timing Diagram when Vcc = 2.2 V

REVISION HISTORY	R8C/35C Group Datasheet
------------------	-------------------------

Rev.	Date	Description		
		Page	Summary	
0.10	Sep. 01, 2009	_	First Edition issued	
1.00	Aug. 24, 2010	All	"Preliminary" and "Under development" deleted	
		4	Table1.3 revised	
		27 to 53	5. Electrical Characteristics added	

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.