

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Obsolete
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	47
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	52-LQFP
Supplier Device Package	52-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21355cnfp-v2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.2 Specifications

Tables 1.1 and 1.2 outline the Specifications for R8C/35C Group.

Iable 1.1	Function	Specification				
CPU	Central processing	R8C CPU core				
CFU	unit	Number of fundamental instructions: 89				
	unit	Minimum instruction execution time:				
		50 ns (f(XIN) = 20 MHz, VCC = 2.7 to 5.5 V)				
		200 ns (f(XIN) = 5 MHz, VCC = 1.8 to 5.5 V)				
		• Multiplier: 16 bits \times 16 bits \rightarrow 32 bits				
		• Multiply-accumulate instruction: 16 bits \times 16 bits + 32 bits \rightarrow 32 bits				
Mamani	DOM DAM Data	Operation mode: Single-chip mode (address space: 1 Mbyte)				
Memory	ROM, RAM, Data flash	Refer to Table 1.3 Product List for R8C/35C Group.				
Power Supply	Voltage detection	Power-on reset				
Voltage	circuit	Voltage detection 3 (detection level of voltage detection 0 and voltage				
Detection		detection 1 selectable)				
I/O Ports	Programmable I/O	Input-only: 1 pin				
	ports	CMOS I/O ports: 47, selectable pull-up resistor				
		High current drive ports: 47				
Clock	Clock generation	4 circuits: XIN clock oscillation circuit,				
	circuits	XCIN clock oscillation circuit (32 kHz),				
		High-speed on-chip oscillator (with frequency adjustment function),				
		Low-speed on-chip oscillator				
		Oscillation stop detection: XIN clock oscillation stop detection function				
		• Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16				
		Low power consumption modes:				
		Standard operating mode (high-speed clock, low-speed clock, high-speed				
		on-chip oscillator, low-speed on-chip oscillator), wait mode, stop mode				
		Real-time clock (timer RE)				
Interrupts		Number of interrupt vectors: 69				
		 External Interrupt: 9 (INT × 5, Key input × 4) 				
		Priority levels: 7 levels				
Watchdog Time	er	 14 bits × 1 (with prescaler) 				
		Reset start selectable				
		 Low-speed on-chip oscillator for watchdog timer selectable 				
DTC (Data Tra	nsfer Controller)	• 1 channel				
		Activation sources: 33				
		 Transfer modes: 2 (normal mode, repeat mode) 				
Timer	Timer RA	8 bits x 1 (with 8-bit prescaler)				
		Timer mode (period timer), pulse output mode (output level inverted every				
		period), event counter mode, pulse width measurement mode, pulse period				
		measurement mode				
	Timer RB	8 bits × 1 (with 8-bit prescaler)				
		Timer mode (period timer), programmable waveform generation mode (PWM				
		output), programmable one-shot generation mode, programmable wait one-				
	Timer DO	shot generation mode				
	Timer RC	16 bits x 1 (with 4 capture/compare registers) Timer mode (input capture function, output compare function), PWM mode				
		(output 3 pins), PWM2 mode (PWM output pin)				
	Timer RD	16 bits × 2 (with 4 capture/compare registers)				
		Timer mode (input capture function, output compare function), PWM mode				
		(output 6 pins), reset synchronous PWM mode (output three-phase				
		waveforms (6 pins), sawtooth wave modulation), complementary PWM mode				
		(output three-phase waveforms (6 pins), triangular wave modulation), PWM3				
		mode (PWM output 2 pins with fixed period)				
	Timer RE	8 bits × 1				
		Real-time clock mode (count seconds, minutes, hours, days of week), output				
		compare mode				

Table 1.1 Specifications for R8C/35C Group (1)

1.5 Pin Functions

Tables 1.6 and 1.7 list Pin Functions.

Table 1.6Pin Functions (1)

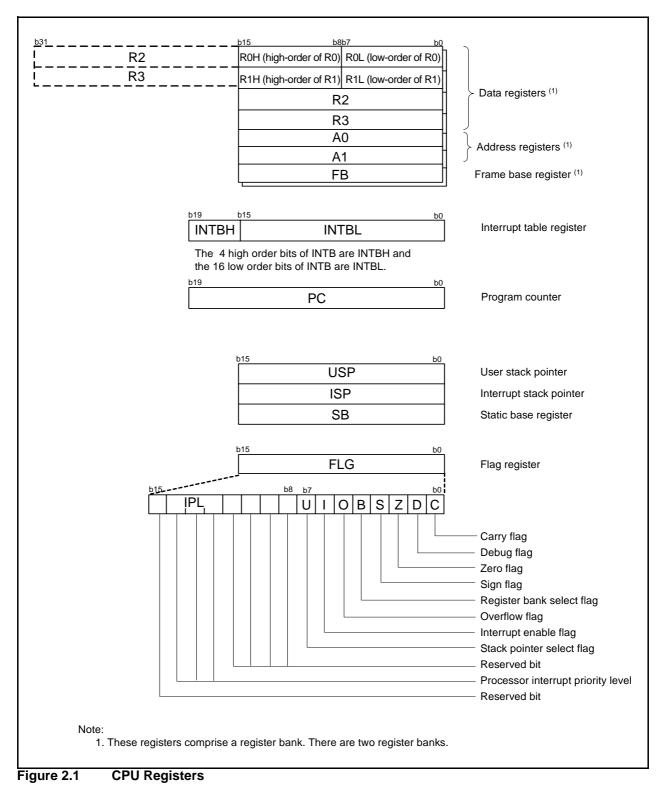
	· · ·		
Item	Pin Name	I/О Туре	-
Power supply input	VCC, VSS	-	Apply 1.8 V to 5.5 V to the VCC pin. Apply 0 V to the VSS pin
Analog power supply input	AVCC, AVSS	-	Power supply for the A/D converter. Connect a capacitor between AVCC and AVSS.
Reset input	RESET	I	Input "L" on this pin resets the MCU.
MODE	MODE	I	Connect this pin to VCC via a resistor.
XIN clock input	XIN	I	These pins are provided for XIN clock generation circuit I/O Connect a ceramic resonator or a crystal oscillator betweer
XIN clock output	XOUT	I/O	the XIN and XOUT pins ⁽¹⁾ . To use an external clock, input in to the XOUT pin and leave the XIN pin open.
XCIN clock input	XCIN	I	These pins are provided for XCIN clock generation circuit I/O Connect a crystal oscillator between the XCIN and XCOUT
XCIN clock output	XCOUT	0	pins ⁽¹⁾ . To use an external clock, input it to the XCIN pin and leave the XCOUT pin open.
INT interrupt input	INT0 to INT4	I	INT interrupt input pins. INT0 is timer RB, RC and RD input pin.
Key input interrupt	KI0 to KI3	I	Key input interrupt input pins
Timer RA	TRAIO	I/O	Timer RA I/O pin
	TRAO	0	Timer RA output pin
Timer RB	TRBO	0	Timer RB output pin
Timer RC	TRCCLK	I	External clock input pin
	TRCTRG	I	External trigger input pin
	TRCIOA, TRCIOB, TRCIOC, TRCIOD	I/O	Timer RC I/O pins
Timer RD	TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1	I/O	Timer RD I/O pins
	TRDCLK	I	External clock input pin
Timer RE	TREO	0	Divided clock output pin
Serial interface	CLK0, CLK1, CLK2	I/O	Transfer clock I/O pins
	RXD0, RXD1, RXD2	I	Serial data input pins
	TXD0, TXD1, TXD2	0	Serial data output pins
	CTS2	I	Transmission control input pin
	RTS2	0	Reception control output pin
	SCL2	I/O	I ² C mode clock I/O pin
	SDA2	I/O	I ² C mode data I/O pin
I ² C bus	SCL	I/O	Clock I/O pin
	SDA	I/O	Data I/O pin
		I/O	Data I/O pin
SSU	SSI	1/0	
SSU	SSI SCS	1/O	
SSU	SSI SCS SSCK		Chip-select signal I/O pin Clock I/O pin

I: Input O: Output I/O: Input and output

Note:

1. Refer to the oscillator manufacturer for oscillation characteristics.

Item	Pin Name	I/O Type	Description
Reference voltage input	VREF	I	Reference voltage input pin to A/D converter and D/A converter
A/D converter	AN0 to AN11	I	Analog input pins to A/D converter
	ADTRG	I	A/D external trigger input pin
D/A converter	DA0, DA1	0	D/A converter output pins
Comparator B IVCMP1, IVCMP3		I	Comparator B analog voltage input pins
	IVREF1, IVREF3	I	Comparator B reference voltage input pins
I/O port	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_3 to P4_7, P5_6, P5_7, P6_0 to P6_7	I/O	CMOS I/O ports. Each port has an I/O select direction register, allowing each pin in the port to be directed for input or output individually. Any port set to input can be set to use a pull-up resistor or not by a program. All ports can be used as LED drive ports.
Input port	P4_2	I	Input-only port


Table 1.7Pin Functions (2)

I: Input O: Output I/O: Input and output

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank.

3. Memory

3.1 R8C/35C Group

Figure 3.1 is a Memory Map of R8C/35C Group. The R8C/35C Group has a 1-Mbyte address space from addresses 00000h to FFFFh. The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 32-Kbyte internal ROM area is allocated addresses 08000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. The starting address of each interrupt routine is stored here.

The internal ROM (data flash) is allocated addresses 03000h to 03FFFh.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 2.5-Kbyte internal RAM area is allocated addresses 00400h to 00DFFh. The internal RAM is used not only for data storage but also as a stack area when a subroutine is called or when an interrupt request is acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh and 02C00h to 02FFFh. Peripheral function control registers are allocated here. All unallocated spaces within the SFRs are reserved and cannot be accessed by users.

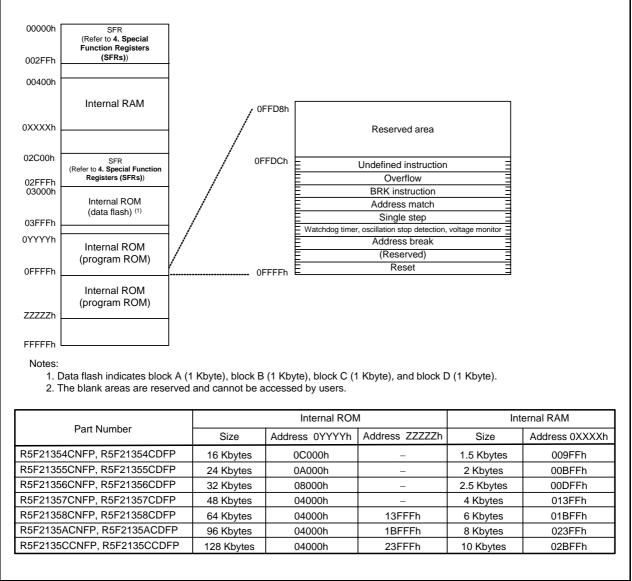


Figure 3.1 Memory Map of R8C/35C Group

Address	Register	Symbol	After Reset
00C0h	A/D Register 0	AD0	XXh
	A/D Register 0	ADU	
00C1h		45.4	000000XXb
00C2h	A/D Register 1	AD1	XXh
00C3h			000000XXb
00C4h	A/D Register 2	AD2	XXh
00C5h			000000XXb
00C6h	A/D Register 3	AD3	XXh
00C7h	, č		000000XXb
00C8h	A/D Register 4	AD4	XXh
00C9h		, (B)	000000XXb
00CAh	A/D Register 5	AD5	XXh
00CAn 00CBh	A/D Register 5	AD5	000000XXb
		100	
00CCh	A/D Register 6	AD6	XXh
00CDh			000000XXb
00CEh	A/D Register 7	AD7	XXh
00CFh			000000XXb
00D0h			
00D1h			
00D2h			
00D3h			
00D4h	A/D Mode Register	ADMOD	00h
00D4n	A/D Input Select Register	ADINOD	1100000b
00D6h	A/D Control Register 0	ADCON0	00h
00D7h	A/D Control Register 1	ADCON1	00h
00D8h	D/A0 Register	DA0	00h
00D9h	D/A1 Register	DA1	00h
00DAh			
00DBh			
00DCh	D/A Control Register	DACON	00h
00DDh		Briddit	0011
00DEh			
00DFh			20.4
00E0h	Port P0 Register	P0	XXh
00E1h	Port P1 Register	P1	XXh
00E2h	Port P0 Direction Register	PD0	00h
00E3h	Port P1 Direction Register	PD1	00h
00E4h	Port P2 Register	P2	XXh
00E5h	Port P3 Register	P3	XXh
00E6h	Port P2 Direction Register	PD2	00h
00E7h	Port P3 Direction Register	PD3	00h
00E8h	Port P4 Register	P4	XXh
00E9h	Port P5 Register	P5	XXh
00EAh	Port P4 Direction Register	PD4	00h
00EBh	Port P5 Direction Register	PD5	00h
00ECh	Port P6 Register	P6	XXh
00EDh			
00EEh	Port P6 Direction Register	PD6	00h
00EFh			1
00F0h			
00F1h			
00F1h			
00F3h			
00F4h			
00F5h			
00F6h			
00F7h			
00F8h			
00F9h			
00FAh			
00FBh			
00FCh			
00FDh			
00FEh			
00FFh			
X. Undefined			·

Table 4.4SFR Information (4) (1)

X: Undefined

Note: 1. The blank areas are reserved and cannot be accessed by users.

Address	Register	Symbol	After Reset
0180h	Timer RA Pin Select Register	TRASR	00h
0180h	Timer RB/RC Pin Select Register	TRBRCSR	00h
0181h	Timer RC Pin Select Register 0	TRCPSR0	00h
0183h	Timer RC Pin Select Register 0	TRCPSR0	00h
0183h 0184h	Timer RD Pin Select Register 0	TRDPSR0	00h
		TRDPSR0	
0185h	Timer RD Pin Select Register 1	_	00h
0186h	Timer Pin Select Register	TIMSR	00h
0187h		11000	
0188h	UARTO Pin Select Register	UOSR	00h
0189h	UART1 Pin Select Register	U1SR	00h
018Ah	UART2 Pin Select Register 0	U2SR0	00h
018Bh	UART2 Pin Select Register 1	U2SR1	00h
018Ch	SSU/IIC Pin Select Register	SSUIICSR	00h
018Dh			
018Eh	INT Interrupt Input Pin Select Register	INTSR	00h
018Fh	I/O Function Pin Select Register	PINSR	00h
0190h			
0191h			
0192h			
0193h	SS Bit Counter Register	SSBR	11111000b
0194h	SS Transmit Data Register L / IIC bus Transmit Data Register (2)	SSTDR / ICDRT	FFh
0195h	SS Transmit Data Register H (2)	SSTDRH	FFh
0196h	SS Receive Data Register L / IIC bus Receive Data Register (2)	SSRDR / ICDRR	FFh
0197h	SS Receive Data Register H ⁽²⁾	SSRDRH	FFh
0198h	SS Control Register H / IIC bus Control Register 1 ⁽²⁾	SSCRH / ICCR1	00h
0199h	SS Control Register L / IIC bus Control Register 2 ⁽²⁾	SSCRL / ICCR2	01111101b
019Ah	SS Mode Register / IIC bus Mode Register ⁽²⁾	SSMR / ICMR	00010000b / 00011000b
019Bh	SS Enable Register / IIC bus Interrupt Enable Register ⁽²⁾	SSER / ICIER	00h
019Ch	SS Status Register / IIC bus Status Register (2)	SSSR / ICSR	00h / 0000X000b
019Dh	SS Mode Register 2 / Slave Address Register (2)	SSMR2 / SAR	00h
019Eh			
019Fh			
01A0h			
01A1h			
01A2h			
01A3h			
01A4h			
01A5h			
01A6h			
01A7h			
01A8h			
01A9h			
01AAh	1		
01ABh			
01ACh			
01ADh	1		
01AEh	1		
01AFh			
01B0h	<u> </u>		
01B1h	<u> </u>		
01B2h	Flash Memory Status Register	FST	10000X00b
01B2h			
01B4h	Flash Memory Control Register 0	FMR0	00h
01B5h	Flash Memory Control Register 1	FMR1	00h
01B6h	Flash Memory Control Register 2	FMR2	00h
01B7h		1 11112	
01B8h	<u> </u>		
01B9h			-
01B9h	+		+
01BAn 01BBh	+		
01BDh	<u> </u>		+
01BDh	<u> </u>		
01BDh 01BEh			
01BEn 01BFh	+		

Table 4.7	SFR Information (7) ⁽¹⁾
Table 4.7	SFR Information (7)

X: Undefined Notes: 1. The blank areas are reserved and cannot be accessed by users. 2. Selectable by the IICSEL bit in the SSUIICSR register.

Addrooo	Desister	Cymah ol	After Deset
Address	Register	Symbol	After Reset
01C0h	Address Match Interrupt Register 0	RMAD0	XXh
01C1h			XXh
01C2h			0000XXXXb
	Address Motch Internut English Degister 0		
01C3h	Address Match Interrupt Enable Register 0	AIER0	00h
01C4h	Address Match Interrupt Register 1	RMAD1	XXh
01C5h			XXh
01C6h			0000XXXXb
01C7h	Address Match Interrupt Enable Register 1	AIER1	00h
		AIERI	0011
01C8h			
01C9h			
01CAh			
01CBh			
01CCh			
01CDh			
01CEh			
01CFh			
01D0h			
01D1h		+	4
01D2h			
01D3h			
01D4h			1
01D5h			1
01D6h			4
01D7h			
01D8h			
01D9h			
01DAh			
01DBh		+	+
			-
01DCh			
01DDh			
01DEh			
01DFh			
01E0h	Pull-Up Control Register 0	PUR0	00h
01E1h	Pull-Up Control Register 1	PUR1	00h
		PURI	UUN
01E2h			
01E3h			
01E4h			
01E5h			
01E6h			-
01E7h			
01E8h			
01E9h			
01EAh			1
01EBh		1	1
			+
01ECh			4
01EDh			
01EEh			
01EFh			1
01F0h	Port P1 Drive Capacity Control Register	P1DRR	00h
		P2DRR	
01F1h	Port P2 Drive Capacity Control Register		00h
01F2h	Drive Capacity Control Register 0	DRR0	00h
01F3h	Drive Capacity Control Register 1	DRR1	00h
01F4h	· · · ·		
01F5h	Input Threshold Control Register 0	VLT0	00h
	Input Threshold Control Register 1		
01F6h		VLT1	00h
01F7h			
01F8h	Comparator B Control Register 0	INTCMP	00h
01F9h			
01FAh	External Input Enable Register 0	INTEN	00h
01FBh	External Input Enable Register 1	INTEN1	00h
01FCh	INT Input Filter Select Register 0	INTER	00h
01FDh	INT Input Filter Select Register 1	INTF1	00h
01FEh	Key Input Enable Register 0	KIEN	00h
01FFh			
Ville definie d	1	1	

SFR Information (8)⁽¹⁾ Table 4.8

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

	()		
Address	Register	Symbol	After Reset
2C70h	DTC Control Data 6	DTCD6	XXh
2C71h			XXh
2C72h			XXh
2C73h			XXh
2C74h			XXh
2C75h	-		XXh
2C76h			XXh
2C77h			XXh
2C78h	DTC Control Data 7	DTCD7	XXh
		ысы	
2C79h			XXh
2C7Ah			XXh
2C7Bh			XXh
2C7Ch			XXh
20701			
2C7Dh			XXh
2C7Eh			XXh
2C7Fh			XXh
	DTO O I ID I O	DTODO	
2C80h	DTC Control Data 8	DTCD8	XXh
2C81h			XXh
2C82h	1		XXh
2C83h	4		XXh
	-		
2C84h			XXh
2C85h			XXh
2C86h			XXh
2C80h	4		XXh
2C88h	DTC Control Data 9	DTCD9	XXh
2C89h			XXh
2C8Ah			XXh
2C8Bh			XXh
2C8Ch			XXh
2C8Dh			XXh
2C8Eh			XXh
2C8Fh			XXh
2C90h	DTC Control Data 10	DTCD10	XXh
2C91h			XXh
2C92h			XXh
2C93h			XXh
2C94h			XXh
	-		
2C95h			XXh
2C96h			XXh
2C97h			XXh
2C98h	DTC Control Data 11	DTCD11	XXh
		DICDII	
2C99h			XXh
2C9Ah			XXh
2C9Bh	1		XXh
	4		
2C9Ch	-		XXh
2C9Dh			XXh
2C9Eh			XXh
2C9Fh	1		XXh
	DTO Constant Data 40	DTOD40	
2CA0h	DTC Control Data 12	DTCD12	XXh
2CA1h			XXh
2CA2h	1		XXh
	4		
2CA3h	-		XXh
2CA4h			XXh
2CA5h]		XXh
2CA6h	1		XXh
	-		
2CA7h			XXh
2CA8h	DTC Control Data 13	DTCD13	XXh
2CA9h			XXh
	4		
2CAAh			XXh
2CABh			XXh
2CACh	1		XXh
2CADh	4		
	-		XXh
2CAEh			XXh
2CAFh			XXh

SFR Information (10)⁽¹⁾ Table 4.10

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

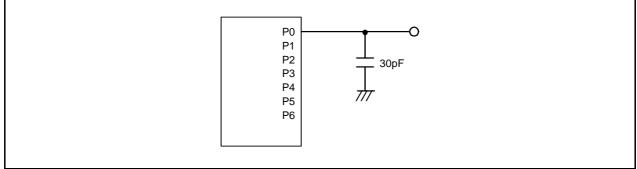


Figure 5.1 Ports P0 to P6 Timing Measurement Circuit

Symbol	Parameter		Cond	Conditions		Standard		
Symbol	Falameter		Cond	Conditions		Тур.	Max.	Unit
_	Resolution		Vref = AVCC	Vref = AVcc		-	10	Bit
-	Absolute accuracy	10-bit mode	Vref = AVcc = 5.0 V	AN0 to AN7 input, AN8 to AN11 input	-	-	±3	LSB
			Vref = AVCC = 3.3 V	AN0 to AN7 input, AN8 to AN11 input	-	-	±5	LSB
			Vref = AVCC = 3.0 V	AN0 to AN7 input, AN8 to AN11 input	-	-	±5	LSB
			Vref = AVCC = 2.2 V	AN0 to AN7 input, AN8 to AN11 input	1	_	±5	LSB
		8-bit mode	Vref = AVCC = 5.0 V	AN0 to AN7 input, AN8 to AN11 input	_	-	±2	LSB
			Vref = AVCC = 3.3 V	AN0 to AN7 input, AN8 to AN11 input	-	-	±2	LSB
			Vref = AVcc = 3.0 V	AN0 to AN7 input, AN8 to AN11 input	-	-	±2	LSB
			Vref = AVCC = 2.2 V	AN0 to AN7 input, AN8 to AN11 input	-	-	±2	LSB
φAD	A/D conversion clock		$4.0 \text{ V} \leq \text{Vref} = \text{AVCC} \leq$	5.5 V ⁽²⁾	2	-	20	MHz
			$3.2 \text{ V} \leq \text{Vref} = \text{AVcc} \leq 5.5 \text{ V}^{(2)}$		2	-	16	MHz
			$2.7 \text{ V} \leq \text{Vref} = \text{AVCC} \leq$	5.5 V ⁽²⁾	2	-	10	MHz
			$2.2 \text{ V} \leq \text{Vref} = \text{AVcc} \leq$	5.5 V ⁽²⁾	2	-	5	MHz
-	Tolerance level impedance				-	3	-	kΩ
t CONV	Conversion time	10-bit mode	$Vref = AVCC = 5.0 V, \phi$	AD = 20 MHz	2.2	-	-	μS
		8-bit mode	Vref = AVCC = 5.0 V, ¢	AD = 20 MHz	2.2	-	-	μS
t SAMP	Sampling time		φAD = 20 MHz		0.8	-	-	μS
IVref	Vref current		$Vcc = 5 V$, $XIN = f1 = \phi AD = 20 MHz$		-	45	_	μA
Vref	Reference voltage				2.2	-	AVcc	V
VIA	Analog input voltage (3)				0	-	Vref	V
OCVREF	On-chip reference voltage		$2 \text{ MHz} \le \phi \text{AD} \le 4 \text{ MH}$	Z	1.19	1.34	1.49	V

Table 5.3 A/D Converter Characteristics

Notes:

1. Vcc/AVcc = Vref = 2.2 to 5.5 V, Vss = 0 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. The A/D conversion result will be undefined in wait mode, stop mode, when the flash memory stops, and in low-currentconsumption mode. Do not perform A/D conversion in these states or transition to these states during A/D conversion.

3. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

Cumbal	Parameter	Conditions		Unit		
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
-	Program/erase endurance (2)		1,000 (3)	-	-	times
_	Byte program time		-	80	500	μS
-	Block erase time		-	0.3	-	S
td(SR-SUS)	Time delay from suspend request until suspend		-	-	5+CPU clock × 3 cycles	ms
_	Interval from erase start/restart until following suspend request		0	-	_	μS
_	Time from suspend until erase restart		-	-	30+CPU clock × 1 cycle	μS
td(CMDRST- READY)	Time from when command is forcibly terminated until reading is enabled		-	-	30+CPU clock × 1 cycle	μS
-	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		1.8	-	5.5	V
-	Program, erase temperature		0	-	60	°C
-	Data hold time ⁽⁷⁾	Ambient temperature = 55°C	20	-	-	year

Table 5.6 Flash Memory (Program ROM) Electrical Characteristics

Notes: 1. Vcc = 2.7 to 5.5 V and $T_{opr} = 0$ to 60°C, unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 1,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed). 4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

7. The data hold time includes time that the power supply is off or the clock is not supplied.

Symbol	Parameter	Conditions		Unit		
Symbol	Farameter	Conditions	Min.	Тур.	Max.	Onit
-	Program/erase endurance (2)		10,000 (3)	-	-	times
_	Byte program time (program/erase endurance \leq 1,000 times)		-	160	1,500	μs
-	Byte program time (program/erase endurance > 1,000 times)		-	300	1,500	μs
-	Block erase time (program/erase endurance ≤ 1,000 times)		-	0.2	1	S
_	Block erase time (program/erase endurance > 1,000 times)		-	0.3	1	S
td(SR-SUS)	Time delay from suspend request until suspend		-	-	5+CPU clock × 3 cycles	ms
-	Interval from erase start/restart until following suspend request		0	-	_	μS
-	Time from suspend until erase restart		-	-	30+CPU clock × 1 cycle	μs
td(CMDRST- READY)	Time from when command is forcibly terminated until reading is enabled		-	-	30+CPU clock × 1 cycle	μs
-	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		1.8	-	5.5	V
-	Program, erase temperature		-20 (7)	-	85	°C
-	Data hold time ⁽⁸⁾	Ambient temperature = 55 °C	20	-	-	year

Table 5.7 Flash Memory (Data flash Block A to Block D) Electrical Characteristics

Notes:

1. Vcc = 2.7 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

However, the same address must not be programmed more than once per erase operation (overwriting pronibited).

Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
 In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. In addition, averaging the erasure endurance between blocks A to D can further reduce the actual erasure endurance. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

8. The data hold time includes time that the power supply is off or the clock is not supplied.

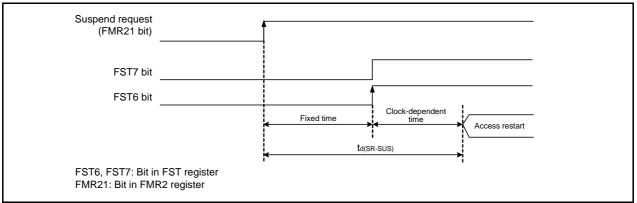


Figure 5.2 Time delay until Suspend

^{2.} Definition of programming/erasure endurance

^{7. -40°}C for D version.

Symbol	Parameter	Condition		Unit			
Symbol	Falalletei	Condition	Min.	Тур.	Max.	Unit	
Vdet0	Voltage detection level Vdet0_0 (2)		1.80	1.90	2.05	V	
	Voltage detection level Vdet0_1 ⁽²⁾		2.15	2.35	2.50	V	
	Voltage detection level Vdet0_2 (2)		2.70	2.85	3.05	V	
	Voltage detection level Vdet0_3 ⁽²⁾		3.55	3.80	4.05	V	
-	Voltage detection 0 circuit response time (4)	At the falling of Vcc from 5 V to (Vdet0_0 - 0.1) V	-	6	150	μs	
-	Voltage detection circuit self power consumption	VCA25 = 1, Vcc = 5.0 V	-	1.5	-	μA	
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μS	

Table 5.8	Voltage Detection 0 Circuit Electrical Characteristics
	Voltage Deteotion & Onean Electrical Onalabteristics

Notes:

1. The measurement condition is Vcc = 1.8 V to 5.5 V and $T_{opr} = -20$ to 85°C (N version) / -40 to 85°C (D version).

2. Select the voltage detection level with bits VDSEL0 and VDSEL1 in the OFS register.

3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.

4. Time until the voltage monitor 0 reset is generated after the voltage passes Vdet0.

Symbol	Parameter	Condition		Unit		
Symbol	Falalleter	Condition	Min.	Тур.	Max.	Unit
Vdet1	Voltage detection level Vdet1_0 ⁽²⁾	At the falling of Vcc	2.00	2.20	2.40	V
	Voltage detection level Vdet1_1 ⁽²⁾	At the falling of Vcc	2.15	2.35	2.55	V
	Voltage detection level Vdet1_2 ⁽²⁾	At the falling of Vcc	2.30	2.50	2.70	V
	Voltage detection level Vdet1_3 ⁽²⁾	At the falling of Vcc	2.45	2.65	2.85	V
	Voltage detection level Vdet1_4 ⁽²⁾	At the falling of Vcc	2.60	2.80	3.00	V
	Voltage detection level Vdet1_5 ⁽²⁾	At the falling of Vcc	2.75	2.95	3.15	V
	Voltage detection level Vdet1_6 ⁽²⁾	At the falling of Vcc	2.85	3.10	3.40	V
	Voltage detection level Vdet1_7 (2)	At the falling of Vcc	3.00	3.25	3.55	V
	Voltage detection level Vdet1_8 ⁽²⁾	At the falling of Vcc	3.15	3.40	3.70	V
	Voltage detection level Vdet1_9 ⁽²⁾	At the falling of Vcc	3.30	3.55	3.85	V
	Voltage detection level Vdet1_A ⁽²⁾	At the falling of Vcc	3.45	3.70	4.00	V
	Voltage detection level Vdet1_B (2)	At the falling of Vcc	3.60	3.85	4.15	V
	Voltage detection level Vdet1_C ⁽²⁾	At the falling of Vcc	3.75	4.00	4.30	V
	Voltage detection level Vdet1_D (2)	At the falling of Vcc	3.90	4.15	4.45	V
	Voltage detection level Vdet1_E ⁽²⁾	At the falling of Vcc	4.05	4.30	4.60	V
	Voltage detection level Vdet1_F (2)	At the falling of Vcc	4.20	4.45	4.75	V
-	Hysteresis width at the rising of Vcc in voltage detection 1 circuit	Vdet1_0 to Vdet1_5 selected	-	0.07	-	V
		Vdet1_6 to Vdet1_F selected	-	0.10	-	V
-	Voltage detection 1 circuit response time ⁽³⁾	At the falling of Vcc from 5 V to (Vdet1_0 – 0.1) V	_	60	150	μS
_	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	_	1.7	-	μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽⁴⁾		-	-	100	μS

Notes:

1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr = -20 to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version).

2. Select the voltage detection level with bits VD1S0 to VD1S3 in the VD1LS register.

3. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.

4. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

Symbol	Parameter	Condition		Unit			
Symbol	Farameter	Condition	Min.	Тур.	Max.	Unit	
Vdet2	Voltage detection level Vdet2_0	At the falling of Vcc	3.70	4.00	4.30	V	
-	Hysteresis width at the rising of Vcc in voltage detection 2 circuit		_	0.10	-	V	
-	Voltage detection 2 circuit response time ⁽²⁾	At the falling of Vcc from 5 V to (Vdet2_0 - 0.1) V	-	20	150	μS	
-	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	-	1.7	-	μΑ	
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μS	

Table 5.10 Voltage Detection 2 Circuit Electrical Characteristics

Notes:

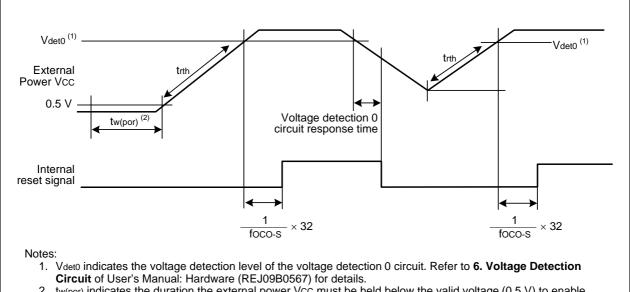

- 1. The measurement condition is Vcc = 1.8 V to 5.5 V and $T_{opr} = -20$ to 85°C (N version) / -40 to 85°C (D version).
- 2. Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.
- 3. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.

 Table 5.11
 Power-on Reset Circuit ⁽²⁾

Symbol	Parameter	Condition		Standard			
	Faranielei	Condition	Min.	Тур.	Max.	Unit	
trth	External power Vcc rise gradient	(1)	0	-	50,000	mV/msec	

Notes:

- 1. The measurement condition is $T_{opr} = -20$ to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version), unless otherwise specified.
- 2. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVDAS bit in the OFS register to 0.

 tw(por) indicates the duration the external power Vcc must be held below the valid voltage (0.5 V) to enable a power-on reset. When turning on the power after it falls with voltage monitor 0 reset disabled, maintain tw(por) for 1 ms or more.

Figure 5.3

Power-on Reset Circuit Electrical Characteristics

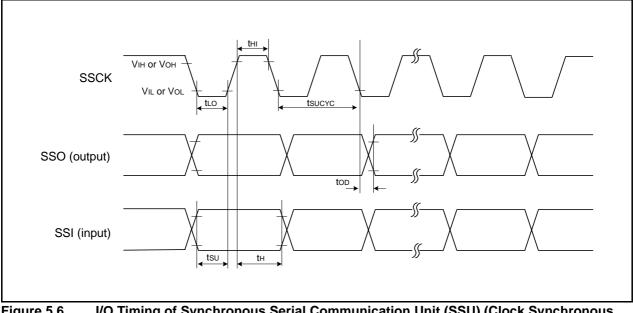


Figure 5.6 I/O Timing of Synchronous Serial Communication Unit (SSU) (Clock Synchronous Communication Mode)

Currente e l	Deveneter	O and it is an	Sta	Standard			
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit	
tSCL	SCL input cycle time		12tcyc + 600 (2)	-	-	ns	
tSCLH	SCL input "H" width		3tcyc + 300 (2)	-	-	ns	
tSCLL	SCL input "L" width		5tcyc + 500 (2)	_	-	ns	
tsf	SCL, SDA input fall time		-	-	300	ns	
tSP	SCL, SDA input spike pulse rejection time		-	-	1tcyc (2)	ns	
t BUF	SDA input bus-free time		5tcyc (2)	_	-	ns	
t STAH	Start condition input hold time		3tcyc (2)	-	-	ns	
t STAS	Retransmit start condition input setup time		3tcyc (2)	_	-	ns	
t STOP	Stop condition input setup time		3tcyc (2)	-	-	ns	
tSDAS	Data input setup time		1tcyc + 40 (2)	-	-	ns	
t SDAH	Data input hold time		10	-	-	ns	

 Table 5.16
 Timing Requirements of I²C bus Interface ⁽¹⁾

Notes:

1. Vcc = 1.8 to 5.5 V, Vss = 0 V and T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. 1tcyc = 1/f1(s)

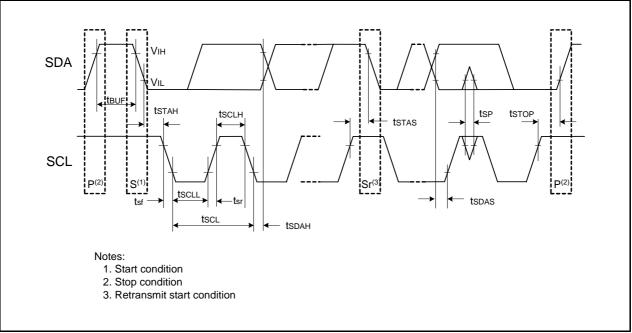


Figure 5.7 I/O Timing of I²C bus Interface

Electrical Characteristics (4) [2.7 V \leq Vcc < 3.3 V] Table 5.24 (Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter		Condition		Standard		Unit
-				Min.	Тур.	Max.	-
lcc	(Vcc = 2.7 to 3.3 V) Single-chip mode,	High-speed clock mode	XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	3.5	10	mA
	output pins are open, other pins are Vss		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	1.5	7.5	mA
		High-speed on-chip oscillator	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	7.0	15	mA
		mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	3.0	-	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	4.0	_	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	_	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16 MSTIIC = MSTTRD = MSTTRC = 1	_	1	_	mA
on os ma Lo	Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	_	90	390	μA	
	Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division, FMR27 = 1, VCA20 = 0	_	80	400	μA	
		XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division, Program operation on RAM Flash memory off, FMSTP = 1, VCA20 = 0	-	40	-	μA	
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	15	90	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	4	80	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (peripheral clock off) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	-	3.5	-	μA
		Stop mode	XIN clock off, $T_{OPT} = 25^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	2.0	5.0	μA
			XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1	_	5.0 ⁽¹⁾	_	μΑ
			Peripheral clock off VCA27 = VCA26 = VCA25 = 0				

Notes:

Value when the program ROM capacity of the product is 16 Kbytes to 32 Kbytes.
 Value when the program ROM capacity of the product is 48 Kbytes to 128 Kbytes.

REVISION HISTORY	R8C/35C Group Datasheet
-------------------------	-------------------------

Г

Rev.	Rev. Date		Description
Rev. Date		Page	Summary
0.10	Sep. 01, 2009	-	First Edition issued
1.00	Aug. 24, 2010	All	"Preliminary" and "Under development" deleted
		4	Table1.3 revised
		27 to 53	5. Electrical Characteristics added

All trademarks and registered trademarks are the property of their respective owners.

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renease Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renease Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product for which the soften where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product of soften an application categorized as "Specific" for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product of uses of any expression product of the prior written consent of Renesas Electronics.
- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools
- personal electronic equipment; and industrial robots.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically
 designed for life support.
- "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renease Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renease Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renease Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renease Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renease Electronics Corpo GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renease Electronics Corpo GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renease Electronics (Shanghai) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-12-827-1551, Fax: +86-21-6887-7859 Renease Electronics (Shanghai) Co., Ltd. 10n1 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 Renease Electronics Hong Kong Limited Unit 1801-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +88-2486-9318, Fax: +882-2486-9022/9044e, 1845-24817-9400, Fax: +882-2486-9022/9044e, 1945-063 Fu Shing North Road Taipei, Taiwan Tel: +882-2486-9300, Fax: +882-24175-9670 Renease Electronics Mangapore Pte. Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +68-2413-2400, Fax: +885-24175-9670 Renease Electronics Malaysia Sch.Bhd. Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9300, Fax: +882-355-9510 Renease Electronics Korea Co., Ltd. 11F, Samik Lavied or Bilde, Tou-27 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +82-2558-3737, Fax: +882-2-558-5141