

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Obsolete
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	47
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	2.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	52-LQFP
Supplier Device Package	52-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21356cnfp-v2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.2 Specifications

Tables 1.1 and 1.2 outline the Specifications for R8C/35C Group.

Iable 1.1	Function	Specification
CPU	Central processing	R8C CPU core
CFU	unit	Number of fundamental instructions: 89
	unit	Minimum instruction execution time:
		50 ns (f(XIN) = 20 MHz, VCC = 2.7 to 5.5 V)
		200 ns (f(XIN) = 5 MHz, VCC = 1.8 to 5.5 V)
		• Multiplier: 16 bits \times 16 bits \rightarrow 32 bits
		• Multiply-accumulate instruction: 16 bits \times 16 bits + 32 bits \rightarrow 32 bits
Mamani	DOM DAM Data	Operation mode: Single-chip mode (address space: 1 Mbyte)
Memory	ROM, RAM, Data flash	Refer to Table 1.3 Product List for R8C/35C Group.
Power Supply	Voltage detection	Power-on reset
Voltage	circuit	Voltage detection 3 (detection level of voltage detection 0 and voltage
Detection		detection 1 selectable)
I/O Ports	Programmable I/O	Input-only: 1 pin
	ports	CMOS I/O ports: 47, selectable pull-up resistor
		High current drive ports: 47
Clock	Clock generation	4 circuits: XIN clock oscillation circuit,
	circuits	XCIN clock oscillation circuit (32 kHz),
		High-speed on-chip oscillator (with frequency adjustment function),
		Low-speed on-chip oscillator
		Oscillation stop detection: XIN clock oscillation stop detection function
		• Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16
		Low power consumption modes:
		Standard operating mode (high-speed clock, low-speed clock, high-speed
		on-chip oscillator, low-speed on-chip oscillator), wait mode, stop mode
		Real-time clock (timer RE)
Interrupts		Number of interrupt vectors: 69
		 External Interrupt: 9 (INT × 5, Key input × 4)
		Priority levels: 7 levels
Watchdog Time	er	 14 bits × 1 (with prescaler)
		Reset start selectable
		 Low-speed on-chip oscillator for watchdog timer selectable
DTC (Data Tra	nsfer Controller)	• 1 channel
		Activation sources: 33
		 Transfer modes: 2 (normal mode, repeat mode)
Timer	Timer RA	8 bits x 1 (with 8-bit prescaler)
		Timer mode (period timer), pulse output mode (output level inverted every
		period), event counter mode, pulse width measurement mode, pulse period
		measurement mode
	Timer RB	8 bits × 1 (with 8-bit prescaler)
		Timer mode (period timer), programmable waveform generation mode (PWM
		output), programmable one-shot generation mode, programmable wait one-
	Timer DO	shot generation mode
	Timer RC	16 bits x 1 (with 4 capture/compare registers) Timer mode (input capture function, output compare function), PWM mode
		(output 3 pins), PWM2 mode (PWM output pin)
	Timer RD	16 bits × 2 (with 4 capture/compare registers)
		Timer mode (input capture function, output compare function), PWM mode
		(output 6 pins), reset synchronous PWM mode (output three-phase
		waveforms (6 pins), sawtooth wave modulation), complementary PWM mode
		(output three-phase waveforms (6 pins), triangular wave modulation), PWM3
		mode (PWM output 2 pins with fixed period)
	Timer RE	8 bits × 1
		Real-time clock mode (count seconds, minutes, hours, days of week), output
		compare mode

Table 1.1 Specifications for R8C/35C Group (1)

I/O Pin Functions for Per			Peripher	eripheral Modules				
Pin Number	Control Pin	Port	Interrupt	Timer	Serial Interface	SSU	l ² C bus	A/D Converter, D/A Converter, Comparator B
36		P1_2	KI2	(TRCIOB)				AN10
37		P1_1	KI1	(TRCIOA/ TRCTRG)				AN9
38		P1_0	KI0	(TRCIOD)				AN8
39		P0_7		(TRCIOC)				AN0/DA1
40		P0_6		(TRCIOD)				AN1/DA0
41		P0_5		(TRCIOB)				AN2
42		P0_4		TREO (/TRCIOB)				AN3
43		P0_3		(TRCIOB)	(CLK1)			AN4
44		P0_2		(TRCIOA/ TRCTRG)	(RXD1)			AN5
45		P0_1		(TRCIOA/ TRCTRG)	(TXD1)			AN6
46		P0_0		(TRCIOA/ TRCTRG)				AN7
47		P6_4			(RXD1)			
48		P6_3			(TXD1)			
49		P6_2			(CLK1)			
50		P6_1						
51		P6_0		(TREO)				
52		P5_7						

Table 1.5 Pin Name Information by Pin Number (2)

Note:

1. Can be assigned to the pin in parentheses by a program.

1.5 Pin Functions

Tables 1.6 and 1.7 list Pin Functions.

Table 1.6Pin Functions (1)

	· · ·		
Item	Pin Name	I/О Туре	-
Power supply input	VCC, VSS	-	Apply 1.8 V to 5.5 V to the VCC pin. Apply 0 V to the VSS pin
Analog power supply input	AVCC, AVSS	-	Power supply for the A/D converter. Connect a capacitor between AVCC and AVSS.
Reset input	RESET	I	Input "L" on this pin resets the MCU.
MODE	MODE	I	Connect this pin to VCC via a resistor.
XIN clock input	XIN	I	These pins are provided for XIN clock generation circuit I/O Connect a ceramic resonator or a crystal oscillator betweer
XIN clock output	XOUT	I/O	the XIN and XOUT pins ⁽¹⁾ . To use an external clock, input in to the XOUT pin and leave the XIN pin open.
XCIN clock input	XCIN	I	These pins are provided for XCIN clock generation circuit I/O Connect a crystal oscillator between the XCIN and XCOUT
XCIN clock output	XCOUT	0	pins ⁽¹⁾ . To use an external clock, input it to the XCIN pin and leave the XCOUT pin open.
INT interrupt input	INT0 to INT4	I	INT interrupt input pins. INT0 is timer RB, RC and RD input pin.
Key input interrupt	KI0 to KI3	I	Key input interrupt input pins
Timer RA	TRAIO	I/O	Timer RA I/O pin
	TRAO	0	Timer RA output pin
Timer RB	TRBO	0	Timer RB output pin
Timer RC	TRCCLK	I	External clock input pin
	TRCTRG	I	External trigger input pin
	TRCIOA, TRCIOB, TRCIOC, TRCIOD	I/O	Timer RC I/O pins
Timer RD	TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1	I/O	Timer RD I/O pins
	TRDCLK	I	External clock input pin
Timer RE	TREO	0	Divided clock output pin
Serial interface	CLK0, CLK1, CLK2	I/O	Transfer clock I/O pins
	RXD0, RXD1, RXD2	I	Serial data input pins
	TXD0, TXD1, TXD2	0	Serial data output pins
	CTS2	I	Transmission control input pin
	RTS2	0	Reception control output pin
	SCL2	I/O	I ² C mode clock I/O pin
	SDA2	I/O	I ² C mode data I/O pin
I ² C bus	SCL	I/O	Clock I/O pin
	SDA	I/O	Data I/O pin
		I/O	Data I/O pin
SSU	SSI	1/0	
SSU	SSI SCS	1/O	
SSU	SSI SCS SSCK		Chip-select signal I/O pin Clock I/O pin

I: Input O: Output I/O: Input and output

Note:

1. Refer to the oscillator manufacturer for oscillation characteristics.

Special Function Registers (SFRs) 4.

An SFR (special function register) is a control register for a peripheral function. Tables 4.1 to 4.12 list the special function registers and Table 4.13 lists the ID Code Areas and Option Function Select Area.

Address	Register	Symbol	After Reset
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	00h
0005h	Processor Mode Register 1	PM1	00h
0006h	System Clock Control Register 0	CM0	00101000b
0007h	System Clock Control Register 1	CM1	0010000b
0008h	Module Standby Control Register	MSTCR	00h
0009h	System Clock Control Register 3	CM3	00h
000Ah	Protect Register	PRCR	00h
000Bh	Reset Source Determination Register	RSTFR	0XXXXXXb ⁽²⁾
000Ch	Oscillation Stop Detection Register	OCD	00000100b
000Dh	Watchdog Timer Reset Register	WDTR	XXh
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Fh	Watchdog Timer Control Register	WDTC	00111111b
0010h			
0011h			
0012h			
0013h			
0014h			
0015h	High-Speed On-Chip Oscillator Control Register 7	FRA7	When shipping
0016h			
0017h			
0018h			
0019h			
001Ah			
001Bh			
001Ch	Count Source Protection Mode Register	CSPR	00h 10000000b ⁽³⁾
001Dh			
001Eh			
001Fh			
0020h			
0021h			
0022h		55.44	
0023h	High-Speed On-Chip Oscillator Control Register 0	FRA0	00h
0024h	High-Speed On-Chip Oscillator Control Register 1	FRA1	When shipping
0025h	High-Speed On-Chip Oscillator Control Register 2	FRA2	00h
0026h	On-Chip Reference Voltage Control Register	OCVREFCR	00h
0027h		OPODE	0.01-
0028h 0029h	Clock Prescaler Reset Flag High-Speed On-Chip Oscillator Control Register 4	CPSRF FRA4	00h
0029h	High-Speed On-Chip Oscillator Control Register 4		When Shipping
002Ah 002Bh		FRA5 FRA6	When Shipping When Shipping
002Bh 002Ch	High-Speed On-Chip Oscillator Control Register 6	FKAD	when Shipping
002Ch 002Dh			
002Dh 002Eh			
002En 002Fh	High-Speed On-Chip Oscillator Control Register 3	FRA3	When shipping
002Fh 0030h	Voltage Monitor Circuit Control Register 3	CMPA	00h
0030h	Voltage Monitor Circuit Control Register	VCAC	00h
0031h	voltage monitor on our Luge Delect (Vegister	VCAC	
0032h	Voltage Detect Register 1	VCA1	00001000b
0033h	Voltage Detect Register 1	VCA1	0000100000 00h ⁽⁴⁾
		10/12	00100000b ⁽⁵⁾
0035h			
0036h	Voltage Detection 1 Level Select Register	VD1LS	00000111b
0037h			
0038h	Voltage Monitor 0 Circuit Control Register	VW0C	1100X010b ⁽⁴⁾
			1100X011b ⁽⁵⁾

X: Undefined Notes:

1.

The blank areas are reserved and cannot be accessed by users. The CWR bit in the RSTFR register is set to 0 after power-on and voltage monitor 0 reset. Hardware reset, software reset, or watchdog timer 2. reset does not affect this bit.

The CSPROINI bit in the OFS register is set to 0. 3.

The LVDAS bit in the OFS register is set to 1. 4.

5. The LVDAS bit in the OFS register is set to 0.

Address	Register	Symbol	After Reset
0180h	Timer RA Pin Select Register	TRASR	00h
0180h	Timer RB/RC Pin Select Register	TRBRCSR	00h
0181h	Timer RC Pin Select Register 0	TRCPSR0	00h
0183h	Timer RC Pin Select Register 0	TRCPSR0	00h
0183h 0184h	Timer RD Pin Select Register 0	TRDPSR0	00h
		TRDPSR0	
0185h	Timer RD Pin Select Register 1	_	00h
0186h	Timer Pin Select Register	TIMSR	00h
0187h		11000	
0188h	UARTO Pin Select Register	UOSR	00h
0189h	UART1 Pin Select Register	U1SR	00h
018Ah	UART2 Pin Select Register 0	U2SR0	00h
018Bh	UART2 Pin Select Register 1	U2SR1	00h
018Ch	SSU/IIC Pin Select Register	SSUIICSR	00h
018Dh			
018Eh	INT Interrupt Input Pin Select Register	INTSR	00h
018Fh	I/O Function Pin Select Register	PINSR	00h
0190h			
0191h			
0192h			
0193h	SS Bit Counter Register	SSBR	11111000b
0194h	SS Transmit Data Register L / IIC bus Transmit Data Register (2)	SSTDR / ICDRT	FFh
0195h	SS Transmit Data Register H (2)	SSTDRH	FFh
0196h	SS Receive Data Register L / IIC bus Receive Data Register (2)	SSRDR / ICDRR	FFh
0197h	SS Receive Data Register H ⁽²⁾	SSRDRH	FFh
0198h	SS Control Register H / IIC bus Control Register 1 ⁽²⁾	SSCRH / ICCR1	00h
0199h	SS Control Register L / IIC bus Control Register 2 ⁽²⁾	SSCRL / ICCR2	01111101b
019Ah	SS Mode Register / IIC bus Mode Register ⁽²⁾	SSMR / ICMR	00010000b / 00011000b
019Bh	SS Enable Register / IIC bus Interrupt Enable Register ⁽²⁾	SSER / ICIER	00h
019Ch	SS Status Register / IIC bus Status Register (2)	SSSR / ICSR	00h / 0000X000b
019Dh	SS Mode Register 2 / Slave Address Register (2)	SSMR2 / SAR	00h
019Eh			
019Fh			
01A0h			
01A1h			
01A2h			
01A3h			
01A4h			
01A5h			
01A6h			
01A7h			
01A8h			
01A9h			
01AAh	1		
01ABh			
01ACh			
01ADh	1		
01AEh	1		
01AFh			
01B0h	<u> </u>		
01B1h	<u> </u>		
01B2h	Flash Memory Status Register	FST	10000X00b
01B2h			
01B4h	Flash Memory Control Register 0	FMR0	00h
01B5h	Flash Memory Control Register 1	FMR1	00h
01B6h	Flash Memory Control Register 2	FMR2	00h
01B7h		1 11112	
01B8h	<u> </u>		
01B9h			-
01B9h	+		+
01BAn 01BBh	+		
01BDh	<u> </u>		+
01BDh	<u> </u>		
01BDh 01BEh			
01BEn 01BFh	+		

Table 4.7	SFR Information (7) ⁽¹⁾
Table 4.7	SFR Information (7)

X: Undefined Notes: 1. The blank areas are reserved and cannot be accessed by users. 2. Selectable by the IICSEL bit in the SSUIICSR register.

	()		
Address	Register	Symbol	After Reset
2C70h	DTC Control Data 6	DTCD6	XXh
2C71h			XXh
2C72h			XXh
2C73h			XXh
2C74h			XXh
2C75h	-		XXh
2C76h			XXh
2C77h			XXh
2C78h	DTC Control Data 7	DTCD7	XXh
		DICDI	
2C79h			XXh
2C7Ah			XXh
2C7Bh			XXh
2C7Ch			XXh
20701			
2C7Dh			XXh
2C7Eh			XXh
2C7Fh			XXh
	DTO O I ID I O	DTODO	
2C80h	DTC Control Data 8	DTCD8	XXh
2C81h			XXh
2C82h	1		XXh
2C83h	4		XXh
	-		
2C84h			XXh
2C85h			XXh
2C86h			XXh
2C80h	4		XXh
2C88h	DTC Control Data 9	DTCD9	XXh
2C89h			XXh
2C8Ah			XXh
2C8Bh			XXh
2C8Ch			XXh
2C8Dh			XXh
2C8Eh			XXh
2C8Fh			XXh
2C90h	DTC Control Data 10	DTCD10	XXh
2C91h			XXh
2C92h			XXh
2C93h			XXh
2C94h			XXh
	-		
2C95h			XXh
2C96h			XXh
2C97h			XXh
2C98h	DTC Control Data 11	DTCD11	XXh
		DICDII	
2C99h			XXh
2C9Ah			XXh
2C9Bh	1		XXh
	4		
2C9Ch	-		XXh
2C9Dh			XXh
2C9Eh			XXh
2C9Fh	1		XXh
	DTO Constant Data 40	DTOD40	
2CA0h	DTC Control Data 12	DTCD12	XXh
2CA1h			XXh
2CA2h	1		XXh
	4		
2CA3h	-		XXh
2CA4h			XXh
2CA5h]		XXh
2CA6h	1		XXh
	-		
2CA7h			XXh
2CA8h	DTC Control Data 13	DTCD13	XXh
2CA9h			XXh
	4		
2CAAh			XXh
2CABh			XXh
2CACh	1		XXh
2CADh	4		
	-		XXh
2CAEh			XXh
2CAFh	7		XXh

SFR Information (10)⁽¹⁾ Table 4.10

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

Table 4.12	SFR Information (12) ⁽¹⁾
------------	-------------------------------------

Address	Register	Symbol	After Reset
2CF0h	DTC Control Data 22	DTCD22	XXh
2CF1h			XXh
2CF2h			XXh
2CF3h			XXh
2CF4h			XXh
2CF5h			XXh
2CF6h			XXh
2CF7h			XXh
2CF8h	DTC Control Data 23	DTCD23	XXh
2CF9h			XXh
2CFAh			XXh
2CFBh			XXh
2CFCh			XXh
2CFDh			XXh
2CFEh			XXh
2CFFh			XXh
2D00h			
:		·	
2FFFh			

X: Undefined

Note: 1. The blank areas are reserved and cannot be accessed by users.

Table 4.13 ID Code Areas and Option Function Select Area

Address	Area Name	Symbol	After Reset
:		0.500	101.0
FFDBh	Option Function Select Register 2	OFS2	(Note 1)
: FFDFh			(Nata 2)
-FFDFN	ID1		(Note 2)
FFE3h	ID2		(Note 2)
:			
FFEBh	ID3		(Note 2)
:			
FFEFh	ID4		(Note 2)
:	125		
FFF3h	ID5		(Note 2)
: FFF7h	ID6		(Note 2)
	100		(Note 2)
FFFBh	ID7		(Note 2)
:			
FFFFh	Option Function Select Register	OFS	(Note 1)

Notes:

The option function select area is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the option function select area. If the block including the option function select area is erased, the option function select 1. area is set to FFh.

When blank products are shipped, the option function select area is set to FFh. It is set to the written value after written by the user.

When blank products are shipped, the option function select area is set to FFh. This is set to the written value area written by the user.
The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the ID code areas. If the block including the ID code areas is erased, the ID code areas are set to FFh. When blank products are shipped, the ID code areas are set to FFh. They are set to the written value after written by the user. When factory-programming products are shipped, the value of the ID code areas is the value programmed by the user.

Symbol	Parameter	Condition	Standard			Unit
	Falameter		Min.	Тур.	Max.	Unit
-	Resolution		-	-	8	Bit
-	Absolute accuracy		-	-	2.5	LSB
tsu	Setup time		-	-	3	μS
Ro	Output resistor		-	6	-	kΩ
l∨ref	Reference power input current	(Note 2)	-	-	1.5	mA

 Table 5.4
 D/A Converter Characteristics

Notes:

- 1. Vcc/AVcc = Vref = 2.7 to 5.5 V and $T_{opr} = -20$ to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.
- 2. This applies when one D/A converter is used and the value of the DAi register (i = 0 or 1) for the unused D/A converter is 00h. The resistor ladder of the A/D converter is not included.

Table 5.5 Comparator B Electrical Characteristics

Symbol	Parameter	Condition	Standard		Unit	
	Condition	Min.	Тур.	Max.	Unit	
Vref	IVREF1, IVREF3 input reference voltage		0	-	Vcc - 1.4	V
Vi	IVCMP1, IVCMP3 input voltage		-0.3	-	Vcc + 0.3	V
-	Offset		-	5	100	mV
ta	Comparator output delay time (2)	VI = Vref ± 100 mV	-	0.1	-	μs
ICMP	Comparator operating current	Vcc = 5.0 V	_	17.5	-	μΑ

Notes:

1. Vcc = 2.7 to 5.5 V, Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. When the digital filter is disabled.

Cumb ol	Parameter	Conditions	Standard			Unit
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
-	Program/erase endurance (2)		1,000 (3)	-	-	times
-	Byte program time		-	80	500	μs
-	Block erase time		-	0.3	-	S
td(SR-SUS)	Time delay from suspend request until suspend		-	-	5+CPU clock × 3 cycles	ms
_	Interval from erase start/restart until following suspend request		0	-	_	μS
-	Time from suspend until erase restart		-	-	30+CPU clock × 1 cycle	μS
td(CMDRST- READY)	Time from when command is forcibly terminated until reading is enabled		-	-	30+CPU clock × 1 cycle	μS
-	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		1.8	-	5.5	V
-	Program, erase temperature		0	-	60	°C
-	Data hold time ⁽⁷⁾	Ambient temperature = 55°C	20	-	-	year

Table 5.6 Flash Memory (Program ROM) Electrical Characteristics

Notes: 1. Vcc = 2.7 to 5.5 V and $T_{opr} = 0$ to 60°C, unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 1,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed). 4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

7. The data hold time includes time that the power supply is off or the clock is not supplied.

Symbol	Parameter	Conditions		Stand	ard	Unit
Symbol	Farameter	Conditions	Min.	Тур.	Max.	Onit
-	Program/erase endurance (2)		10,000 (3)	-	-	times
_	Byte program time (program/erase endurance \leq 1,000 times)		-	160	1,500	μs
-	Byte program time (program/erase endurance > 1,000 times)		-	300	1,500	μs
-	Block erase time (program/erase endurance ≤ 1,000 times)		-	0.2	1	S
_	Block erase time (program/erase endurance > 1,000 times)		-	0.3	1	S
td(SR-SUS)	Time delay from suspend request until suspend		-	-	5+CPU clock × 3 cycles	ms
-	Interval from erase start/restart until following suspend request		0	-	_	μS
-	Time from suspend until erase restart		-	-	30+CPU clock × 1 cycle	μs
td(CMDRST- READY)	Time from when command is forcibly terminated until reading is enabled		-	-	30+CPU clock × 1 cycle	μs
-	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		1.8	-	5.5	V
-	Program, erase temperature		-20 (7)	-	85	°C
-	Data hold time ⁽⁸⁾	Ambient temperature = 55 °C	20	-	-	year

Table 5.7 Flash Memory (Data flash Block A to Block D) Electrical Characteristics

Notes:

1. Vcc = 2.7 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

- nowever, the same address must not be programmed more than once per erase operation (overwriting prohibited).

Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
 In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. In addition, averaging the erasure endurance between blocks A to D can further reduce the actual erasure endurance. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

- 7. -40°C for D version.
- 8. The data hold time includes time that the power supply is off or the clock is not supplied.

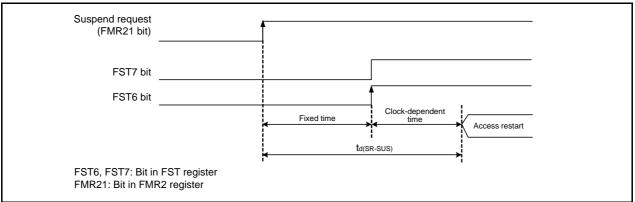


Figure 5.2 Time delay until Suspend

^{2.} Definition of programming/erasure endurance

Symbol	Parameter	Condition		Standard		
Symbol	Falalletei	Condition	Min.	Тур.	Max.	Unit
Vdet0	Voltage detection level Vdet0_0 (2)		1.80	1.90	2.05	V
	Voltage detection level Vdet0_1 ⁽²⁾		2.15	2.35	2.50	V
	Voltage detection level Vdet0_2 (2)		2.70	2.85	3.05	V
	Voltage detection level Vdet0_3 ⁽²⁾		3.55	3.80	4.05	V
-	Voltage detection 0 circuit response time (4)	At the falling of Vcc from 5 V to (Vdet0_0 - 0.1) V	-	6	150	μs
-	Voltage detection circuit self power consumption	VCA25 = 1, Vcc = 5.0 V	-	1.5	-	μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μS

Table 5.8	Voltage Detection 0 Circuit Electrical Characteristics
	Voltage Deteotion & Onean Electrical Onalabteristics

Notes:

1. The measurement condition is Vcc = 1.8 V to 5.5 V and $T_{opr} = -20$ to 85°C (N version) / -40 to 85°C (D version).

2. Select the voltage detection level with bits VDSEL0 and VDSEL1 in the OFS register.

3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.

4. Time until the voltage monitor 0 reset is generated after the voltage passes Vdet0.

Table 5.9	Voltage Detection 1 Circuit Electrical Characteristics
	Voltage Detection i Oneun Electrical Onaracteristics

Symbol	Parameter	Condition	Standard		Unit	
Symbol	Falainetei	Condition	Min.	Тур.	Max.	
Vdet1	Voltage detection level Vdet1_0 ⁽²⁾	At the falling of Vcc	2.00	2.20	2.40	V
	Voltage detection level Vdet1_1 ⁽²⁾	At the falling of Vcc	2.15	2.35	2.55	V
	Voltage detection level Vdet1_2 ⁽²⁾	At the falling of Vcc	2.30	2.50	2.70	V
	Voltage detection level Vdet1_3 ⁽²⁾	At the falling of Vcc	2.45	2.65	2.85	V
	Voltage detection level Vdet1_4 (2)	At the falling of Vcc	2.60	2.80	3.00	V
	Voltage detection level Vdet1_5 ⁽²⁾	At the falling of Vcc	2.75	2.95	3.15	V
	Voltage detection level Vdet1_6 ⁽²⁾	At the falling of Vcc	2.85	3.10	3.40	V
	Voltage detection level Vdet1_7 (2)	At the falling of Vcc	3.00	3.25	3.55	V
	Voltage detection level Vdet1_8 ⁽²⁾	At the falling of Vcc	3.15	3.40	3.70	V
	Voltage detection level Vdet1_9 ⁽²⁾	At the falling of Vcc	3.30	3.55	3.85	V
	Voltage detection level Vdet1_A ⁽²⁾	At the falling of Vcc	3.45	3.70	4.00	V
	Voltage detection level Vdet1_B ⁽²⁾	At the falling of Vcc	3.60	3.85	4.15	V
	Voltage detection level Vdet1_C ⁽²⁾	At the falling of Vcc	3.75	4.00	4.30	V
	Voltage detection level Vdet1_D (2)	At the falling of Vcc	3.90	4.15	4.45	V
	Voltage detection level Vdet1_E ⁽²⁾	At the falling of Vcc	4.05	4.30	4.60	V
	Voltage detection level Vdet1_F ⁽²⁾	At the falling of Vcc	4.20	4.45	4.75	V
-	Hysteresis width at the rising of Vcc in voltage detection 1 circuit	Vdet1_0 to Vdet1_5 selected	-	0.07	-	V
		Vdet1_6 to Vdet1_F selected	_	0.10	-	V
-	Voltage detection 1 circuit response time ⁽³⁾	At the falling of Vcc from 5 V to (Vdet1_0 – 0.1) V	-	60	150	μS
-	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	_	1.7	-	μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽⁴⁾		-	-	100	μS

Notes:

1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr = -20 to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version).

2. Select the voltage detection level with bits VD1S0 to VD1S3 in the VD1LS register.

3. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.

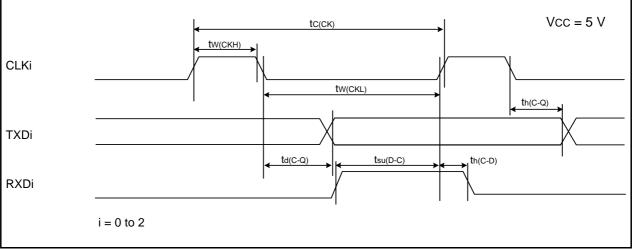
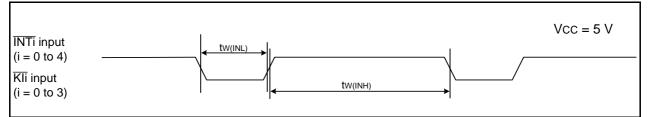

4. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

Table 5.21 Serial Interfac	е
----------------------------	---

Symbol	Parameter	Standard		Unit
	Parameter	Min.	Max.	Unit
tc(CK)	CLKi input cycle time	200	-	ns
tw(ckh)	CLKi input "H" width	100	-	ns
tW(CKL)	CLKi input "L" width	100	-	ns
td(C-Q)	TXDi output delay time	-	50	ns
th(C-Q)	TXDi hold time	0	-	ns
tsu(D-C)	RXDi input setup time	50	-	ns
th(C-D)	RXDi input hold time	90	-	ns

i = 0 to 2

Figure 5.10 Serial Interface Timing Diagram when Vcc = 5 V


Table 5.22 External Interrupt \overline{INTi} (i = 0 to 4) Input, Key Input Interrupt \overline{KIi} (i = 0 to 3)


Symbol	Symbol Parameter Standar		dard	Unit
Symbol			Max.	Unit
tw(INH)	INTi input "H" width, Kli input "H" width	250 (1)	-	ns
tw(INL)	INTi input "L" width, Kli input "L" width	250 ⁽²⁾	_	ns

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

Table 5.27 Serial Interface	Table 5.27	Serial Interface
-----------------------------	------------	------------------

Symbol	Parameter	Standard		Unit
	Parameter		Max.	
tc(CK)	CLKi input cycle time	300	-	ns
tW(CKH)	CLKi input "H" width	150	-	ns
tW(CKL)	CLKi Input "L" width	150	-	ns
td(C-Q)	TXDi output delay time	-	80	ns
th(C-Q)	TXDi hold time	0	-	ns
tsu(D-C)	RXDi input setup time	70	-	ns
th(C-D)	RXDi input hold time	-	ns	

i = 0 to 2

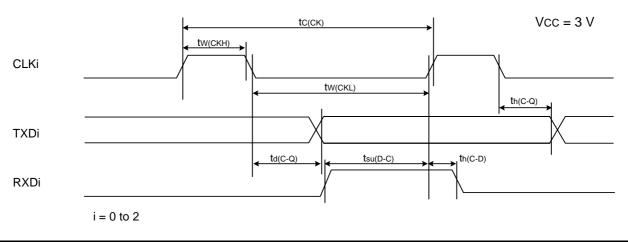


Figure 5.14 Serial Interface Timing Diagram when Vcc = 3 V

Table 5.28 External Interrupt INTi (i = 0 to 4) Input, Key Input Interrupt Kli (i = 0 to 3)

Symbol	Parameter	Stan	dard	Unit	
	Falameter	Min.	Max.	Unit	
tw(INH)	INTi input "H" width, Kli input "H" width	380 (1)	-	ns	
tw(INL)	L) INTi input "L" width, Kli input "L" width 380 ⁽²⁾				

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

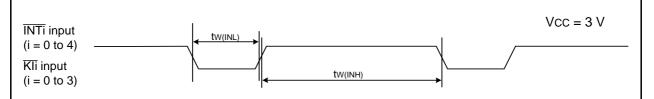
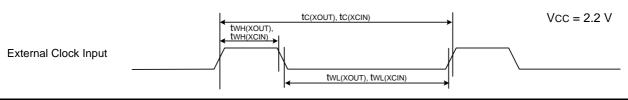


Figure 5.15 Input Timing Diagram for External Interrupt \overline{INTi} and Key Input Interrupt \overline{KIi} when Vcc = 3 V

Symbol	Dor	Parameter		22	S	tandard	rd U		
Symbol			Conditio	Condition		Тур.	Max.	Onit	
Vон	Output "H" voltage	Other than XOUT	Drive capacity High	Iон = -2 mA	Vcc - 0.5	I	Vcc	V	
			Drive capacity Low	Iон = -1 mA	Vcc - 0.5	I	Vcc	V	
		XOUT		Іон = -200 μА	1.0	-	Vcc	V	
Vol	Output "L" voltage	Other than XOUT	Drive capacity High	IoL = 2 mA	-	-	0.5	V	
			Drive capacity Low	IoL = 1 mA	-	-	0.5	V	
		XOUT		IoL = 200 μA	-	-	0.5	V	
VT+-VT-	XOUI Hysteresis INT0, INT1, INT2, INT3, INT4, KI0, KI1, KI2, KI3, TRAIO, TRBO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRDIOA0, TRDIOB0, TRDIOC0, TRDIOD0, TRDIOC1, TRDIOD1, TRCTRG, RXD0, RXD1, RXD2, CLK0, CLK1, CLK2, SSI, SCL, SDA, SSO				0.05	0.2	_	V	
Ін	Input "H" current		VI = 2.2 V, Vcc = 2.2	2 V	_	_	4.0	μA	
lı∟	Input "L" current		VI = 0 V, Vcc = 2.2 V		-	-	-4.0	μA	
Rpullup	Pull-up resistance		VI = 0 V, Vcc = 2.2 V	/	70	140	300	kΩ	
RfXIN	Feedback resistance	XIN			-	0.3	-	MΩ	
Rfxcin	Feedback resistance	XCIN			-	8	-	MΩ	
Vram	RAM hold voltage		During stop mode		1.8	-	-	V	

Table 5.29	Electrical Characteristics (5) [1.8 V \leq Vcc $<$ 2.7 V]
------------	---

Note:


1. $1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$ and $\text{T}_{opr} = -20 \text{ to } 85^{\circ}\text{C}$ (N version) / -40 to 85°C (D version), f(XIN) = 5 MHz, unless otherwise specified.

Timing Requirements (Unless Otherwise Specified: Vcc = 2.2 V, Vss = 0 V at Topr = 25°C)

Table 5.31 External Clock Input (XOUT, XCIN)

Symbol	Parameter	Standard		Unit
Symbol	Falanielei	Min. Max.	Unit	
tc(XOUT)	XOUT input cycle time	200	-	ns
twh(xout)	XOUT input "H" width	90	-	ns
twl(xout)	XOUT input "L" width	90	-	ns
tc(XCIN)	XCIN input cycle time	14	-	μS
twh(xcin)	XCIN input "H" width	7	-	μS
twl(xcin)	XCIN input "L" width 7 –			

Figure 5.16 External Clock Input Timing Diagram when Vcc = 2.2 V

Table 5.32 TRAIO Input

Symbol	Parameter	Standard		Unit
	Falanielei	Min. Max	Max.	Offic
tc(TRAIO)	TRAIO input cycle time	500	-	ns
twh(traio)	TRAIO input "H" width	200	=	ns
twl(traio)	TRAIO input "L" width 200 -			

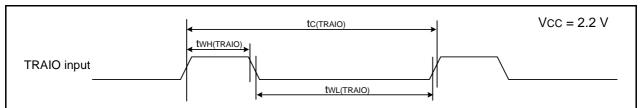


Figure 5.17 TRAIO Input Timing Diagram when Vcc = 2.2 V

Symbol	Parameter	Standard		Unit
	Parameter		Max.	
tc(CK)	CLKi input cycle time	800	-	ns
tW(CKH)	CLKi input "H" width	400	-	ns
tW(CKL)	CLKi input "L" width	400	-	ns
td(C-Q)	TXDi output delay time	-	200	ns
th(C-Q)	TXDi hold time	0	-	ns
tsu(D-C)	RXDi input setup time	150	-	ns
th(C-D)	RXDi input hold time 90 -			

i = 0 to 2

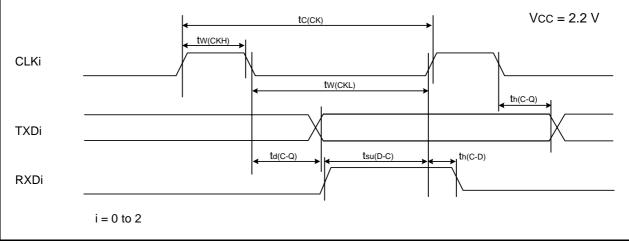


Figure 5.18 Serial Interface Timing Diagram when Vcc = 2.2 V

Table 5.34 External Interrupt INTi (i = 0 to 4) Input, Key Input Interrupt Kli (i = 0 to 3)

Symbol	Parameter	Stan	Standard	
	Falallelel	Min.	Max.	Unit
tw(INH)	INTi input "H" width, Kli input "H" width	1000 (1)	-	ns
tw(INL)	L) INTi input "L" width, Kli input "L" width 1000 ⁽²⁾			

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

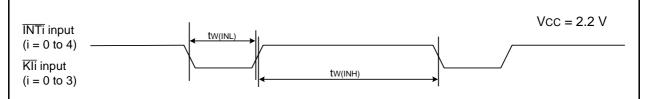
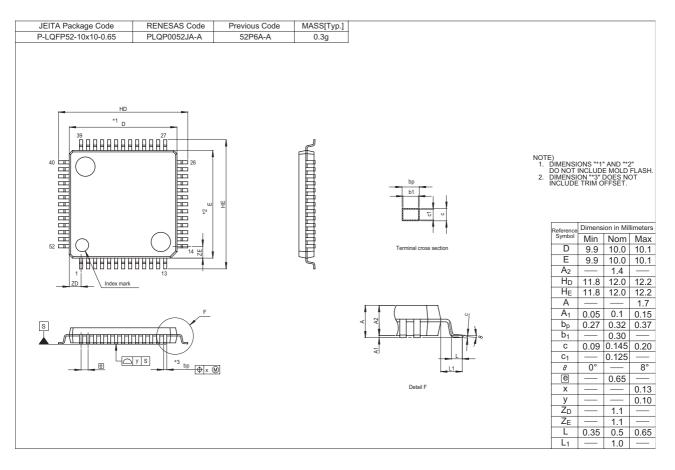



Figure 5.19 Input Timing Diagram for External Interrupt \overline{INTi} and Key Input Interrupt \overline{Kli} when Vcc = 2.2 V

Package Dimensions

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Electronics website.

REVISION HISTORY	R8C/35C Group Datasheet
-------------------------	-------------------------

Г

Rev. Da	Data	Description		
	Dale	Page	Summary	
0.10	Sep. 01, 2009	-	First Edition issued	
1.00	Aug. 24, 2010	All	"Preliminary" and "Under development" deleted	
		4	Table1.3 revised	
		27 to 53	5. Electrical Characteristics added	

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
 not access these addresses; the correct operation of LSI is not guaranteed if they are
 accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renease Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renease Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product for which the soften where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product of soften an application categorized as "Specific" for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product of uses of any expression product of the prior written consent of Renesas Electronics.
- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools
- personal electronic equipment; and industrial robots.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically
 designed for life support.
- "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renease Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renease Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renease Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renease Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renease Electronics Corpog GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renease Electronics Corpog Const Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renease Electronics (Shanghai) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-10-2825-1155, Fras: +86-21-6837-7859 Renease Electronics (Shanghai) Co., Ltd. 10n1 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 Renease Electronics Hong Kong Limited Unit 1801-1613, 16/F., Towre 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +86-28475-9800, Fax: +868 2-9607-988 Renease Electronics Singapore Pte. Ltd. 7r, No. 363 Fu Shing North Road Taipei, Taiwan Tel: +86-2457-9800, Fax: +868 2-9175-9670 Renease Electronics Malagyia Sdn.Btd. 11 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +65-6273-6900, Fax: +868 2-9175-9670 Renease Electronics Malagyia Sdn.Btd. 11 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +65-6273-9300, Fax: +868-29175-9570 Renease Electronics Malagyia Sdn.Btd. 11 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +65-6273-9300, Fax: +868-29755-9510 Renease Electronics Konea Co., Ltd. 11-, Samik Lavied or Billogi, 720-2 Veoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea