E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 7x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	16-UFQFN Exposed Pad
Supplier Device Package	16-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl03z32vfg4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1. Functional block diagram

1 Ratings

1.1 Thermal handling ratings

Table 1. Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	—	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.2 Moisture handling ratings

Table 2. Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	—	3		1

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.3 ESD handling ratings

Table 3. ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105 °C	-100	+100	mA	3

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

 Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

5

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{LVW3H}	Level 3 falling (LVWV = 10)	2.82	2.90	2.98	V	
V _{LVW4H}	• Level 4 falling (LVWV = 11)	2.92	3.00	3.08	v	
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range	_	±60	_	mV	
V _{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	
	Low-voltage warning thresholds — low range					1
V _{LVW1L}	 Level 1 falling (LVWV = 00) 	1.74	1.80	1.86	v	
V _{LVW2L}	 Level 2 falling (LVWV = 01) 	1.84	1.90	1.96	v	
V _{LVW3L}	• Level 3 falling (LVWV = 10)	1.94	2.00	2.06	v	
V _{LVW4L}	• Level 4 falling (LVWV = 11)	2.04	2.10	2.16	v	
V _{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range	_	±40	_	mV	_
V _{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	—
t _{LPO}	Internal low power oscillator period — factory trimmed	900	1000	1100	μs	_

Table 6. V_{DD} supply LVD and POR operating requirements (continued)

1. Rising thresholds are falling threshold + hysteresis voltage

2.2.3 Voltage and current operating behaviors Table 7. Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — Normal drive pad (except RESET)				1, 2
	• 2.7 V ≤ V _{DD} ≤ 3.6 V, I _{OH} = −5 mA	V _{DD} – 0.5	—	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -2.5 \text{ mA}$	V _{DD} – 0.5	—	V	
V _{OH}	Output high voltage — High drive pad (except RESET)				1, 2
	• 2.7 V ≤ V _{DD} ≤ 3.6 V, I _{OH} = −20 mA	V _{DD} – 0.5	—	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -10 \text{ mA}$	V _{DD} – 0.5	_	V	
I _{OHT}	Output high current total for all ports	—	100	mA	—
V _{OL}	Output low voltage — Normal drive pad				1
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 5 mA	_	0.5	v	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 2.5 mA	—	0.5	V	
V _{OL}	Output low voltage — High drive pad				1

Symbol	Description	Min.	Тур.	Max.	Unit	Note
	VLLS3 → RUN					—
		—	93	104	μs	
	VLPS → RUN					
		—	7.5	8	μs	
	 STOP → RUN 					_
		_	7.5	8	μs	

 Table 8. Power mode transition operating behaviors (continued)

1. Normal boot (FTFA_FOPT[LPBOOT]=11).

2.2.5 Power consumption operating behaviors

Table 9. KL03 QFN packages power consumption operating behaviors

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
I _{DDA}	Analog supply current		—	See note	mA	2
I _{DD_RUNCO}	Running CoreMark in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, $V_{DD} = 3.0 \text{ V}$					3
	• at 25 °C	—	5.49	5.71	mA	
	• at 105 °C	—	5.62	5.84		
I _{DD_RUNCO}	Running While(1) loop in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, V _{DD} = 3.0 V					3
	• at 25 °C	—	5.16	5.37	mA	
	• at 105 °C	—	5.27	5.48		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock disable 48 MHz core/24 MHz flash. $V_{DD} = 3.0 V$					3
	• at 25 °C	—	6.03	6.27	mA	
	• at 105 °C	—	6.16	6.41		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in flash all peripheral clock disable, 24 MHz core/12 MHz flash. $V_{DD} = 3.0 V$					3
	• at 25 °C	—	3.71	3.86	mA	
	• at 105 °C	—	3.81	3.96		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock disable 12 MHz core/6 MHz flash, V _{DD} = 3.0 V					3
	• at 25 °C	—	2.47	2.57	mA	
	• at 105 °C	—	2.58	2.68		

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock enable 48 MHz core/24 MHz flash, $V_{DD} = 3.0 V$		0.40	0.00		3
	• at 25 °C • at 105 °C	_	6.43 6.56	6.69 6.82	mA	
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in flash all peripheral clock disable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V • at 25 °C		5.71	5.94	mA	
	• at 105 °C	_	5.82	6.05		
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in Flash all peripheral clock disable, 24 MHz core/12 MHz flash, $V_{DD} = 3.0$ V					
	• at 25 °C		3.3	3.43	mA	
	• at 105 °C		3.4	3.54		
I _{DD_RUN}	Run mode current—48M HIRC mode, Running While(1) loop in Flash all peripheral clock disable, 12 MHz core/6 MHz flash, $V_{DD} = 3.0$ V					_
	• at 25 °C		2.28	2.37	mA	
	• at 105 °C		2.38	2.48		
I _{DD_RUN}	Run mode current—48M HIRC mode, Running While(1) loop in Flash all peripheral clock enable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	61	6 34	mA	_
	• at 105 °C	_	6.22	6.47		
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in SRAM all peripheral clock disable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	3.14	3.23	mA	
	• at 105 °C	_	3.27	3.36		
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in SRAM all peripheral clock enable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V					
	• at 25 °C	—	3.54	3.63	mA	
	• at 105 °C	—	3.67	3.76		
I _{DD_VLPRCO}	Very-low-power run While(1) loop in flash in compute operation mode— 2 MHz LIRC mode, 2 MHz core/0.5 MHz flash, $V_{DD} = 3.0 V$		500	750		_
	Verv-low-power-run While(1) loop in SRAM in		500	730	μΑ	
VLPRCO	compute operation mode— 8 MHz LIRC mode, 4 MHz core / 1 MHz flash, $V_{DD} = 3.0 V$	_	199	017		
		—	100	217	μΑ	

Table 9.	KL03 QFN pa	ckages power	consumption o	perating b	behaviors (continued)
----------	-------------	--------------	---------------	------------	-------------	------------

Table 9. KL03 QFN packages power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
I _{DD_VLLS0}	Very-low-leakage stop mode 0 current all peripheral disabled (SMC_STOPCTRL[PORPO]					4
	= 1) at 3 V • at 25 °C and below	—	77	350		
	• at 50 °C	—	255	465.70	nA	
	● at 85 °C	—	1640	1994		
	• at 105 °C	—	4080	4956		

- 1. The maximum values represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).
- 2. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.
- 3. MCG_Lite configured for HIRC mode. CoreMark benchmark compiled using IAR 7.10 with optimization level high, optimized for balanced.
- 4. No brownout

Table 10. KL03 WLCSP package power consumption operating behaviors

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
I _{DDA}	Analog supply current	—	_	See note	mA	2
I _{DD_RUNCO}	Running CoreMark in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, V _{DD} = 3.0 V					3
	• at 25 °C	—	5.49	5.71	mA	
	• at 85 °C	_	5.59	5.81		
I _{DD_RUNCO}	Running While(1) loop in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, V _{DD} = 3.0 V					3
	• at 25 °C	_	5.16	5.37	mA	
	• at 85 °C	_	5.24	5.45		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock disable 48 MHz core/24 MHz flash, $V_{DD} = 3.0 V$					3
	• at 25 °C	—	6.03	6.27	mA	
	• at 85 °C	_	6.13	6.38		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in flash all peripheral clock disable, 24 MHz core/12 MHz flash, $V_{DD} = 3.0 V$					3
	• at 25 °C	_	3.71	3.86	mA	
	• at 85 °C	_	3.78	3.93		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock disable					3
		_	2.47	2.57	mA	

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
	• at 25 °C	—	2.55	2.65		
	• at 85 °C					
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock enable 48 MHz core/24 MHz flash, V _{DD} = 3.0 V					3
	• at 25 °C	—	6.43	6.69	mA	
	• at 85 °C	_	6.53	6.79		
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in flash all peripheral clock disable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V		5.71	5.94	mA	_
	• at 25 °C	_	5.79	6.02		
	• at 85 °C					
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in Flash all peripheral clock disable, 24 MHz core/12 MHz flash, V _{DD} = 3.0					_
	V	—	3.3	3.43	mA	
	• at 85 °C	_	3.37	3.50		
I _{DD_RUN}	Run mode current—48M HIRC mode, Running While(1) loop in Flash all peripheral clock disable, 12 MHz core/6 MHz flash, V _{DD} = 3.0 V • at 25 °C		2.28	2.37	mA	
	• at 85 °C	_	2.35	2.44		
I _{DD_RUN}	Run mode current—48M HIRC mode, Running While(1) loop in Flash all peripheral clock enable, 48 MHz core/24 MHz flash, V _{DD} = 3.0					
		_	6.1	6.34	mA	
	• at 85 °C	_	6.19	6.44		
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in SRAM all peripheral clock disable, 48 MHz core/24 MHz flash, V _{DD} = 3.0					_
	V • at 25 °C		3.14	3.23	mA	
	• at 85 °C	_	3.24	3.33		
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in SRAM all peripheral clock enable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	3.54	3.63	mA	_
	• at 85 °C		3.04	3.73		

Table 10. KL03 WLCSP package power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
	• at 50 °C	—	3.45	3.96		
	• at 85 °C					
I _{DD_VLLS3}	Very-low-leakage stop mode 3 current with RTC current, at 3.0 V • at 25 °C and below	_	1.47	1.56	μA	
	• at 50 °C	-	1.82	1.94		
	• at 85 °C	_	3.93	4.44		
I _{DD_VLLS3}	Very-low-leakage stop mode 3 current with RTC current, at 1.8 V • at 25 °C and below	_	1.33	1.42	μA	_
	• at 50 °C	-	1.65	1.77		
	• at 85 °C	-	3.56	4.07		
I _{DD_VLLS1}	Very-low-leakage stop mode 1 current all peripheral disabled at 3.0 V • at 25 °C and below	_	566 788	690 839		
	• at 50°C		2270	2600	nΔ	
	• at 85°C			2000	10.0	
I _{DD_VLLS1}	Very-low-leakage stop mode 1 current RTC enabled at 3.0 V • at 25 °C and below	_	969	1059		_
	• at 50°C	-	1200	1251		
	• at 85°C	_	2740	3070	nA	
I _{DD_VLLS1}	Very-low-leakage stop mode 1 current RTC enabled at 1.8 V • at 25 °C and below	_	826	916		
	• at 50°C		0400	0700	~^	
	• at 85°C	_	2400	2730	nA	
I _{DD_VLLS0}	Very-low-leakage stop mode 0 current all peripheral disabled (SMC_STOPCTRL[PORPO] = 0) at 3.0 V • at 25 °C and below • at 50 °C • at 85 °C		265 467 1920	373 512.9 2256	nA	_
I _{DD_VLLS0}	Very-low-leakage stop mode 0 current all peripheral disabled					4
	(SMC_STOPCTRL[PORPO] = 1) at 3 V • at 25 °C and below	_	77	350		
	• at 50 °C	_	255	465.70	nA	
	• at 85 °C	_	1640	1994		

Table 10. KL03 WLCSP package power consumption operating behaviors (continued)

Figure 3. Run mode supply current vs. core frequency (loop located in flash)

Figure 5. VLPR mode current vs. core frequency (loop in SRAM)

2.2.6 EMC radiated emissions operating behaviors

 Table 12. EMC radiated emissions operating behaviors for 24-pin QFN package

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	5	dBµV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50–150	7	dBµV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	5	dBµV	
V _{RE4}	Radiated emissions voltage, band 4	500–1000	5	dBµV	
V _{RE_IEC}	IEC/SAE level	0.15–1000	Ν	_	2, 3

- 1. Determined according to IEC 61967-2 (and SAE J1752/3) radiated radio frequency (RF) emissions measurement standard. Typical Configuration: Appendix B: DUT Software Configuration—2. Typical Configuration.
- 2. V_{DD} = 3.3 V, T_A = 25 °C, f_{irc48m} = 48 MHz, f_{SYS} = 48 MHz, f_{BUS} = 24 MHz

- The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN or from VLPR.
- 2. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin.

2.3.2 General switching specifications

These general-purpose specifications apply to all signals configured for GPIO and UART signals.

Description	Min.	Max.	Unit	Notes
GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	—	Bus clock cycles	1
External RESET and NMI pin interrupt pulse width — Asynchronous path	100		ns	2
GPIO pin interrupt pulse width — Asynchronous path	16	—	ns	2
Port rise and fall time	—	36	ns	3

Table 15. General switching specifications

1. The greater synchronous and asynchronous timing must be met.

2. This is the shortest pulse that is guaranteed to be recognized.

3. 75 pF load

2.4 Thermal specifications

2.4.1 Thermal operating requirements

Table 16. Thermal operating requirements of WLCSP package

Symbol	Description	Min.	Max.	Unit
TJ	Die junction temperature	-40	95	°C
T _A	Ambient temperature	-40	85	۵°

Table 17.	Thermal operating	requirements of	other packages
-----------	-------------------	-----------------	----------------

Symbol	Description	Min.	Max.	Unit
TJ	Die junction temperature	-40	125	°C
T _A	Ambient temperature	-40	105	°C

Figure 9. Typical ENOB vs. ADC_CLK for 12-bit single-ended mode

3.6.2 CMP and 6-bit DAC electrical specifications Table 31. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit		
V _{DD}	Supply voltage	1.71	—	3.6	V		
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	_	_	Max. 3.6 200 20 VDD 20 0.5	μA		
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	_	_	— 20 μ — Υρρ Υ			
V _{AIN}	Analog input voltage	V _{SS} – 0.3	_	V _{DD}	V		
V _{AIO}	Analog input offset voltage	_	_	20	mV		
V _H	Analog comparator hysteresis ¹						
	• CR0[HYSTCTR] = 00	—	5	_	mV		
	 CR0[HYSTCTR] = 01 	—	10	_	mV		
	 CR0[HYSTCTR] = 10 	—	20	_	mV		
	CR0[HYSTCTR] = 11	—	30		mV		
V _{CMPOh}	Output high	V _{DD} – 0.5	—	_	V		
V _{CMPOI}	Output low	_	_	0.5	V		
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns		
t _{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns		
	Analog comparator initialization delay ²	_	_	40	μs		

Peripheral operating requirements and behaviors

Table 31.	Comparator and	6-bit DAC electrica	I specifications	(continued)
-----------	----------------	---------------------	------------------	-------------

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DAC6b}	6-bit DAC current adder (enabled)	—	7	—	μA
INL	6-bit DAC integral non-linearity	-0.5	—	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3	—	0.3	LSB

^{1.} Typical hysteresis is measured with input voltage range limited to 0.6 to V_{DD} -0.6 V.

- Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.
- 3. $1 \text{ LSB} = V_{\text{reference}}/64$

Figure 10. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)

Peripheral operating requirements and behaviors

Num.	Symbol	Description	Min.	Max.	Unit	Note
5	twspsck	Clock (SPSCK) high or low time	t _{periph} – 30	1024 x t _{periph}	ns	_
6	t _{SU}	Data setup time (inputs)	96	—	ns	—
7	t _{HI}	Data hold time (inputs)	0	—	ns	—
8	t _v	Data valid (after SPSCK edge)	—	52	ns	_
9	t _{HO}	Data hold time (outputs)	0	—	ns	—
10	t _{RI}	Rise time input	—	t _{periph} – 25	ns	_
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	_	36	ns	_
	t _{FO}	Fall time output				

Table 37.	SPI master mode timing	on slew rate enabled	pads ((continued))
-----------	------------------------	----------------------	--------	-------------	---

- 1. For SPI0, f_{periph} is the bus clock (f_{BUS}).
- 2. $t_{periph} = 1/f_{periph}$

1. If configured as an output.

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 12. SPI master mode timing (CPHA = 0)

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	_	ns	2
3	t _{Lead}	Enable lead time	1	—	t _{periph}	—
4	t _{Lag}	Enable lag time	1	_	t _{periph}	—
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} – 30	—	ns	_
6	t _{SU}	Data setup time (inputs)	2	—	ns	—
7	t _{HI}	Data hold time (inputs)	7	_	ns	—
8	t _a	Slave access time	—	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	—	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	—	122	ns	—
11	t _{HO}	Data hold time (outputs)	0		ns	
12	t _{RI}	Rise time input	—	t _{periph} – 25	ns	
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	_	36	ns	—
	t _{FO}	Fall time output				

Table 39. SPI slave mode timing on slew rate enabled pads

1. For SPI0, f_{periph} is the bus clock (f_{BUS}).

- 2.
- $t_{periph} = 1/f_{periph}$ Time to data active from high-impedance state 3.
- 4. Hold time to high-impedance state

Figure 14. SPI slave mode timing (CPHA = 0)

Figure 15. SPI slave mode timing (CPHA = 1)

3.8.2 Inter-Integrated Circuit Interface (I2C) timing Table 40. I2C timing

Characteristic	Symbol	Standard Mode		Fast Mode ¹		Unit
		Minimum	Maximum	Minimum	Maximum	
SCL Clock Frequency	f _{SCL}	0	100	0	400 ²	kHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	4	_	0.6	_	μs
LOW period of the SCL clock	t _{LOW}	4.7	—	1.3	_	μs
HIGH period of the SCL clock	t _{HIGH}	4	—	0.6	_	μs
Set-up time for a repeated START condition	t _{SU} ; STA	4.7	_	0.6	_	μs
Data hold time for I ² C bus devices	t _{HD} ; DAT	0 ³	3.45 ⁴	0 ⁵	0.9 ³	μs
Data set-up time	t _{SU} ; DAT	250 ⁶	—	100 ⁴ , ⁷	_	ns
Rise time of SDA and SCL signals	t _r	_	1000	20 +0.1C _b ⁸	300	ns
Fall time of SDA and SCL signals	t _f	—	300	20 +0.1C _b ⁷	300	ns
Set-up time for STOP condition	t _{SU} ; STO	4	—	0.6	_	μs
Bus free time between STOP and START condition	t _{BUF}	4.7	—	1.3	_	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	N/A	N/A	0	50	ns

1. Fast mode is fully supported on all pins at VDD > 2.7 V. If VDD < 2.7 V, only pins that support high drive strength can support fast mode with maximum bus loading.

Dimensions

- 2. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can only achieved when using the High drive pins (see Voltage and current operating behaviors) or when using the Normal drive pins and VDD ≥ 2.7 V
- The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
 acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL
 lines.
- 4. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
- 5. Input signal Slew = 10 ns and Output Load = 50 pF
- 6. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
- 7. A Fast mode I²C bus device can be used in a Standard mode I2C bus system, but the requirement t_{SU; DAT} ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line t_{rmax} + t_{SU; DAT} = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification) before the SCL line is released.
- 8. C_b = total capacitance of the one bus line in pF.

Figure 16. Timing definition for fast and standard mode devices on the I²C bus

3.8.3 UART

See General switching specifications.

4 Dimensions

4.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to **freescale.com** and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
16-pin QFN	98ASA00525D
24-pin QFN	98ASA00602D
20-pin WLCSP	98ASA00676D

Figure 19. KL03 16-pin QFN pinout diagram

6 Ordering parts

6.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to **freescale.com** and perform a part number search for the following device numbers:

7 Part identification

7.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

8.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

8.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown current	10	70	130	μΑ

8.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:

Revision history

8.9 Typical value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

 Table 42.
 Typical value conditions

Symbol	Description Value		Unit	
T _A	Ambient temperature	25	٥C	
V _{DD}	3.3 V supply voltage	3.3	V	

9 Revision history

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
3.1	07/2014	Initial public release.
4	08/2014	Changed pinout signal names ADC0_SE5, ADC0_SE6, and ADC0_SE12 to ADC0_SE8, ADC0_SE9 and ADC0_SE15 respectively.

Table 43. Revision history