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Figure 2 shows the undershoot and overshoot voltage on the MPC7448.

Figure 2. Overshoot/Undershoot Voltage

The MPC7448 provides several I/O voltages to support both compatibility with existing systems and 
migration to future systems. The MPC7448 core voltage must always be provided at the nominal voltage 
(see Table 4). The input voltage threshold for each bus is selected by sampling the state of the voltage 
select pins at the negation of the signal HRESET. The output voltage will swing from GND to the 
maximum voltage applied to the OVDD power pins. Table 3 provides the input threshold voltage settings. 
Because these settings may change in future products, it is recommended that BVSEL[0:1] be configured 
using resistor options, jumpers, or some other flexible means, with the capability to reconfigure the 
termination of this signal in the future, if necessary.

Table 3. Input Threshold Voltage Setting

BVSEL0 BVSEL1 I/O Voltage Mode1 Notes

0 0 1.8 V 2, 3

0 1 2.5 V 2, 4

1 0 1.5 V 2

1 1 2.5 V 4

Notes:
1. Caution: The I/O voltage mode selected must agree with the OVDD voltages 

supplied. See Table 4.

2. If used, pull-down resistors should be less than 250 Ω.

3. The pin configuration used to select 1.8V mode on the MPC7448 is not compatible 
with the pin configuration used to select 1.8V mode on the MPC7447A and earlier 
devices.

4. The pin configuration used to select 2.5V mode on the MPC7448 is fully compatible 
with the pin configuration used to select 2.5V mode on the MPC7447A and earlier 
devices.

VIH

GND
GND – 0.3 V

GND – 0.7 V
Not to Exceed 10%

OVDD + 20%

VIL

OVDD

OVDD + 5%

of tSYSCLK
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Table 7 provides the power consumption for the MPC7448 part numbers described by this document; see 
Section 11.1, “Part Numbers Fully Addressed by This Document,” for information regarding which part 
numbers are described by this document. Freescale also offers MPC7448 part numbers that meet lower 
power consumption specifications by adhering to lower core voltage and core frequency specifications. 
For more information on these devices, including references to the MPC7448 Hardware Specification 
Addenda that describe these devices, see Section 11.2, “Part Numbers Not Fully Addressed by This 
Document.” 

The power consumptions provided in Table 7 represent the power consumption of each speed grade when 
operated at the rated maximum core frequency (see Table 8). Freescale sorts devices by power as well as 
by core frequency, and power limits for each speed grade are independent of each other. Each device is 
tested at its maximum core frequency only. (Note that Deep Sleep Mode power consumption is 
independent of clock frequency.) Operating a device at a frequency lower than its rated maximum is fully 
supported provided the clock frequencies are within the specifications given in Table 8, and a device 
operated below its rated maximum will have lower power consumption. However, inferences should not 
be made about a device’s power consumption based on the power specifications of another (lower) speed 
grade. For example, a 1700 MHz device operated at 1420 MHz may not exhibit the same power 
consumption as a 1420 MHz device operated at 1420 MHz. 

For all MPC7448 devices, the following guidelines on the use of these parameters for system design are 
suggested. The Full-Power Mode–Typical value represents the sustained power consumption of the device 

High-impedance (off-state) leakage current:
Vin = OVDD 
Vin = GND

— ITSI —
 50

– 50

µA 2, 3, 4

Output high voltage @ IOH = –5 mA 1.5 VOH OVDD – 0.45 — V

1.8 OVDD – 0.45 —

2.5 1.8 —

Output low voltage @ IOL = 5 mA 1.5 VOL — 0.45 V

1.8 — 0.45

2.5 — 0.6

Capacitance,
Vin = 0 V, f = 1 MHz

All inputs Cin — 8.0 pF 5

Notes: 

1. Nominal voltages; see Table 4 for recommended operating conditions.

2. All I/O signals are referenced to OVDD.

3. Excludes test signals and IEEE Std. 1149.1 boundary scan (JTAG) signals

4. The leakage is measured for nominal OVDD and VDD, or both OVDD and VDD must vary in the same direction (for 
example, both OVDD and VDD vary by either +5% or –5%).

5. Capacitance is periodically sampled rather than 100% tested. 

6. These pins have internal pull-up resistors. 

Table 6. DC Electrical Specifications (continued)
At recommended operating conditions. See Table 4. 

Characteristic
Nominal Bus

Voltage 1
Symbol Min Max Unit Notes
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when running a typical benchmark at temperatures in a typical system. The Full-Power Mode–Thermal 
value is intended to represent the sustained power consumption of the device when running a typical code 
sequence at high temperature and is recommended to be used as the basis for designing a thermal solution; 
see Section 9.7, “Power and Thermal Management Information” for more information on thermal 
solutions. The Full-Power Mode–Maximum value is recommended to be used for power supply design 
because this represents the maximum peak power draw of the device that a power supply must be capable 
of sourcing without voltage droop. For information on power consumption when dynamic frequency 
switching is enabled, see Section 9.7.5, “Dynamic Frequency Switching (DFS).” 

Table 7. Power Consumption for MPC7448 at Maximum Rated Frequency

Die Junction 
Temperature 

(Tj)

Maximum Processor Core Frequency (Speed Grade, MHz)
Unit Notes

1000 MHz 1420 MHz 1600 MHz 1700 MHz

Full-Power Mode

Typical 65 •CC 15.0 19.0 20.0 21.0 W 1, 2

Thermal 105 •CC 18.6 23.3 24.4 25.6 W 1, 5

Maximum 105 •CC 21.6 27.1 28.4 29.8 W 1, 3

Nap Mode

Typical 105 •CC 11.1 11.8 13.0 13.0 W 1, 6

Sleep Mode

Typical 105 •CC 10.8 11.4 12.5 12.5 W 1, 6

Deep Sleep Mode (PLL Disabled)

Typical 105 •CC 10.4 11.0 12.0 12.0 W 1, 6

Notes: 
1. These values specify the power consumption for the core power supply (VDD) at nominal voltage and apply to all valid 

processor bus frequencies and configurations. The values do not include I/O supply power (OVDD) or PLL supply power 
(AVDD). OVDD power is system dependent but is typically < 5% of VDD power. Worst case power consumption for 
AVDD < 13 mW. Freescale also offers MPC7448 part numbers that meet lower power consumption specifications; for 
more information on these devices, see Section 11.2, “Part Numbers Not Fully Addressed by This Document.”

2. Typical power consumption is an average value measured with the processor operating at its rated maximum processor 
core frequency (except for Deep Sleep Mode), at nominal recommended VDD (see Table 4) and 65°C while running the 
Dhrystone 2.1 benchmark and achieving 2.3 Dhrystone MIPs/MHz. This parameter is not 100% tested but periodically 
sampled.b 

3. Maximum power consumption is the average measured with the processor operating at its rated maximum processor core 
frequency, at nominal VDD and maximum operating junction temperature (see Table 4) while running an entirely 
cache-resident, contrived sequence of instructions to keep all the execution units maximally busy.

4. Doze mode is not a user-definable state; it is an intermediate state between full-power and either nap or sleep mode. As 
a result, power consumption for this mode is not tested.

5. Thermal power consumption is an average value measured at the nominal recommended VDD (see Table 4) and 105 °C 
while running the Dhrystone 2.1 benchmark and achieving 2.3 Dhrystone MIPs/MHz. This parameter is not 100% tested 
but periodically sampled.

6. Typical power consumption for these modes is measured at the nominal recommended VDD (see Table 4) and 105 °C in 
the mode described. This parameter is not 100% tested but is periodically sampled.
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SYSCLK to output high impedance (all except TS, ARTRY, 
SHD0, SHD1)

tKHOZ — 1.8 ns 5

SYSCLK to TS high impedance after precharge tKHTSPZ — 1 tSYSCLK 3, 4, 5

Maximum delay to ARTRY/SHD0/SHD1 precharge tKHARP — 1 tSYSCLK 3, 5, 6, 7

SYSCLK to ARTRY/SHD0/SHD1 high impedance after 
precharge

tKHARPZ — 2 tSYSCLK 3, 5, 6, 7

Notes: 
1. All input specifications are measured from the midpoint of the signal in question to the midpoint of the rising edge of the input 

SYSCLK. All output specifications are measured from the midpoint of the rising edge of SYSCLK to the midpoint of the signal 
in question. All output timings assume a purely resistive 50-Ω load (see Figure 4). Input and output timings are measured at 
the pin; time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

2. The symbology used for timing specifications herein follows the pattern of t(signal)(state)(reference)(state) for inputs and 
t(reference)(state)(signal)(state) for outputs. For example, tIVKH symbolizes the time input signals (I) reach the valid state (V) 
relative to the SYSCLK reference (K) going to the high (H) state or input setup time. And tKHOV symbolizes the time from 
SYSCLK(K) going high (H) until outputs (O) are valid (V) or output valid time. Input hold time can be read as the time that the 
input signal (I) went invalid (X) with respect to the rising clock edge (KH) (note the position of the reference and its state for 
inputs) and output hold time can be read as the time from the rising edge (KH) until the output went invalid (OX).

3. tsysclk is the period of the external clock (SYSCLK) in ns. The numbers given in the table must be multiplied by the period of 
SYSCLK to compute the actual time duration (in ns) of the parameter in question.

4. According to the bus protocol, TS is driven only by the currently active bus master. It is asserted low and precharged high 
before returning to high impedance, as shown in Figure 6. The nominal precharge width for TS is tSYSCLK, that is, one clock 
period. Since no master can assert TS on the following clock edge, there is no concern regarding contention with the 
precharge. Output valid and output hold timing is tested for the signal asserted. Output valid time is tested for precharge.The 
high-impedance behavior is guaranteed by design.

5. Guaranteed by design and not tested

6. According to the bus protocol, ARTRY can be driven by multiple bus masters through the clock period immediately following 
AACK. Bus contention is not an issue because any master asserting ARTRY will be driving it low. Any master asserting it low 
in the first clock following AACK will then go to high impedance for a fraction of a cycle, then negated for up to an entire cycle 
(crossing a bus cycle boundary) before being three-stated again. The nominal precharge width for ARTRY is 1.0 tSYSCLK; 
that is, it should be high impedance as shown in Figure 6 before the first opportunity for another master to assert ARTRY. 
Output valid and output hold timing is tested for the signal asserted.The high-impedance behavior is guaranteed by design.

7. According to the MPX bus protocol, SHD0 and SHD1 can be driven by multiple bus masters beginning two cycles after TS. 
Timing is the same as ARTRY, that is, the signal is high impedance for a fraction of a cycle, then negated for up to an entire 
cycle (crossing a bus cycle boundary) before being three-stated again. The nominal precharge width for SHD0 and SHD1 is 
1.0 tSYSCLK. The edges of the precharge vary depending on the programmed ratio of core to bus (PLL configurations).

8. BMODE[0:1] and BVSEL[0:1] are mode select inputs. BMODE[0:1] are sampled before and after HRESET negation. 
BVSEL[0:1] are sampled before HRESET negation. These parameters represent the input setup and hold times for each 
sample. These values are guaranteed by design and not tested. BMODE[0:1] must remain stable after the second sample; 
BVSEL[0:1] must remain stable after the first (and only) sample. See Figure 5 for sample timing.

Table 9. Processor Bus AC Timing Specifications1 (continued)
At recommended operating conditions. See Table 4.

Parameter Symbol 2
All Speed Grades

Unit Notes
Min Max
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Figure 4 provides the AC test load for the MPC7448.

Figure 4. AC Test Load

Figure 5 provides the BMODE[0:1] input timing diagram for the MPC7448. These mode select inputs are 
sampled once before and once after HRESET negation.

Figure 5. BMODE[0:1] Input Sample Timing Diagram

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω

HRESET

BMODE[0:1]

VM = Midpoint Voltage (OVDD/2)

SYSCLK

1st Sample 2nd Sample

VM VM
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5.2.3 IEEE Std. 1149.1 AC Timing Specifications
Table 10 provides the IEEE Std. 1149.1 (JTAG) AC timing specifications as defined in Figure 8 through 
Figure 11.

Table 10. JTAG AC Timing Specifications (Independent of SYSCLK)1

At recommended operating conditions. See Table 4.

Parameter Symbol Min Max Unit Notes

TCK frequency of operation fTCLK 0 33.3 MHz

TCK cycle time tTCLK 30 — ns

TCK clock pulse width measured at 1.4 V tJHJL 15 — ns

TCK rise and fall times tJR and tJF — 2 ns

TRST assert time tTRST 25 — ns 2

Input setup times:
Boundary-scan data
TMS, TDI 

tDVJH
tIVJH

4
0

—
—

ns 3

Input hold times:
Boundary-scan data
TMS, TDI 

tDXJH
tIXJH

20
25

—
—

ns 3

Valid times:
Boundary-scan data
TDO

tJLDV
tJLOV

4
4

20
25

ns 4

Output hold times:
Boundary-scan data
TDO

tJLDX
tJLOX

30
30

—
—

ns 4

TCK to output high impedance:
Boundary-scan data
TDO

tJLDZ
tJLOZ

3
3

19
9

ns 4, 5

Notes: 
1. All outputs are measured from the midpoint voltage of the falling/rising edge of TCLK to the midpoint of the signal in question. 

The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Figure 7). 
Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

2. TRST is an asynchronous level sensitive signal. The time is for test purposes only.

3. Non-JTAG signal input timing with respect to TCK.

4. Non-JTAG signal output timing with respect to TCK.

5. Guaranteed by design and characterization.
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Figure 11 provides the test access port timing diagram.

Figure 11. Test Access Port Timing Diagram

5.3 Voltage and Frequency Derating
Voltage and frequency derating is no longer supported for part numbers described by this document 
beginning with datecode 0613. (See Section 11, “Part Numbering and Marking,” for information on date 
code markings.) It is supported by some MPC7448 part numbers which target low-power applications; see 
Section 11.2, “Part Numbers Not Fully Addressed by This Document” and the referenced MPC7448 
Hardware Specification Addenda for more information on these low-power devices. For those devices 
which previously supported this feature, information has been archived in the Chip Errata for the 
MPC7448 (document order no. MPC7448CE). 

VMTCK

TDI, TMS

TDO Output Data Valid

VM = Midpoint Voltage (OVDD/2)

tIXJH
tIVJH

tJLOV

tJLOZ

Input
Data Valid

TDO Output Data Valid

tJLOX

VM
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7 Pinout Listings
Table 11 provides the pinout listing for the MPC7448, 360 HCTE package. The pinouts of the MPC7448 
and MPC7447A are compatible, but the requirements regarding the use of the additional power and ground 
pins have changed. The MPC7448 requires these pins be connected to the appropriate power or ground 
plane to achieve high core frequencies; see Section 9.3, “Connection Recommendations,” for additional 
information. As a result, these pins should be connected in all new designs.

Additionally, the MPC7448 may be populated on a board designed for a MPC7447 (or MPC7445 or 
MPC7441), provided the core voltage can be made to match the requirements in Table 4 and all pins 
defined as ‘no connect’ for the MPC7447 are unterminated, as required by the MPC7457 RISC 
Microprocessor Hardware Specifications. The MPC7448 uses pins previously marked ‘no connect’ for the 
temperature diode pins and for additional power and ground connections. The additional power and 
ground pins are required to achieve high core frequencies and core frequency will be limited if they are 
not connected; see Section 9.3, “Connection Recommendations,” for additional information. Because 
these ‘no connect’ pins in the MPC7447 360 pin package are not driven in functional mode, an MPC7447 
can be populated in an MPC7448 board. 

NOTE

Caution must be exercised when performing boundary scan test operations 
on a board designed for an MPC7448, but populated with an MPC7447 or 
earlier device. This is because in the MPC7447 it is possible to drive the 
latches associated with the former ‘no connect’ pins in the MPC7447, 
potentially causing contention on those pins. To prevent this, ensure that 
these pins are not connected on the board or, if they are connected, ensure 
that the states of internal MPC7447 latches do not cause these pins to be 
driven during board testing. 

For the MPC7448, pins that were defined as the TEST[0:4] factory test signal group on the MPC7447A 
and earlier devices have been assigned new functions. For most of these, the termination recommendations 
for the TEST[0:4] pins of the MPC7447A are compatible with the MPC7448 and will allow correct 
operation with no performance loss. The exception is BVSEL1 (TEST3 on the MPC7447A and earlier 
devices), which may require a different termination depending which I/O voltage mode is desired; see 
Table 3 for more information.

NOTE

This pinout is not compatible with the MPC750, MPC7400, or MPC7410 
360 BGA package.
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Table 11. Pinout Listing for the MPC7448, 360 HCTE Package

Signal Name Pin Number Active I/O Notes

A[0:35] E11, H1, C11, G3, F10, L2, D11, D1, C10, G2, D12, L3, G4, T2, F4, V1, 
J4, R2, K5, W2, J2, K4, N4, J3, M5, P5, N3, T1, V2, U1, N5, W1, B12, 
C4, G10, B11

High I/O 2

AACK R1 Low Input

AP[0:4] C1, E3, H6, F5, G7 High I/O 2

ARTRY N2 Low I/O 3

AVDD A8 — Input

BG M1 Low Input

BMODE0 G9 Low Input 4

BMODE1 F8 Low Input 5

BR D2 Low Output

BVSEL0 B7 High Input 1, 6

BVSEL1 E10 High Input 1, 20

CI J1 Low Output

CKSTP_IN A3 Low Input

CKSTP_OUT B1 Low Output

CLK_OUT H2 High Output

D[0:63] R15, W15, T14, V16, W16, T15, U15, P14, V13, W13, T13, P13, U14, 
W14, R12, T12, W12, V12, N11, N10, R11, U11, W11, T11, R10, N9, 
P10, U10, R9, W10, U9, V9, W5, U6, T5, U5, W7, R6, P7, V6, P17, R19, 
V18, R18, V19, T19, U19, W19, U18, W17, W18, T16, T18, T17, W3, 
V17, U4, U8, U7, R7, P6, R8, W8, T8

High I/O

DBG M2 Low Input

DFS2 A12 Low Input 20, 21

DFS4 B6 Low Input 12, 20, 21

DP[0:7] T3, W4, T4, W9, M6, V3, N8, W6 High I/O

DRDY R3 Low Output 7

DTI[0:3] G1, K1, P1, N1 High Input 8

EXT_QUAL A11 High Input 9

GBL E2 Low I/O

GND B5, C3, D6, D13, E17, F3, G17, H4, H7, H9, H11, H13, J6, J8, J10, J12, 
K7, K3, K9, K11, K13, L6, L8, L10, L12, M4, M7, M9, M11, M13, N7, P3, 
P9, P12, R5, R14, R17, T7, T10, U3, U13, U17, V5, V8, V11, V15

— —

GND A17, A19, B13, B16, B18, E12, E19, F13, F16, F18, G19, H18, J14, L14, 
M15, M17, M19, N14, N16, P15, P19

— — 15

GND_SENSE G12, N13 — — 19

HIT B2 Low Output 7

HRESET D8 Low Input

INT D4 Low Input

L1_TSTCLK G8 High Input 9

L2_TSTCLK B3 High Input 10
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8.2 Mechanical Dimensions for the MPC7448, 360 HCTE BGA
Figure 13 provides the mechanical dimensions and bottom surface nomenclature for the MPC7448, 360 
HCTE BGA package.

Figure 13. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC7448, 
360 HCTE BGA Package

NOTES:
1. Dimensioning and 

tolerancing per ASME 
Y14.5M, 1994

2. Dimensions in millimeters.
3. Top side A1 corner index is a 

metalized feature with 
various shapes. Bottom side 
A1 corner is designated with 
a ball missing from the array.
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8.4 Mechanical Dimensions for the MPC7448, 360 HCTE LGA
Figure 13 provides the mechanical dimensions and bottom surface nomenclature for the MPC7448, 360 
HCTE LGA package.

Figure 14. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC7448, 
360 HCTE LGA Package

NOTES:
1. Dimensioning and 

tolerancing per ASME 
Y14.5M, 1994

2. Dimensions in millimeters
3. Top side A1 corner index is a 

metalized feature with 
various shapes. Bottom side 
A1 corner is designated with 
a pad missing from the array.
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100110 11x 1x 733 825 913 1100 1467

000000 11.5x 1x 766 863 955 1150 1533

101110 12x 1x 600 800 900 996 1200 1600

111110 12.5x 1x 625 833 938 1038 1250 1667

010110 13x 1x 650 865 975 1079 1300

111000 13.5x 1x 675 900 1013 1121 1350

110010 14x 1x 700 933 1050 1162 1400

000110 15x 1x 750 1000 1125 1245 1500

110110 16x 1x 800 1066 1200 1328 1600

000010 17x 1x 850 1132 1275 1417 1700

001010 18x 1x 600 900 1200 1350 1500

001110 20x 1x 667 1000 1332 1500 1666

010010 21x 1x 700 1050 1399 1575

011010 24x 1x 800 1200 1600

111010 28x 1x 933 1400

001100 PLL bypass PLL off, SYSCLK clocks core circuitry directly

111100 PLL off PLL off, no core clocking occurs

Notes: 
1. PLL_CFG[0:5] settings not listed are reserved.

2. The sample bus-to-core frequencies shown are for reference only. Some PLL configurations may select bus, core, or VCO 
frequencies which are not useful, not supported, or not tested for by the MPC7448; see Section 5.2.1, “Clock AC 
Specifications,” for valid SYSCLK, core, and VCO frequencies. 

3. In PLL-bypass mode, the SYSCLK input signal clocks the internal processor directly and the PLL is disabled. However, the 
bus interface unit requires a 2x clock to function. Therefore, an additional signal, EXT_QUAL, must be driven at half the 
frequency of SYSCLK and offset in phase to meet the required input setup tIVKH and hold time tIXKH (see Table 9). The result 
will be that the processor bus frequency will be one-half SYSCLK, while the internal processor is clocked at SYSCLK 
frequency. This mode is intended for factory use and emulator tool use only. 
Note: The AC timing specifications given in this document do not apply in PLL-bypass mode.

4. In PLL-off mode, no clocking occurs inside the MPC7448 regardless of the SYSCLK input.

5. Applicable when DFS modes are disabled. These multipliers change when operating in a DFS mode. See Section 9.7.5, 
“Dynamic Frequency Switching (DFS)” for more information.

6. Bus-to-core multipliers less than 5x require that assertion of AACK be delayed by one or two bus cycles to allow the 
processor to generate a response to a snooped transaction. See the MPC7450 RISC Microprocessor Reference Manual for 
more information.

Table 12. MPC7448 Microprocessor PLL Configuration Example (continued)

PLL_CFG[0:5]

Example Core and VCO Frequency in MHz

Bus-to-Core 
Multiplier 5

Core-to-VCO 
Multiplier 5

Bus (SYSCLK) Frequency

33.3
MHz

50
MHz

66.6
MHz

75
MHz

83
MHz

100
MHz

133
MHz

167
MHz

200
MHz
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9.2.4 Decoupling Recommendations
Due to the MPC7448 dynamic power management feature, large address and data buses, and high 
operating frequencies, the MPC7448 can generate transient power surges and high frequency noise in its 
power supply, especially while driving large capacitive loads. This noise must be prevented from reaching 
other components in the MPC7448 system, and the MPC7448 itself requires a clean, tightly regulated 
source of power. Therefore, it is recommended that the system designer use sufficient decoupling 
capacitors, typically one capacitor for every VDD pin, and a similar amount for the OVDD pins, placed as 
close as possible to the power pins of the MPC7448. It is also recommended that these decoupling 
capacitors receive their power from separate VDD, OVDD, and GND power planes in the PCB, using short 
traces to minimize inductance.

These capacitors should have a value of 0.01 or 0.1 µF. Only ceramic surface mount technology (SMT) 
capacitors should be used to minimize lead inductance. Orientations where connections are made along 
the length of the part, such as 0204, are preferable but not mandatory. Consistent with the 
recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook of Black Magic 
(Prentice Hall, 1993) and contrary to previous recommendations for decoupling Freescale 
microprocessors, multiple small capacitors of equal value are recommended over using multiple values of 
capacitance.

In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, 
feeding the VDD and OVDD planes, to enable quick recharging of the smaller chip capacitors. These bulk 
capacitors should have a low equivalent series resistance (ESR) rating to ensure the quick response time 
necessary. They should also be connected to the power and ground planes through two vias to minimize 
inductance. Suggested bulk capacitors are 100–330 µF (AVX TPS tantalum or Sanyo OSCON).

9.3 Connection Recommendations
To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal 
level. Unless otherwise noted, unused active low inputs should be tied to OVDD and unused active high 
inputs should be connected to GND. All NC (no connect) signals must remain unconnected.

Power and ground connections must be made to all external VDD, OVDD, and GND pins in the MPC7448. 
For backward compatibility with the MPC7447, MPC7445, and MP7441, or for migrating a system 
originally designed for one of these devices to the MPC7448, the new power and ground signals (formerly 
NC, see Table 11) may be left unconnected if the core frequency is 1 GHz or less. Operation above 1 GHz 
requires that these additional power and ground signals be connected, and it is strongly recommended that 
all new designs include the additional connections. See also Section 7, “Pinout Listings,” for additional 
information.

The MPC7448 provides VDD_SENSE, OVDD_SENSE, and GND_SENSE pins. These pins connect 
directly to the power/ground planes in the device package and are intended to allow an external device to 
measure the voltage present on the VDD, OVDD and GND planes in the device package. The most common 
use for these signals is as a feedback signal to a power supply regulator to allow it to compensate for board 
losses and supply the correct voltage at the device. (Note that all voltage parameters are specified at the 
pins of the device.) If not used for this purpose, it is recommended that these signals be connected to test 
points that can be used in the event that an accurate measurement of the voltage at the device is needed 
during system debug. Otherwise, these signals should be connected to the appropriate power/ground 
planes on the circuit board or left unconnected.
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9.7.1 Internal Package Conduction Resistance
For the exposed-die packaging technology described in Table 5, the intrinsic conduction thermal resistance 
paths are as follows:

• The die junction-to-case thermal resistance (the case is actually the top of the exposed silicon die)

• The die junction-to-board thermal resistance

Figure 24 depicts the primary heat transfer path for a package with an attached heat sink mounted to a 
printed-circuit board.

Figure 24. C4 Package with Heat Sink Mounted to a Printed-Circuit Board

Heat generated on the active side of the chip is conducted through the silicon, through the heat sink attach 
material (or thermal interface material), and, finally, to the heat sink, where it is removed by forced-air 
convection.

Because the silicon thermal resistance is quite small, the temperature drop in the silicon may be neglected 
for a first-order analysis. Thus, the thermal interface material and the heat sink conduction/convective 
thermal resistances are the dominant terms.

9.7.2 Thermal Interface Materials
A thermal interface material is recommended at the package lid-to-heat sink interface to minimize the 
thermal contact resistance. For those applications where the heat sink is attached by spring clip 
mechanism, Figure 25 shows the thermal performance of three thin-sheet thermal-interface materials 
(silicone, graphite/oil, fluoroether oil), a bare joint, and a joint with thermal grease as a function of contact 
pressure. As shown, the performance of these thermal interface materials improves with increasing contact 
pressure. The use of thermal grease significantly reduces the interface thermal resistance. That is, the bare 
joint results in a thermal resistance approximately seven times greater than the thermal grease joint. 

Often, heat sinks are attached to the package by means of a spring clip to holes in the printed-circuit board 
(see Figure 22). Therefore, synthetic grease offers the best thermal performance due to the low interface 
pressure and is recommended due to the high power dissipation of the MPC7448. Of course, the selection 

External Resistance

External Resistance

Internal Resistance

Radiation Convection

Radiation Convection

Heat Sink

Printed-Circuit Board

Thermal Interface Material

Package/Leads
Die Junction
Die/Package

(Note the internal versus external package resistance.)
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Shin-Etsu MicroSi, Inc. 888-642-7674
10028 S. 51st St.
Phoenix, AZ 85044
Internet: www.microsi.com

Laird Technologies - Thermal 888-246-905
(formerly Thermagon Inc.)
4707 Detroit Ave.
Cleveland, OH 44102
Internet: www.lairdtech.com

The following section provides a heat sink selection example using one of the commercially available heat 
sinks.

9.7.3 Heat Sink Selection Example
For preliminary heat sink sizing, the die-junction temperature can be expressed as follows:

 Tj = Ti + Tr + (RθJC + Rθint + Rθsa) × Pd 

where:

Tj is the die-junction temperature 
Ti is the inlet cabinet ambient temperature
Tr is the air temperature rise within the computer cabinet
RθJC is the junction-to-case thermal resistance
Rθint is the adhesive or interface material thermal resistance
Rθsa is the heat sink base-to-ambient thermal resistance
Pd is the power dissipated by the device

During operation, the die-junction temperatures (Tj) should be maintained less than the value specified in 
Table 4. The temperature of air cooling the component greatly depends on the ambient inlet air temperature 
and the air temperature rise within the electronic cabinet. An electronic cabinet inlet-air temperature (Ti) 
may range from 30� to 40�C. The air temperature rise within a cabinet (Tr) may be in the range of 5� to 
10�C. The thermal resistance of the thermal interface material (Rθint) is typically about 1.1 �C/W. For 
example, assuming a Ti of 30�C, a Tr of 5�C, an HCTE package RθJC = 0.1, and a power consumption 
(Pd) of 25.6 W, the following expression for Tj is obtained:

Die-junction temperature: Tj = 30�C + 5�C + (0.1�C/W + 1.1�C/W + θsa) × 25.6

For this example, a Rθsavalue of 1.53 �C/W or less is required to maintain the die junction temperature 
below the maximum value of Table 4.

Though the die junction-to-ambient and the heat sink-to-ambient thermal resistances are a common 
figure-of-merit used for comparing the thermal performance of various microelectronic packaging 
technologies, one should exercise caution when only using this metric in determining thermal management 
because no single parameter can adequately describe three-dimensional heat flow. The final die-junction 
operating temperature is not only a function of the component-level thermal resistance, but the 
system-level design and its operating conditions. In addition to the component's power consumption, a 
number of factors affect the final operating die-junction temperature—airflow, board population (local 
heat flux of adjacent components), heat sink efficiency, heat sink attach, heat sink placement, next-level 
interconnect technology, system air temperature rise, altitude, and so on.
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Due to the complexity and variety of system-level boundary conditions for today's microelectronic 
equipment, the combined effects of the heat transfer mechanisms (radiation, convection, and conduction) 
may vary widely. For these reasons, we recommend using conjugate heat transfer models for the board as 
well as system-level designs.

For system thermal modeling, the MPC7448 thermal model is shown in Figure 26. Four volumes represent 
this device. Two of the volumes, solder ball-air and substrate, are modeled using the package outline size 
of the package. The other two, die and bump-underfill, have the same size as the die. The silicon die should 
be modeled 8.0 × 7.3 × 0.86 mm3 with the heat source applied as a uniform source at the bottom of the 
volume. The bump and underfill layer is modeled as 8.0 × 7.3 × 0.07 mm3collapsed in the z-direction with 
a thermal conductivity of 5.0 W/(m • K) in the z-direction. The substrate volume is 25 × 25 × 1.14 mm3 
and has 9.9 W/(m • K) isotropic conductivity in the xy-plane and 2.95 W/(m • K) in the direction of the 
z-axis. The solder ball and air layer are modeled with the same horizontal dimensions as the substrate and 
is 0.8 mm thick. For the LGA package the solder and air layer is 0.1 mm thick, but the material properties 
are the same. It can also be modeled as a collapsed volume using orthotropic material properties: 
0.034 W/(m • K) in the xy-plane direction and 11.2 W/(m • K) in the direction of the z-axis.

Figure 26. Recommended Thermal Model of MPC7448

Bump and Underfill

Die

Substrate

Solder and Air

Die

Substrate

Side View of Model (Not to Scale)

Top View of Model (Not to Scale)

x

y

z

Conductivity Value Unit

Die (8.0 × 7.3 × 0.86 mm3)

Silicon
Temperature- 

dependent
W/(m • K)

Bump and Underfill (8.0 × 7.3 × 0.07 mm3)

kz 5.0 W/(m • K)

Substrate (25 × 25 × 1.14 mm3)

kx 9.9 W/(m • K)

ky 9.9

kz 2.95

Solder Ball and Air (25 × 25 × 0.8 mm3)

kx 0.034 W/(m • K)

ky 0.034

kz 11.2
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Solving for T, the equation becomes:

9.7.5 Dynamic Frequency Switching (DFS)
The DFS feature in the MPC7448 adds the ability to divide the processor-to-system bus ratio by two or 
four during normal functional operation. Divide-by-two mode is enabled by setting the HID1[DFS2] bit 
in software or by asserting the DFS2 pin via hardware. The MPC7448 can be returned for full speed by 
clearing HID1[DFS2] or negating DFS2. Similarly, divide-by-four mode is enabled by setting 
HID1[DFS4] in software or by asserting the DFS4 pin. In all cases, the frequency change occurs in 1 clock 
cycle and no idle waiting period is required to switch between modes. Note that asserting either DFS2 or 
DFS4 overrides software control of DFS, and that asserting both DFS2 and DFS4 disables DFS 
completely, including software control. Additional information regarding DFS can be found in the 
MPC7450 RISC Microprocessor Family Reference Manual. Note that minimum core frequency 
requirements must be observed when enabling DFS, and the resulting core frequency must meet the 
requirements for fcore_DFS given in Table 8.

9.7.5.1 Power Consumption with DFS Enabled
Power consumption with DFS enabled can be approximated using the following formula:

Where:

PDFS = Power consumption with DFS enabled

fDFS = Core frequency with DFS enabled

f = Core frequency prior to enabling DFS

P = Power consumption prior to enabling DFS (see Table 7)

PDS = Deep sleep mode power consumption (see Table 7)

The above is an approximation only. Power consumption with DFS enabled is not tested or guaranteed.

9.7.5.2 Bus-to-Core Multiplier Constraints with DFS
DFS is not available for all bus-to-core multipliers as configured by PLL_CFG[0:5] during hard reset. The 
complete listing is shown in Table 16. Shaded cells represent DFS modes that are not available for a 
particular PLL_CFG[0:5] setting. Should software or hardware attempt to transition to a multiplier that is 
not supported, the device will remain at its current multiplier. For example, if a transition from 
DFS-disabled to an unsupported divide-by-2 or divide-by-4 setting is attempted, the bus-to-core multiplier 
will remain at the setting configured by the PLL_CFG[0:5] pins. In the case of an attempted transition from 
a supported divide-by-2 mode to an unsupported divide-by-4 mode, the device will remain in divide-by-2 
mode. In all cases, the HID1[PC0-5] bits will correctly reflect the current bus-to-core frequency multiplier.

 nT =   
 VH – VL__________

1.986 × 10–4

 PDFS =   (P – PDS)  + PDS
fDFS___

f
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2 Table 6: Added separate input leakage specification for BVSEL0, LSSD_MODE, TCK, TDI, TMS, TRST 
signals to correctly indicate leakage current for signals with internal pull-up resistors.

Section 5.1: Added paragraph preceding Table 7 and edited notes in Table 7 to clarify core frequencies at 
which power consumption is measured.

Section 5.3: Removed voltage derating specifications; this feature has been made redundant by new 
device offerings and is no longer supported.

Changed names of “Typical–Nominal” and “Typical–Thermal” power consumption parameters to “Typical” 
and “Thermal”, respectively. (Name change only–no specifications were changed.)

Table 11: Revised Notes 16, 18, and 19 to reflect current recommendations for connection of SENSE pins.

Section 9.3: Added paragraph explaining connection recommendations for SENSE pins. (See also Table 
11 entry above.)

Table 19: Updated table to reflect changes in specifications for MC7448xxnnnnNC devices.

Table 9: Changed all instances of TT[0:3] to TT[0:4]

Removed mention of these input signals from output valid times and output hold times:

 • AACK, CKSTP_IN, DT[0:3]
Figure 17: Modified diagram slightly to correctly show constraint on SYSCLK ramping is related to VDD 
voltage, not AVDD voltage. (Diagram clarification only; no change in power sequencing requirements.)

Added Table 20 to reflect introduction of extended temperature devices and associated hardware 
specification addendum.

1 Added 1600 MHz, 1420 MHz, and 1000 MHz devices

Section 4: corrected die size

Table 2: Revised Note 4 to consider overshoot/undershoot and combined with Note 5.

Table 4: Revised operating voltage for 1700 MHz device from ± 50 mV to +20 mV / –50 mV.

Table 7: Updated and expanded table to include Typical – Nominal power consumption.

Table 11: Added voltage derating information for 1700 MHz devices; this feature is not supported at this 
time for other speed grades.

Added transient specifications for VDD power supply in Section 9.2.3, added Table 15 and Figure 19 and 
renumbered subsequent tables and figures.

Moved Decoupling Recommendations from Section 9.4 to Section 9.2.4 and renumbered subsequent 
sections.

Section 9.2.1: Revised power sequencing requirements.

Section 9.7.4: Added thermal diode ideality factor information (previously TBD).

Table 17: Expanded table to show HID1 register values when DFS modes are enabled.

Section 11.2: updated to include additional N-spec device speed grades

Tables 18 and 19: corrected PVR values and added “MC” product code prefix

0 Initial public release.

Table 17. Document Revision History (continued)

 Revision Date Substantive Change(s)
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11.3 Part Marking
Parts are marked as the example shown in Figure 27.

Figure 27. Part Marking for BGA and LGA Device

Table 20. Part Numbers Addressed by MC7448TxxnnnnNx Series Hardware Specification Addendum
(Document Order No. MPC7448ECS02AD)

xx 7448 T xx nnnn N x

Product 
Code

Part 
Identifier

Specificatio
n Modifier

Package
Processor 
Frequency

Application 
Modifier

Revision Level

MC
PPC1

7448 T = Extended 
Temperature 

Device

HX = HCTE BGA 1400 N: 1.15 V ± 50 mV 
– 40 to 105 °C

C: 2.1; PVR = 0x8004_0201
D: 2.2; PVR = 0x8004_0202

1267
Revision C only

N: 1.1 V ± 50 mV 
– 40 to 105 °C

1267
Revision D only

N: 1.05 V ± 50 mV 
– 40 to 105 °C

1000 N: 1.0 V ± 50 mV 
– 40 to 105 °C

Notes: 
1. The P prefix in a Freescale part number designates a “Pilot Production Prototype” as defined by Freescale SOP 3-13. 

These parts have only preliminary reliability and characterization data. Before pilot production prototypes can be shipped, 
written authorization from the customer must be on file in the applicable sales office acknowledging the qualification status 
and the fact that product changes may still occur as pilot production prototypes are shipped.

Notes:

YWWLAZ is the assembly traceability code.

AWLYYWW is the test code, where YYWW is the date code (YY = year, WW = work week)
MMMMMM is the M00 (mask) number.

xx7448
xxnnnnNx

AWLYYWW
MMMMMM
YWWLAZ

7448

BGA/LGA
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