

Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Obsolete
Core Processor	PowerPC G4
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	1.4GHz
Co-Processors/DSP	Multimedia; SIMD
RAM Controllers	-
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	1.5V, 1.8V, 2.5V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	360-BCBGA, FCCBGA
Supplier Device Package	360-FCCBGA (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmc7448hx1400nd

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Comparison with the MPC7447A, MPC7447, MPC7445, and MPC7441

Table 1. Microarchitecture Comparison (continued)

Microarchitectural Specs	MPC7448	MPC7447A	MPC7447	MPC7445	MPC7441		
Execution Unit Tin	nings (Latency-Th	roughput)	- 1		I.		
Aligned load (integer, float, vector)			3-1, 4-1, 3-1				
Misaligned load (integer, float, vector)		4-2, 5-2, 4-2					
L1 miss, L2 hit latency with ECC (data/instruction)	12/16		_	_			
L1 miss, L2 hit latency without ECC (data/instruction)	11/15		9/1	3			
SFX (add, sub, shift, rot, cmp, logicals)		ļ.	1-1				
Integer multiply (32 \times 8, 32 \times 16, 32 \times 32)			4-1, 4-1, 5-2				
Scalar float			5-1				
VSFX (vector simple)			1-1				
VCFX (vector complex)			4-1				
VFPU (vector float)			4-1				
VPER (vector permute)			2-1				
	MMUs						
TLBs (instruction and data)		12	28-entry, 2-wa	ay			
Tablewalk mechanism		Har	dware + softw	vare			
Instruction BATs/data BATs	8/8	8/8	8/8	8/8	4/4		
L1 I Cache	e/D Cache Feature	es		I.	L		
Size			32K/32K				
Associativity			8-way				
Locking granularity			Way				
Parity on I cache			Word				
Parity on D cache			Byte				
Number of D cache misses (load/store)	5/2		5/	1			
Data stream touch engines		l .	4 streams				
On-Chip	Cache Features						
Cache level			L2				
Size/associativity	1-Mbyte/ 8-way	512-Kby	rte/8-way	256-Kby	te/8-way		
Access width		l .	256 bits				
Number of 32-byte sectors/line	2		2				
Parity tag	Byte		By	te			
Parity data	Byte						
Data ECC	64-bit						
The	rmal Control	•					
Dynamic frequency switching divide-by-two mode	Yes	Yes	No	No	No		
Dynamic frequency switching divide-by-four mode	Yes	No	No	No	No		
Thermal diode	Yes	Yes	No	No	No		

Table 4 provides the recommended operating conditions for the MPC7448 part numbers described by this document; see Section 11.1, "Part Numbers Fully Addressed by This Document," for more information. See Section 9.2, "Power Supply Design and Sequencing" for power sequencing requirements.

Table 4. Recommended Operating Conditions¹

				Rec	ommen	ded Valı	ıe			Unit	Notes	
	Characteristic	Symbol	1000	MHz	1420) MHz	1600) MHz	1700) MHz	Oiiii	Notes
			Min	Max	Min	Max	Min	Max	Min	Max		
Core suppl	y voltage	V _{DD}	1.15 V	± 50 mV	1.2 V ±	± 50 mV	1.25 V	± 50 mV		/ +20/) mV	٧	3, 4, 5
PLL supply	voltage	AV _{DD}	1.15 V	± 50 mV	1.2 V ±	± 50 mV	1.25 V	± 50 mV		/ +20/) mV	V	2, 3, 4
Processor	I/O Voltage Mode = 1.5 V	OV_{DD}	1.5 V	' ± 5%	1.5 V	' ± 5%	1.5 V	' ± 5%	1.5 V	' ± 5%	٧	4
bus supply	I/O Voltage Mode = 1.8 V		1.8 V	' ± 5%	1.8 V	' ± 5%	1.8 V	' ± 5%	1.8 V	' ± 5%		4
voltage	I/O Voltage Mode = 2.5 V		2.5 V	' ± 5%	2.5 V	' ± 5%	2.5 V	' ± 5%	2.5 V	' ± 5%		4
Input	Processor bus	V _{in}	GND	OV_{DD}	GND	OV_{DD}	GND	OV_{DD}	GND	OV_{DD}	٧	
voltage	JTAG signals	V _{in}	GND	OV_{DD}	GND	OV_{DD}	GND	OV_{DD}	GND	OV_{DD}		
Die-junction	n temperature	Tj	0	105	0	105	0	105	0	105	•C	6

Notes:

- 1. These are the recommended and tested operating conditions.
- 2. This voltage is the input to the filter discussed in Section 9.2.2, "PLL Power Supply Filtering," and not necessarily the voltage at the AV_{DD} pin, which may be reduced from V_{DD} by the filter.
- 3. Some early devices supported voltage and frequency derating whereby VDD (and AVDD) could be reduced to reduce power consumption. This feature has been superseded and is no longer supported. See Section 5.3, "Voltage and Frequency Derating," for more information.
- 4. Caution: Power sequencing requirements must be met; see Section 9.2, "Power Supply Design and Sequencing".
- 5. Caution: See Section 9.2.3, "Transient Specifications" for information regarding transients on this power supply.
- 6. For information on extended temperature devices, see Section 11.2, "Part Numbers Not Fully Addressed by This Document."

Electrical and Thermal Characteristics

Table 5 provides the package thermal characteristics for the MPC7448. For more information regarding thermal management, see Section 9.7, "Power and Thermal Management Information."

Table 5. Package Thermal Characteristics¹

Characteristic	Symbol	Value	Unit	Notes
Junction-to-ambient thermal resistance, natural convection, single-layer (1s) board	$R_{\theta JA}$	26	•C/W	2, 3
Junction-to-ambient thermal resistance, natural convection, four-layer (2s2p) board	$R_{\theta JMA}$	19	•C/W	2, 4
Junction-to-ambient thermal resistance, 200 ft/min airflow, single-layer (1s) board	$R_{\theta JMA}$	22	•C/W	2, 4
Junction-to-ambient thermal resistance, 200 ft/min airflow, four-layer (2s2p) board	$R_{\theta JMA}$	16	•C/W	2, 4
Junction-to-board thermal resistance	$R_{\theta JB}$	11	•C/W	5
Junction-to-case thermal resistance	$R_{\theta JC}$	< 0.1	•C/W	6

Notes:

- 1. Refer to Section 9.7, "Power and Thermal Management Information," for details about thermal management.
- 2. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal resistance.
- 3. Per JEDEC JESD51-2 with the single-layer board horizontal
- 4. Per JEDEC JESD51-6 with the board horizontal
- 5. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 6. This is the thermal resistance between die and case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the calculated case temperature. The actual value of R_{θJC} for the part is less than 0.1°C/W.

Table 6 provides the DC electrical characteristics for the MPC7448.

Table 6. DC Electrical Specifications

At recommended operating conditions. See Table 4.

Characteristic	Nominal Bus Voltage ¹	Symbol	Min	Max	Unit	Notes
Input high voltage	1.5	V _{IH}	$OV_{DD} \times 0.65$	OV _{DD} + 0.3	V	2
(all inputs)	1.8		$OV_{DD} \times 0.65$	OV _{DD} + 0.3		
	2.5		1.7	OV _{DD} + 0.3		
Input low voltage	1.5	V _{IL}	-0.3	$OV_{DD} \times 0.35$	V	2
(all inputs)	1.8		-0.3	$OV_{DD} \times 0.35$		
	2.5		-0.3	0.7		
Input leakage current, all signals except BVSEL0, LSSD_MODE, TCK, TDI, TMS, TRST:	_	I _{in}	_		μA	2, 3
$V_{in} = OV_{DD}$ $V_{in} = GND$				50 - 50		
Input leakage current, BVSEL0, LSSD_MODE, TCK, TDI, TMS, TRST: V _{in} = OV _{DD} V _{in} = GND	_	I _{in}	_	50 - 2000	μА	2, 6

Electrical and Thermal Characteristics

Table 8. Clock AC Timing Specifications

At recommended operating conditions. See Table 4.

			Maximum Processor Core Frequency (Speed Grade)									
Characteristic		Symbol	1000	MHz	1420	MHz	1600	MHz	1700	MHz	Unit	Notes
			Min	Max	Min	Max	Min	Max	Min	Max		
Processor	DFS mode disabled	f _{core}	600	1000	600	1420	600	1600	600	1700	MHz	1, 8
core frequency	DFS mode enabled	f _{core_DF}	300	500	300	710	300	800	300	850		9
VCO freque	ncy	f _{VCO}	600	1000	600	1420	600	800	600	1700	MHz	1, 10
SYSCLK fre	equency	f _{SYSCLK}	33	200	33	200	33	200	33	200	MHz	1, 2, 8
SYSCLK cy	cle time	tsysclk	5.0	30	5.0	30	5.0	30	5.0	30	ns	2
SYSCLK ris	e and fall time	t _{KR} , t _{KF}	_	0.5	_	0.5	_	0.5	_	0.5	ns	3
SYSCLK du OV _{DD} /2	ty cycle measured at	t _{KHKL} / t _{SYSCLK}	40	60	40	60	40	60	40	60	%	4
SYSCLK cy	cle-to-cycle jitter		_	150	_	150	_	150	_	150	ps	5, 6
Internal PLL	relock time		_	100	_	100	_	100	_	100	μs	7

Notes:

- Caution: The SYSCLK frequency and PLL_CFG[0:5] settings must be chosen such that the resulting SYSCLK (bus) frequency, processor core frequency, and PLL (VCO) frequency do not exceed their respective maximum or minimum operating frequencies. Refer to the PLL_CFG[0:5] signal description in Section 9.1.1, "PLL Configuration," for valid PLL_CFG[0:5] settings.
- 2. Actual maximum system bus frequency is system-dependent. See Section 5.2.1, "Clock AC Specifications."
- 3. Rise and fall times for the SYSCLK input measured from 0.4 to 1.4 V
- 4. Timing is guaranteed by design and characterization.
- 5. Guaranteed by design
- 6. The SYSCLK driver's closed loop jitter bandwidth should be less than 1.5 MHz at -3 dB.
- 7. Relock timing is guaranteed by design and characterization. PLL-relock time is the maximum amount of time required for PLL lock after a stable V_{DD} and SYSCLK are reached during the power-on reset sequence. This specification also applies when the PLL has been disabled and subsequently re-enabled during sleep mode. Also note that HRESET must be held asserted for a minimum of 255 bus clocks after the PLL-relock time during the power-on reset sequence.
- 8. This reflects the maximum and minimum core frequencies when the dynamic frequency switching feature (DFS) is disabled. f_{core DFS} provides the maximum and minimum core frequencies when operating in a DFS mode.
- 9. This specification supports the Dynamic Frequency Switching (DFS) feature and is applicable only when one of the DFS modes (divide-by-2 or divide-by-4) is enabled. When DFS is disabled, the core frequency must conform to the maximum and minimum frequencies stated for f_{core}.
- 10.Use of the DFS feature does not affect VCO frequency.

Electrical and Thermal Characteristics

Table 9. Processor Bus AC Timing Specifications (continued)

At recommended operating conditions. See Table 4.

Parameter	Symbol ²	All Spee	d Grades	Unit	Notes
Farameter	Symbol	Min	Max	Oilit	Notes
SYSCLK to output high impedance (all except TS, ARTRY, SHD0, SHD1)	t _{KHOZ}	_	1.8	ns	5
SYSCLK to TS high impedance after precharge	t _{KHTSPZ}	_	1	t _{SYSCLK}	3, 4, 5
Maximum delay to ARTRY/SHD0/SHD1 precharge	t _{KHARP}	_	1	t _{SYSCLK}	3, 5, 6, 7
SYSCLK to ARTRY/SHD0/SHD1 high impedance after precharge	t _{KHARPZ}	_	2	tsysclk	3, 5, 6, 7

Notes:

- 1. All input specifications are measured from the midpoint of the signal in question to the midpoint of the rising edge of the input SYSCLK. All output specifications are measured from the midpoint of the rising edge of SYSCLK to the midpoint of the signal in question. All output timings assume a purely resistive 50-Ω load (see Figure 4). Input and output timings are measured at the pin; time-of-flight delays must be added for trace lengths, vias, and connectors in the system.
- 2. The symbology used for timing specifications herein follows the pattern of t_{(signal)(state)}(reference)(state)</sub> for inputs and t_{(reference)(state)}(signal)(state)</sub> for outputs. For example, t_{IVKH} symbolizes the time input signals (I) reach the valid state (V) relative to the SYSCLK reference (K) going to the high (H) state or input setup time. And t_{KHOV} symbolizes the time from SYSCLK(K) going high (H) until outputs (O) are valid (V) or output valid time. Input hold time can be read as the time that the input signal (I) went invalid (X) with respect to the rising clock edge (KH) (note the position of the reference and its state for inputs) and output hold time can be read as the time from the rising edge (KH) until the output went invalid (OX).
- 3. t_{sysclk} is the period of the external clock (SYSCLK) in ns. The numbers given in the table must be multiplied by the period of SYSCLK to compute the actual time duration (in ns) of the parameter in question.
- 4. According to the bus protocol, \overline{TS} is driven only by the currently active bus master. It is asserted low and precharged high before returning to high impedance, as shown in Figure 6. The nominal precharge width for \overline{TS} is t_{SYSCLK} , that is, one clock period. Since no master can assert \overline{TS} on the following clock edge, there is no concern regarding contention with the precharge. Output valid and output hold timing is tested for the signal asserted. Output valid time is tested for precharge. The high-impedance behavior is guaranteed by design.
- 5. Guaranteed by design and not tested
- 6. According to the bus protocol, ARTRY can be driven by multiple bus masters through the clock period immediately following AACK. Bus contention is not an issue because any master asserting ARTRY will be driving it low. Any master asserting it low in the first clock following AACK will then go to high impedance for a fraction of a cycle, then negated for up to an entire cycle (crossing a bus cycle boundary) before being three-stated again. The nominal precharge width for ARTRY is 1.0 t_{SYSCLK}; that is, it should be high impedance as shown in Figure 6 before the first opportunity for another master to assert ARTRY. Output valid and output hold timing is tested for the signal asserted. The high-impedance behavior is guaranteed by design.
- 7. According to the MPX bus protocol, \$\overline{SHD0}\$ and \$\overline{SHD1}\$ can be driven by multiple bus masters beginning two cycles after \$\overline{TS}\$. Timing is the same as \$\overline{ARTRY}\$, that is, the signal is high impedance for a fraction of a cycle, then negated for up to an entire cycle (crossing a bus cycle boundary) before being three-stated again. The nominal precharge width for \$\overline{SHD0}\$ and \$\overline{SHD1}\$ is 1.0 t_{SYSCLK}. The edges of the precharge vary depending on the programmed ratio of core to bus (PLL configurations).
- 8. BMODE[0:1] and BVSEL[0:1] are mode select inputs. BMODE[0:1] are sampled before and after HRESET negation. BVSEL[0:1] are sampled before HRESET negation. These parameters represent the input setup and hold times for each sample. These values are guaranteed by design and not tested. BMODE[0:1] must remain stable after the second sample; BVSEL[0:1] must remain stable after the first (and only) sample. See Figure 5 for sample timing.

Pinout Listings

Table 11. Pinout Listing for the MPC7448, 360 HCTE Package

Signal Name	Pin Number	Active	I/O	Notes
A[0:35]	E11, H1, C11, G3, F10, L2, D11, D1, C10, G2, D12, L3, G4, T2, F4, V1, J4, R2, K5, W2, J2, K4, N4, J3, M5, P5, N3, T1, V2, U1, N5, W1, B12, C4, G10, B11	High	I/O	2
AACK	R1	Low	Input	
AP[0:4]	C1, E3, H6, F5, G7	High	I/O	2
ARTRY	N2	Low	I/O	3
AV _{DD}	A8	_	Input	
BG	M1	Low	Input	
BMODE0	G9	Low	Input	4
BMODE1	F8	Low	Input	5
BR	D2	Low	Output	
BVSEL0	B7	High	Input	1, 6
BVSEL1	E10	High	Input	1, 20
CI	J1	Low	Output	
CKSTP_IN	A3	Low	Input	
CKSTP_OUT	B1	Low	Output	
CLK_OUT	H2	High	Output	
D[0:63]	R15, W15, T14, V16, W16, T15, U15, P14, V13, W13, T13, P13, U14, W14, R12, T12, W12, V12, N11, N10, R11, U11, W11, T11, R10, N9, P10, U10, R9, W10, U9, V9, W5, U6, T5, U5, W7, R6, P7, V6, P17, R19, V18, R18, V19, T19, U19, W19, U18, W17, W18, T16, T18, T17, W3, V17, U4, U8, U7, R7, P6, R8, W8, T8	High	I/O	
DBG	M2	Low	Input	
DFS2	A12	Low	Input	20, 21
DFS4	B6	Low	Input	12, 20, 21
DP[0:7]	T3, W4, T4, W9, M6, V3, N8, W6	High	I/O	
DRDY	R3	Low	Output	7
DTI[0:3]	G1, K1, P1, N1	High	Input	8
EXT_QUAL	A11	High	Input	9
GBL	E2	Low	I/O	
GND	B5, C3, D6, D13, E17, F3, G17, H4, H7, H9, H11, H13, J6, J8, J10, J12, K7, K3, K9, K11, K13, L6, L8, L10, L12, M4, M7, M9, M11, M13, N7, P3, P9, P12, R5, R14, R17, T7, T10, U3, U13, U17, V5, V8, V11, V15	_	_	
GND	A17, A19, B13, B16, B18, E12, E19, F13, F16, F18, G19, H18, J14, L14, M15, M17, M19, N14, N16, P15, P19	_	_	15
GND_SENSE	G12, N13	_	_	19
HIT	B2	Low	Output	7
HRESET	D8	Low	Input	
ĪNT	D4	Low	Input	
L1_TSTCLK	G8	High	Input	9
L2_TSTCLK	B3	High	Input	10

MPC7448 RISC Microprocessor Hardware Specifications, Rev. 4

8 Package Description

The following sections provide the package parameters and mechanical dimensions for the HCTE package.

8.1 Package Parameters for the MPC7448, 360 HCTE BGA

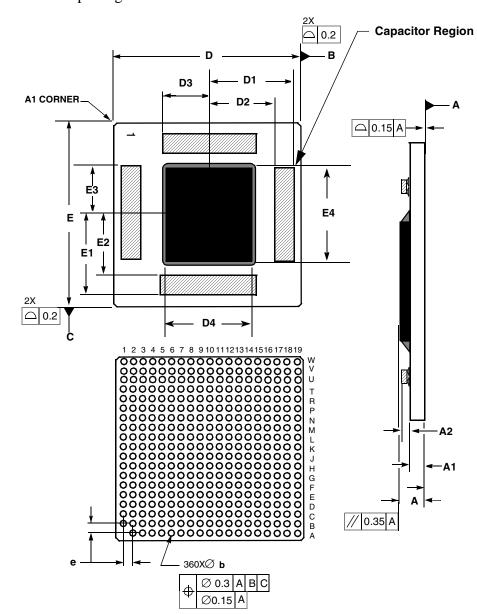
The package parameters are as provided in the following list. The package type is 25×25 mm, 360-lead high coefficient of thermal expansion ceramic ball grid array (HCTE).

Package outline $25 \times 25 \text{ mm}$

Interconnects $360 (19 \times 19 \text{ ball array} - 1)$

Pitch 1.27 mm (50 mil)

Minimum module height 2.32 mm Maximum module height 2.80 mm


Ball diameter 0.89 mm (35 mil) Coefficient of thermal expansion12.3 ppm/°C

Package Description

8.4 Mechanical Dimensions for the MPC7448, 360 HCTE LGA

Figure 13 provides the mechanical dimensions and bottom surface nomenclature for the MPC7448, 360 HCTE LGA package.

NOTES:

- Dimensioning and tolerancing per ASME Y14.5M, 1994
- 2. Dimensions in millimeters
- Top side A1 corner index is a metalized feature with various shapes. Bottom side A1 corner is designated with a pad missing from the array.

	Millim	neters		
Dim	Min	Max		
Α	1.52	1.80		
A1	0.70	0.90		
A2	_	0.6		
b	0.82	0.93		
D	25.00 BSC			
D1	_	11.3		
D2	8.0	_		
D3	_	6.5		
D4	7.2	7.4		
е	1.27	BSC		
Е	25.00	BSC		
E1	_	11.3		
E2	8.0	_		
E3	_	6.5		
E4	7.9	8.1		

Figure 14. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC7448, 360 HCTE LGA Package

System Design Information

Table 12. MPC7448 Microprocessor PLL Configuration Example (continued)

			Exam	ole Core	and VCC) Freque	ncy in M	Hz			
PLL_CFG[0:5]	Due to Core	Corre to VCC				Bus (SY	SCLK) Fr	equency	/		
	Bus-to-Core Multiplier ⁵	Core-to-VCO Multiplier ⁵	33.3 MHz	50 MHz	66.6 MHz	75 MHz	83 MHz	100 MHz	133 MHz	167 MHz	200 MHz
100110	11x	1x			733	825	913	1100	1467		
000000	11.5x	1x			766	863	955	1150	1533		
101110	12x	1x		600	800	900	996	1200	1600		
111110	12.5x	1x		625	833	938	1038	1250	1667		
010110	13x	1x		650	865	975	1079	1300			
111000	13.5x	1x		675	900	1013	1121	1350			
110010	14x	1x		700	933	1050	1162	1400			
000110	15x	1x		750	1000	1125	1245	1500			
110110	16x	1x		800	1066	1200	1328	1600			
000010	17x	1x		850	1132	1275	1417	1700			
001010	18x	1x	600	900	1200	1350	1500				
001110	20x	1x	667	1000	1332	1500	1666				
010010	21x	1x	700	1050	1399	1575					
011010	24x	1x	800	1200	1600						
111010	28x	1x	933	1400							
001100	PLL b	ypass		PLL off, S	SYSCLK	clocks co	re circuit	ry directly	/		
111100	PLI	_ off		PLL off, no core clocking occurs							

Notes:

- 1. PLL_CFG[0:5] settings not listed are reserved.
- 2. The sample bus-to-core frequencies shown are for reference only. Some PLL configurations may select bus, core, or VCO frequencies which are not useful, not supported, or not tested for by the MPC7448; see Section 5.2.1, "Clock AC Specifications," for valid SYSCLK, core, and VCO frequencies.
- 3. In PLL-bypass mode, the SYSCLK input signal clocks the internal processor directly and the PLL is disabled. However, the bus interface unit requires a 2x clock to function. Therefore, an additional signal, EXT_QUAL, must be driven at half the frequency of SYSCLK and offset in phase to meet the required input setup t_{IVKH} and hold time t_{IXKH} (see Table 9). The result will be that the processor bus frequency will be one-half SYSCLK, while the internal processor is clocked at SYSCLK frequency. This mode is intended for factory use and emulator tool use only.
 - Note: The AC timing specifications given in this document do not apply in PLL-bypass mode.
- 4. In PLL-off mode, no clocking occurs inside the MPC7448 regardless of the SYSCLK input.
- 5. Applicable when DFS modes are disabled. These multipliers change when operating in a DFS mode. See Section 9.7.5, "Dynamic Frequency Switching (DFS)" for more information.
- 6. Bus-to-core multipliers less than 5x require that assertion of AACK be delayed by one or two bus cycles to allow the processor to generate a response to a snooped transaction. See the MPC7450 RISC Microprocessor Reference Manual for more information.

System Design Information

These requirements are shown graphically in Figure 16.

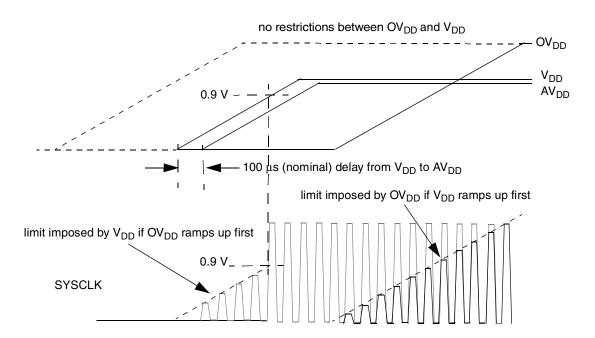


Figure 16. MPC7448 Power Up Sequencing Requirements

Certain stipulations also apply to the manner in which the power rails of the MPC7448 power down, as follows:

- OV_{DD} may ramp down any time before or after V_{DD}.
- The voltage at the SYSCLK input must not exceed V_{DD} once V_{DD} has ramped down below 0.9 V.
- The voltage at the SYSCLK input must not exceed OV_{DD} by more 20% during transients (see overshoot/undershoot specifications in Figure 2) or 0.3 V DC (see Table 2) at any time.

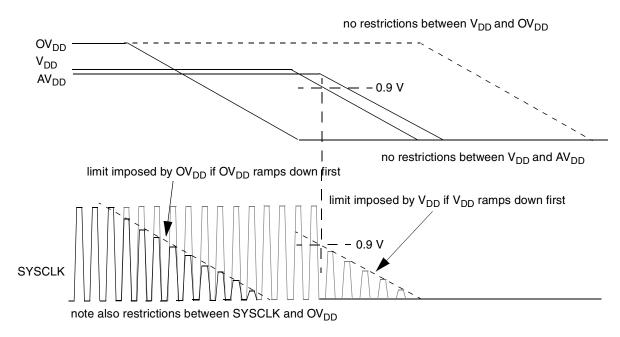


Figure 17. MPC7448 Power Down Sequencing Requirements

There is no requirement regarding AV_{DD} during power down, but it is recommended that AV_{DD} track V_{DD} within the RC time constant of the PLL filter circuit described in Section 9.2.2, "PLL Power Supply Filtering" (nominally 100 μ s).

9.2.2 PLL Power Supply Filtering

The AV_{DD} power signal is provided on the MPC7448 to provide power to the clock generation PLL. To ensure stability of the internal clock, the power supplied to the AV_{DD} input signal should be filtered of any noise in the 500-KHz to 10-MHz resonant frequency range of the PLL. The circuit shown in Figure 18 using surface mount capacitors with minimum effective series inductance (ESL) is strongly recommended. In addition to filtering noise from the AV_{DD} input, it also provides the required delay between V_{DD} and AV_{DD} as described in Section 9.2.1, "Power Supply Sequencing."

The circuit should be placed as close as possible to the AV_{DD} pin to minimize noise coupled from nearby circuits. It is often possible to route directly from the capacitors to the AV_{DD} pin, which is on the periphery of the device footprint.

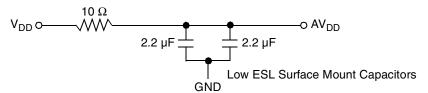


Figure 18. PLL Power Supply Filter Circuit

MPC7448 RISC Microprocessor Hardware Specifications, Rev. 4

9.2.4 Decoupling Recommendations

Due to the MPC7448 dynamic power management feature, large address and data buses, and high operating frequencies, the MPC7448 can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the MPC7448 system, and the MPC7448 itself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer use sufficient decoupling capacitors, typically one capacitor for every $V_{\rm DD}$ pin, and a similar amount for the $OV_{\rm DD}$ pins, placed as close as possible to the power pins of the MPC7448. It is also recommended that these decoupling capacitors receive their power from separate $V_{\rm DD}$, $OV_{\rm DD}$, and GND power planes in the PCB, using short traces to minimize inductance.

These capacitors should have a value of 0.01 or $0.1~\mu F$. Only ceramic surface mount technology (SMT) capacitors should be used to minimize lead inductance. Orientations where connections are made along the length of the part, such as 0204, are preferable but not mandatory. Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993) and contrary to previous recommendations for decoupling Freescale microprocessors, multiple small capacitors of equal value are recommended over using multiple values of capacitance.

In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, feeding the V_{DD} and OV_{DD} planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should have a low equivalent series resistance (ESR) rating to ensure the quick response time necessary. They should also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors are $100-330~\mu F$ (AVX TPS tantalum or Sanyo OSCON).

9.3 Connection Recommendations

To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal level. Unless otherwise noted, unused active low inputs should be tied to OV_{DD} and unused active high inputs should be connected to GND. All NC (no connect) signals must remain unconnected.

Power and ground connections must be made to all external V_{DD} , OV_{DD} , and GND pins in the MPC7448. For backward compatibility with the MPC7447, MPC7445, and MP7441, or for migrating a system originally designed for one of these devices to the MPC7448, the new power and ground signals (formerly NC, see Table 11) may be left unconnected if the core frequency is 1 GHz or less. Operation above 1 GHz requires that these additional power and ground signals be connected, and it is strongly recommended that all new designs include the additional connections. See also Section 7, "Pinout Listings," for additional information.

The MPC7448 provides VDD_SENSE, OVDD_SENSE, and GND_SENSE pins. These pins connect directly to the power/ground planes in the device package and are intended to allow an external device to measure the voltage present on the V_{DD} , OV_{DD} and GND planes in the device package. The most common use for these signals is as a feedback signal to a power supply regulator to allow it to compensate for board losses and supply the correct voltage at the device. (Note that all voltage parameters are specified at the pins of the device.) If not used for this purpose, it is recommended that these signals be connected to test points that can be used in the event that an accurate measurement of the voltage at the device is needed during system debug. Otherwise, these signals should be connected to the appropriate power/ground planes on the circuit board or left unconnected.

System Design Information

9.4 Output Buffer DC Impedance

The MPC7448 processor bus drivers are characterized over process, voltage, and temperature. To measure Z_0 , an external resistor is connected from the chip pad to OV_{DD} or GND. The value of each resistor is varied until the pad voltage is OV_{DD}/2. Figure 20 shows the driver impedance measurement.

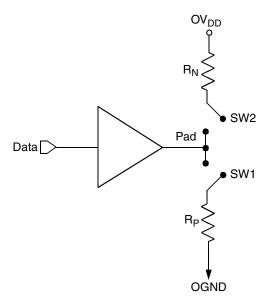


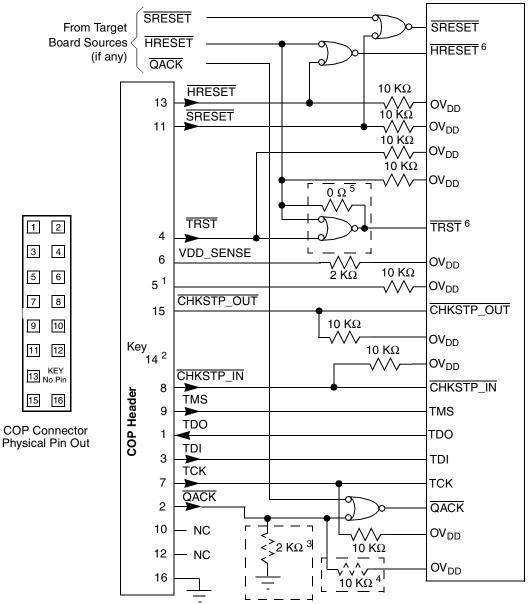
Figure 20. Driver Impedance Measurement

The output impedance is the average of two components—the resistances of the pull-up and pull-down devices. When data is held low, SW2 is closed (SW1 is open), and R_N is trimmed until the voltage at the pad equals OV_{DD}/2. R_N then becomes the resistance of the pull-down devices. When data is held high, SW1 is closed (SW2 is open), and R_P is trimmed until the voltage at the pad equals OV_{DD}/2. R_P then becomes the resistance of the pull-up devices. R_P and R_N are designed to be close to each other in value. Then, $Z_0 = (R_P + R_N)/2$.

Table 15 summarizes the signal impedance results. The impedance increases with junction temperature and is relatively unaffected by bus voltage.

Table 15. Impedance Characteristics At recommended operating conditions. See Table 4

	Impedance	Processor Bus	Unit
Z ₀	Typical	33–42	Ω
	Maximum	31–51	Ω


9.5 Pull-Up/Pull-Down Resistor Requirements

The MPC7448 requires high-resistive (weak: 4.7-K Ω) pull-up resistors on several control pins of the bus interface to maintain the control signals in the negated state after they have been actively negated and released by the MPC7448 or other bus masters. These pins are: TS, ARTRY, SHDO, and SHD1.

Some pins designated as being factory test pins must be pulled up to OV_{DD} or down to GND to ensure proper device operation. The pins that must be pulled up to OV_{DD} are $\overline{LSSD_MODE}$ and $\overline{TEST[0:3]}$; the pins that must be pulled down to GND are L1_TSTCLK and TEST[4]. The CKSTP_IN signal should

MPC7448 RISC Microprocessor Hardware Specifications, Rev. 4 42 Freescale Semiconductor

Notes:

- 1. RUN/STOP, normally found on pin 5 of the COP header, is not implemented on the MPC7448. Connect pin 5 of the COP header to OV_{DD} with a 10-K Ω pull-up resistor.
- 2. Key location; pin 14 is not physically present on the COP header.
- 3. Component not populated. Populate only if debug tool does not drive QACK.
- 4. Populate only if debug tool uses an open-drain type output and does not actively negate QACK.
- 5. If the JTAG interface is implemented, connect HRESET from the target source to TRST from the COP header though an AND gate to TRST of the part. If the JTAG interface is not implemented, connect HRESET from the target source to TRST of the part through a 0-Ω isolation resistor.
- 6. The COP port and target board should be able to independently assert HRESET and TRST to the processor in order to fully control the processor as shown above.

Figure 21. JTAG Interface Connection

_

Freescale Semiconductor 45

MPC7448 RISC Microprocessor Hardware Specifications, Rev. 4

System Design Information

Power and Thermal Management Information 9.7

This section provides thermal management information for the high coefficient of thermal expansion (HCTE) package for air-cooled applications. Proper thermal control design is primarily dependent on the system-level design—the heat sink, airflow, and thermal interface material. The MPC7448 implements several features designed to assist with thermal management, including DFS and the temperature diode. DFS reduces the power consumption of the device by reducing the core frequency; see Section 9.7.5.1, "Power Consumption with DFS Enabled," for specific information regarding power reduction and DFS. The temperature diode allows an external device to monitor the die temperature in order to detect excessive temperature conditions and alert the system; see Section 9.7.4, "Temperature Diode," for more information.

To reduce the die-junction temperature, heat sinks may be attached to the package by several methods—spring clip to holes in the printed-circuit board or package, and mounting clip and screw assembly (see Figure 22); however, due to the potential large mass of the heat sink, attachment through the printed-circuit board is suggested. In any implementation of a heat sink solution, the force on the die should not exceed ten pounds (45 Newtons).

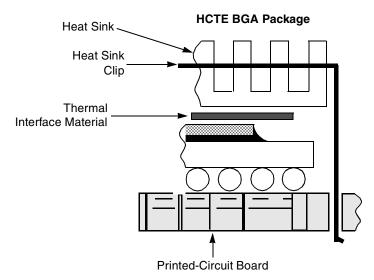
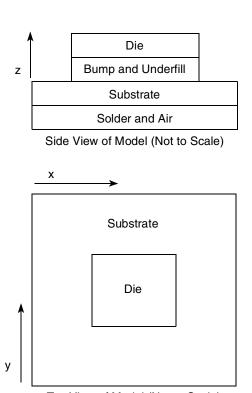


Figure 22. BGA Package Exploded Cross-Sectional View with Several Heat Sink Options

NOTE

A clip on heat sink is not recommended for LGA because there may not be adequate clearance between the device and the circuit board. A through-hole solution is recommended, as shown in Figure 23.


MPC7448 RISC Microprocessor Hardware Specifications, Rev. 4 46 Freescale Semiconductor

Due to the complexity and variety of system-level boundary conditions for today's microelectronic equipment, the combined effects of the heat transfer mechanisms (radiation, convection, and conduction) may vary widely. For these reasons, we recommend using conjugate heat transfer models for the board as well as system-level designs.

For system thermal modeling, the MPC7448 thermal model is shown in Figure 26. Four volumes represent this device. Two of the volumes, solder ball-air and substrate, are modeled using the package outline size of the package. The other two, die and bump-underfill, have the same size as the die. The silicon die should be modeled $8.0 \times 7.3 \times 0.86 \text{ mm}^3$ with the heat source applied as a uniform source at the bottom of the volume. The bump and underfill layer is modeled as $8.0 \times 7.3 \times 0.07$ mm³ collapsed in the z-direction with a thermal conductivity of 5.0 W/(m • K) in the z-direction. The substrate volume is $25 \times 25 \times 1.14$ mm³ and has 9.9 W/(m • K) isotropic conductivity in the xy-plane and 2.95 W/(m • K) in the direction of the z-axis. The solder ball and air layer are modeled with the same horizontal dimensions as the substrate and is 0.8 mm thick. For the LGA package the solder and air layer is 0.1 mm thick, but the material properties are the same. It can also be modeled as a collapsed volume using orthotropic material properties: 0.034 W/(m • K) in the xy-plane direction and 11.2 W/(m • K) in the direction of the z-axis.

Conductivity	Value	Unit						
Die (8	Die (8.0 × 7.3 × 0.86 mm³)							
Silicon	Silicon Temperature- dependent							
Bump and Un	derfill (8.0 \times 7.3 \times 0.07	mm ³)						
k _z	5.0	W/(m • K)						
Substrat	e (25 $ imes$ 25 $ imes$ 1.14 mm 3)							
k _x	9.9	W/(m • K)						
k _y	9.9							
k _z	2.95							
Solder Ball a	and Air (25 $ imes$ 25 $ imes$ 0.8 m	m ³)						
k _x	0.034	W/(m • K)						
k _y	0.034							
k _z	11.2							

Top View of Model (Not to Scale)

Figure 26. Recommended Thermal Model of MPC7448

MPC7448 RISC Microprocessor Hardware Specifications, Rev. 4 Freescale Semiconductor 51

Solving for T, the equation becomes:

$$nT = \frac{V_H - V_L}{1.986 \times 10^{-4}}$$

9.7.5 Dynamic Frequency Switching (DFS)

The DFS feature in the MPC7448 adds the ability to divide the processor-to-system bus ratio by two or four during normal functional operation. Divide-by-two mode is enabled by setting the HID1[DFS2] bit in software or by asserting the $\overline{DFS2}$ pin via hardware. The MPC7448 can be returned for full speed by clearing HID1[DFS2] or negating $\overline{DFS2}$. Similarly, divide-by-four mode is enabled by setting HID1[DFS4] in software or by asserting the $\overline{DFS4}$ pin. In all cases, the frequency change occurs in 1 clock cycle and no idle waiting period is required to switch between modes. Note that asserting either $\overline{DFS2}$ or $\overline{DFS4}$ overrides software control of DFS, and that asserting both $\overline{DFS2}$ and $\overline{DFS4}$ disables DFS completely, including software control. Additional information regarding DFS can be found in the MPC7450 RISC Microprocessor Family Reference Manual. Note that minimum core frequency requirements must be observed when enabling DFS, and the resulting core frequency must meet the requirements for f_{core} DFS given in Table 8.

9.7.5.1 Power Consumption with DFS Enabled

Power consumption with DFS enabled can be approximated using the following formula:

$$P_{DFS} = \frac{f_{DFS}}{f} (P - P_{DS}) + P_{DS}$$

Where:

 P_{DFS} = Power consumption with DFS enabled

 f_{DFS} = Core frequency with DFS enabled

f = Core frequency prior to enabling DFS

P = Power consumption prior to enabling DFS (see Table 7)

P_{DS} = Deep sleep mode power consumption (see Table 7)

The above is an approximation only. Power consumption with DFS enabled is not tested or guaranteed.

9.7.5.2 Bus-to-Core Multiplier Constraints with DFS

DFS is not available for all bus-to-core multipliers as configured by PLL_CFG[0:5] during hard reset. The complete listing is shown in Table 16. Shaded cells represent DFS modes that are not available for a particular PLL_CFG[0:5] setting. Should software or hardware attempt to transition to a multiplier that is not supported, the device will remain at its current multiplier. For example, if a transition from DFS-disabled to an unsupported divide-by-2 or divide-by-4 setting is attempted, the bus-to-core multiplier will remain at the setting configured by the PLL_CFG[0:5] pins. In the case of an attempted transition from a supported divide-by-2 mode to an unsupported divide-by-4 mode, the device will remain in divide-by-2 mode. In all cases, the HID1[PC0-5] bits will correctly reflect the current bus-to-core frequency multiplier.

Part Numbering and Marking

11.2 Part Numbers Not Fully Addressed by This Document

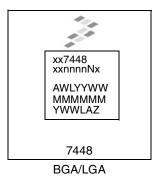
Parts with application modifiers or revision levels not fully addressed in this specification document are described in separate hardware specification addenda which supplement and supersede this document. As such parts are released, these specifications will be listed in this section.

Table 19. Part Numbers Addressed by MC7448xxnnnnNx Series Hardware Specification Addendum (Document Order No. MPC7448ECS01AD)

7448	XX	<i>nnnn</i> N		X	
Part Identifier	Package	Processor Frequency	Application Modifier	Revision Level	
7448	HX = HCTE BGA VS = RoHS LGA VU = RoHS BGA	1400	N: 1.15 V ± 50 mV 0 to 105 °C (date code 0613 and later) ²	C: 2.1; PVR = 0x8004_0201 D: 2.2; PVR = 0x8004_0202	
		1400	N: 1.1 V ± 50 mV 0 to 105 °C (date code 0612 and prior) ²		
		1267 Revision C only	N: 1.1 V ± 50 mV 0 to 105 °C		
		1267 Revision D only	N: 1.05 V ± 50 mV 0 to 105 °C		
		1250	N: 1.1 V ± 50 mV 0 to 105 °C		
		1000 867 800 667	N: 1.0 V ± 50 mV 0 to 105 °C		
	Part Identifier	Part ldentifier Package 7448 HX = HCTE BGA VS = RoHS LGA	Part Identifier Package Processor Frequency 7448 HX = HCTE BGA VS = RoHS LGA VU = RoHS BGA 1400 1267 Revision C only 1267 Revision D only 1250 1000 867 800	Part Identifier Package Processor Frequency Application Modifier 7448 HX = HCTE BGA VS = RoHS LGA VU = RoHS BGA 1400 N: 1.15 V ± 50 mV 0 to 105 °C (date code 0613 and later) ² 1400 N: 1.1 V ± 50 mV 0 to 105 °C (date code 0612 and prior) ² 1267 Revision C only N: 1.1 V ± 50 mV 0 to 105 °C 1267 Revision D only N: 1.05 V ± 50 mV 0 to 105 °C 1250 N: 1.1 V ± 50 mV 0 to 105 °C 1000 N: 1.0 V ± 50 mV 0 to 105 °C 867 867 0 to 105 °C 0 to 105 °C	

Notes:

- 1. The P prefix in a Freescale part number designates a "Pilot Production Prototype" as defined by Freescale SOP 3-13. These parts have only preliminary reliability and characterization data. Before pilot production prototypes can be shipped, written authorization from the customer must be on file in the applicable sales office acknowledging the qualification status and the fact that product changes may still occur as pilot production prototypes are shipped.
- 2. Core voltage for 1400 MHz devices currently in production (date code of 0613 and later) is 1.15 V ± 50 mV; all such devices have the MC product code. The 1400 MHz devices with date code of 0612 and prior specified core voltage of 1.1 V ± 50 mV; this includes all 1400 MHz devices with the PPC product code. See Section 11.3, "Part Marking," for information on part marking.


Table 20. Part Numbers Addressed by MC7448TxxnnnnNx Series Hardware Specification Addendum (Document Order No. MPC7448ECS02AD)

XX	7448	ı	XX	nnnn	N	X
Product Code	Part Identifier	Specificatio n Modifier	Package	Processor Frequency	Application Modifier	Revision Level
MC PPC ¹	_	T = Extended Temperature Device	HX = HCTE BGA	1400	N: 1.15 V ± 50 mV - 40 to 105 °C	C: 2.1; PVR = 0x8004_0201 D: 2.2; PVR = 0x8004_0202
				1267 Revision C only	N: 1.1 V ± 50 mV - 40 to 105 °C	
			1267 Revision D only	N: 1.05 V ± 50 mV - 40 to 105 °C		
				1000	N: 1.0 V ± 50 mV - 40 to 105 °C	

Notes:

Part Marking 11.3

Parts are marked as the example shown in Figure 27.

Notes:

AWLYYWW is the test code, where YYWW is the date code (YY = year, WW = work week) MMMMMM is the M00 (mask) number.

YWWLAZ is the assembly traceability code.

Figure 27. Part Marking for BGA and LGA Device

MPC7448 RISC Microprocessor Hardware Specifications, Rev. 4 Freescale Semiconductor 59

^{1.} The P prefix in a Freescale part number designates a "Pilot Production Prototype" as defined by Freescale SOP 3-13. These parts have only preliminary reliability and characterization data. Before pilot production prototypes can be shipped, written authorization from the customer must be on file in the applicable sales office acknowledging the qualification status and the fact that product changes may still occur as pilot production prototypes are shipped.

How to Reach Us:

Home Page:

www.freescale.com

email:

support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 1-800-521-6274 480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064, Japan 0120 191014 +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447
303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor
@ hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. The described product is a PowerPC microprocessor. The PowerPC name is a trademark of IBM Corp. and is used under license. IEEE Stds. 1149.1™ and 754™ are trademarks of the Institute of Electrical and Electronics Engineers, Inc., (IEEE). This product is not endosed or approved by the IEEE. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2005, 2007.

Document Number: MPC7448EC

Rev. 4 3/2007

