
NXP USA Inc. - KMC7448HX1700LC Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing
chips designed to perform specific tasks within an
embedded system. Unlike general-purpose
microprocessors found in personal computers, embedded
microprocessors are tailored for dedicated functions within
larger systems, offering optimized performance, efficiency,
and reliability. These microprocessors are integral to the
operation of countless electronic devices, providing the
computational power necessary for controlling processes,
handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad
spectrum of applications, making them indispensable in
modern technology. In consumer electronics, they power
devices such as smartphones, tablets, and smart home
appliances, enabling advanced features and connectivity.
In the automotive industry, embedded microprocessors are
critical for engine control units (ECUs), infotainment
systems, and advanced driver-assistance systems (ADAS).
Industrial automation relies on these microprocessors for
controlling machinery, managing production lines, and
ensuring safety protocols. Medical devices, including
diagnostic equipment and patient monitoring systems,
depend on embedded microprocessors for accurate data
processing and reliable performance. Additionally,
embedded microprocessors are used in
telecommunications, aerospace, and defense applications,
where precision and dependability are paramount.

Common Subcategories of Embedded -
Microprocessors

Embedded microprocessors can be categorized into
several common subcategories based on their
architecture, performance, and intended application.
These include:

General-Purpose Microprocessors: Designed for
a wide range of applications, offering a balance of
performance and flexibility.

Application-Specific Integrated Circuits
(ASICs): Custom-designed for specific tasks,
providing optimal performance for particular
applications.

Digital Signal Processors (DSPs): Specialized for
real-time signal processing tasks, ideal for audio,
video, and communication systems.

System on Chip (SoC): Integrates the
microprocessor with other system components, such
as memory and peripherals, on a single chip for
compact and efficient designs.

Types of Embedded - Microprocessors

Details

Product Status Obsolete

Core Processor PowerPC G4

Number of Cores/Bus Width 1 Core, 32-Bit

Speed 1.7GHz

Co-Processors/DSP Multimedia; SIMD

RAM Controllers -

Graphics Acceleration No

Display & Interface Controllers -

Ethernet -

SATA -

USB -

Voltage - I/O 1.5V, 1.8V, 2.5V

Operating Temperature 0°C ~ 105°C (TA)

Security Features -

Package / Case 360-BCBGA, FCCBGA

Supplier Device Package 360-FCCBGA (25x25)

Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/kmc7448hx1700lc

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/kmc7448hx1700lc-4473353
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors


MPC7448 RISC Microprocessor Hardware Specifications, Rev. 4

4 Freescale Semiconductor
 

Features

— Four vector units and 32-entry vector register file (VRs)

– Vector permute unit (VPU)

– Vector integer unit 1 (VIU1) handles short-latency AltiVec™ integer instructions, such as 
vector add instructions (for example, vaddsbs, vaddshs, and vaddsws).

– Vector integer unit 2 (VIU2) handles longer-latency AltiVec integer instructions, such as 
vector multiply add instructions (for example, vmhaddshs, vmhraddshs, and 
vmladduhm).

– Vector floating-point unit (VFPU)

— Three-stage load/store unit (LSU)

– Supports integer, floating-point, and vector instruction load/store traffic

– Four-entry vector touch queue (VTQ) supports all four architected AltiVec data stream 
operations

– Three-cycle GPR and AltiVec load latency (byte, half word, word, vector) with one-cycle 
throughput

– Four-cycle FPR load latency (single, double) with one-cycle throughput

– No additional delay for misaligned access within double-word boundary

– A dedicated adder calculates effective addresses (EAs).

– Supports store gathering 

– Performs alignment, normalization, and precision conversion for floating-point data

– Executes cache control and TLB instructions

– Performs alignment, zero padding, and sign extension for integer data

– Supports hits under misses (multiple outstanding misses)

– Supports both big- and little-endian modes, including misaligned little-endian accesses

• Three issue queues, FIQ, VIQ, and GIQ, can accept as many as one, two, and three instructions, 
respectively, in a cycle. Instruction dispatch requires the following:

— Instructions can only be dispatched from the three lowest IQ entries—IQ0, IQ1, and IQ2.

— A maximum of three instructions can be dispatched to the issue queues per clock cycle.

— Space must be available in the CQ for an instruction to dispatch (this includes instructions that 
are assigned a space in the CQ but not in an issue queue).

• Rename buffers

— 16 GPR rename buffers

— 16 FPR rename buffers

— 16 VR rename buffers

• Dispatch unit

— Decode/dispatch stage fully decodes each instruction

• Completion unit

— Retires an instruction from the 16-entry completion queue (CQ) when all instructions ahead of 
it have been completed, the instruction has finished executing, and no exceptions are pending

— Guarantees sequential programming model (precise exception model)
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Comparison with the MPC7447A, MPC7447, MPC7445, and MPC7441

• Reliability and serviceability

— Parity checking on system bus

— Parity checking on the L1 caches and L2 data tags

— ECC or parity checking on L2 data

3 Comparison with the MPC7447A, MPC7447, MPC7445, 
and MPC7441

Table 1 compares the key features of the MPC7448 with the key features of the earlier MPC7447A, 
MPC7447, MPC7445, and MPC7441. All are based on the MPC7450 RISC microprocessor and are 
architecturally very similar. The MPC7448 is identical to the MPC7447A, but the MPC7448 supports 1 
Mbyte of L2 cache with ECC and the use of dynamic frequency switching (DFS) with more bus-to-core 
ratios.

Table 1. Microarchitecture Comparison

Microarchitectural Specs MPC7448 MPC7447A MPC7447 MPC7445 MPC7441

Basic Pipeline Functions

Logic inversions per cycle 18

Pipeline stages up to execute 5

Total pipeline stages (minimum) 7

Pipeline maximum instruction throughput 3 + branch

Pipeline Resources

Instruction buffer size 12

Completion buffer size 16

Renames (integer, float, vector) 16, 16, 16

Maximum Execution Throughput

SFX 3

Vector 2 (any 2 of 4 units)

Scalar floating-point 1

Out-of-Order Window Size in Execution Queues

SFX integer units 1 entry × 3 queues

Vector units In order, 4 queues

Scalar floating-point unit In order

Branch Processing Resources

Prediction structures BTIC, BHT, link stack

BTIC size, associativity 128-entry, 4-way

BHT size 2K-entry

Link stack depth 8

Unresolved branches supported 3

Branch taken penalty (BTIC hit) 1

Minimum misprediction penalty 6
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Execution Unit Timings (Latency-Throughput)

Aligned load (integer, float, vector) 3-1, 4-1, 3-1

Misaligned load (integer, float, vector) 4-2, 5-2, 4-2

L1 miss, L2 hit latency with ECC (data/instruction) 12/16 —

L1 miss, L2 hit latency without ECC (data/instruction) 11/15 9/13

SFX (add, sub, shift, rot, cmp, logicals) 1-1

Integer multiply (32 × 8, 32 × 16, 32 × 32) 4-1, 4-1, 5-2

Scalar float 5-1

VSFX (vector simple) 1-1

VCFX (vector complex) 4-1

VFPU (vector float) 4-1

VPER (vector permute) 2-1

MMUs

TLBs (instruction and data) 128-entry, 2-way

Tablewalk mechanism Hardware + software

Instruction BATs/data BATs 8/8 8/8 8/8 8/8 4/4

L1 I Cache/D Cache Features

Size 32K/32K

Associativity 8-way

Locking granularity Way

Parity on I cache Word

Parity on D cache Byte

Number of D cache misses (load/store) 5/2 5/1

Data stream touch engines 4 streams

On-Chip Cache Features

Cache level L2

Size/associativity 1-Mbyte/
8-way

512-Kbyte/8-way 256-Kbyte/8-way

Access width 256 bits

Number of 32-byte sectors/line 2 2

Parity tag Byte Byte

Parity data Byte Byte

Data ECC 64-bit —

Thermal Control

Dynamic frequency switching divide-by-two mode Yes Yes No No No

Dynamic frequency switching divide-by-four mode Yes No No No No

Thermal diode Yes Yes No No No

Table 1. Microarchitecture Comparison (continued)

Microarchitectural Specs MPC7448 MPC7447A MPC7447 MPC7445 MPC7441
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Electrical and Thermal Characteristics

Table 5 provides the package thermal characteristics for the MPC7448. For more information regarding 
thermal management, see Section 9.7, “Power and Thermal Management Information.”

Table 6 provides the DC electrical characteristics for the MPC7448.

Table 5. Package Thermal Characteristics1

Characteristic Symbol Value Unit Notes

Junction-to-ambient thermal resistance, natural convection, single-layer (1s) board RθJA 26 •C/WC/W 2, 3

Junction-to-ambient thermal resistance, natural convection, four-layer (2s2p) board RθJMA 19 •C/WC/W 2, 4

Junction-to-ambient thermal resistance, 200 ft/min airflow, single-layer (1s) board RθJMA 22 •C/WC/W 2, 4

Junction-to-ambient thermal resistance, 200 ft/min airflow, four-layer (2s2p) board RθJMA 16 •C/WC/W 2, 4

Junction-to-board thermal resistance RθJB 11 •C/WC/W 5

Junction-to-case thermal resistance RθJC < 0.1 •C/WC/W 6

Notes: 

1. Refer to Section 9.7, “Power and Thermal Management Information,” for details about thermal management.

2. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) 
temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal 
resistance.

3. Per JEDEC JESD51-2 with the single-layer board horizontal

4. Per JEDEC JESD51-6 with the board horizontal

5. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on 
the top surface of the board near the package.

6. This is the thermal resistance between die and case top surface as measured by the cold plate method (MIL SPEC-883 
Method 1012.1) with the calculated case temperature. The actual value of RθJC for the part is less than 0.1°C/W.

Table 6. DC Electrical Specifications
At recommended operating conditions. See Table 4. 

Characteristic Nominal Bus
Voltage 1

Symbol Min Max Unit Notes

Input high voltage
(all inputs)

1.5 VIH OVDD × 0.65  OVDD + 0.3 V 2

1.8 OVDD × 0.65  OVDD + 0.3

2.5 1.7  OVDD + 0.3

Input low voltage
(all inputs)

1.5 VIL –0.3 OVDD × 0.35 V 2

1.8 –0.3 OVDD × 0.35

2.5 –0.3 0.7

Input leakage current, all signals except 
BVSEL0, LSSD_MODE, TCK, TDI, TMS, 
TRST:
Vin = OVDD 
Vin = GND

— Iin —
 

50
– 50

µA 2, 3

Input leakage current, BVSEL0, 
LSSD_MODE, TCK, TDI, TMS, TRST:
Vin = OVDD 
Vin = GND

— Iin —

 50
– 2000

µA 2, 6
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when running a typical benchmark at temperatures in a typical system. The Full-Power Mode–Thermal 
value is intended to represent the sustained power consumption of the device when running a typical code 
sequence at high temperature and is recommended to be used as the basis for designing a thermal solution; 
see Section 9.7, “Power and Thermal Management Information” for more information on thermal 
solutions. The Full-Power Mode–Maximum value is recommended to be used for power supply design 
because this represents the maximum peak power draw of the device that a power supply must be capable 
of sourcing without voltage droop. For information on power consumption when dynamic frequency 
switching is enabled, see Section 9.7.5, “Dynamic Frequency Switching (DFS).” 

Table 7. Power Consumption for MPC7448 at Maximum Rated Frequency

Die Junction 
Temperature 

(Tj)

Maximum Processor Core Frequency (Speed Grade, MHz)
Unit Notes

1000 MHz 1420 MHz 1600 MHz 1700 MHz

Full-Power Mode

Typical 65 •CC 15.0 19.0 20.0 21.0 W 1, 2

Thermal 105 •CC 18.6 23.3 24.4 25.6 W 1, 5

Maximum 105 •CC 21.6 27.1 28.4 29.8 W 1, 3

Nap Mode

Typical 105 •CC 11.1 11.8 13.0 13.0 W 1, 6

Sleep Mode

Typical 105 •CC 10.8 11.4 12.5 12.5 W 1, 6

Deep Sleep Mode (PLL Disabled)

Typical 105 •CC 10.4 11.0 12.0 12.0 W 1, 6

Notes: 
1. These values specify the power consumption for the core power supply (VDD) at nominal voltage and apply to all valid 

processor bus frequencies and configurations. The values do not include I/O supply power (OVDD) or PLL supply power 
(AVDD). OVDD power is system dependent but is typically < 5% of VDD power. Worst case power consumption for 
AVDD < 13 mW. Freescale also offers MPC7448 part numbers that meet lower power consumption specifications; for 
more information on these devices, see Section 11.2, “Part Numbers Not Fully Addressed by This Document.”

2. Typical power consumption is an average value measured with the processor operating at its rated maximum processor 
core frequency (except for Deep Sleep Mode), at nominal recommended VDD (see Table 4) and 65°C while running the 
Dhrystone 2.1 benchmark and achieving 2.3 Dhrystone MIPs/MHz. This parameter is not 100% tested but periodically 
sampled.b 

3. Maximum power consumption is the average measured with the processor operating at its rated maximum processor core 
frequency, at nominal VDD and maximum operating junction temperature (see Table 4) while running an entirely 
cache-resident, contrived sequence of instructions to keep all the execution units maximally busy.

4. Doze mode is not a user-definable state; it is an intermediate state between full-power and either nap or sleep mode. As 
a result, power consumption for this mode is not tested.

5. Thermal power consumption is an average value measured at the nominal recommended VDD (see Table 4) and 105 °C 
while running the Dhrystone 2.1 benchmark and achieving 2.3 Dhrystone MIPs/MHz. This parameter is not 100% tested 
but periodically sampled.

6. Typical power consumption for these modes is measured at the nominal recommended VDD (see Table 4) and 105 °C in 
the mode described. This parameter is not 100% tested but is periodically sampled.
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Figure 3 provides the SYSCLK input timing diagram.

Figure 3. SYSCLK Input Timing Diagram

5.2.2 Processor Bus AC Specifications
Table 9 provides the processor bus AC timing specifications for the MPC7448 as defined in Figure 4 and 
Figure 5. 

Table 9. Processor Bus AC Timing Specifications1

At recommended operating conditions. See Table 4.

Parameter Symbol 2
All Speed Grades

Unit Notes
Min Max

Input setup times:
A[0:35], AP[0:4]
D[0:63], DP[0:7]
AACK, ARTRY, BG, CKSTP_IN, DBG, DTI[0:3], GBL, TT[0:4], 

QACK, TA, TBEN, TEA, TS, EXT_QUAL, PMON_IN, 
SHD[0:1]

BMODE[0:1], BVSEL[0:1]

tAVKH
tDVKH
tIVKH

tMVKH

1.5
1.5
1.5

1.5

—
—
—

—

ns
—
—
—

8

Input hold times:
A[0:35], AP[0:4]
D[0:63], DP[0:7]
AACK, ARTRY, BG, CKSTP_IN, DBG, DTI[0:3], GBL, TT[0:4], 

QACK, TA, TBEN, TEA, TS, EXT_QUAL, PMON_IN, 
SHD[0:1]

BMODE[0:1], BVSEL[0:1]

tAXKH
tDXKH
tIXKH

tMXKH

0
0
0

0

—
—
—

—

ns
—
—
—
—

8

Output valid times: 
A[0:35], AP[0:4]
D[0:63], DP[0:7]
BR, CI, DRDY, GBL, HIT, PMON_OUT, QREQ, TBST, 

TSIZ[0:2], TT[0:4], WT
TS
ARTRY, SHD[0:1]

tKHAV
tKHDV
tKHOV

tKHTSV
tKHARV

—
—
—

—
—

1.8
1.8
1.8

1.8
1.8

ns

Output hold times:
A[0:35], AP[0:4]
D[0:63], DP[0:7]
BR, CI, DRDY, GBL, HIT, PMON_OUT, QREQ, TBST, 

TSIZ[0:2], TT[0:4], WT
TS
ARTRY, SHD[0:1]

tKHAX
tKHDX
tKHOX

tKHTSX
tKHARX

0.5
0.5
0.5

0.5
0.5

—
—
—

—
—

ns

SYSCLK to output enable tKHOE 0.5 — ns 5

SYSCLK VMVMVM
CVIH

CVIL

VM = Midpoint Voltage (OVDD/2)

tSYSCLK

tKR tKF
tKHKL



MPC7448 RISC Microprocessor Hardware Specifications, Rev. 4

Freescale Semiconductor 21
 

Electrical and Thermal Characteristics

5.2.3 IEEE Std. 1149.1 AC Timing Specifications
Table 10 provides the IEEE Std. 1149.1 (JTAG) AC timing specifications as defined in Figure 8 through 
Figure 11.

Table 10. JTAG AC Timing Specifications (Independent of SYSCLK)1

At recommended operating conditions. See Table 4.

Parameter Symbol Min Max Unit Notes

TCK frequency of operation fTCLK 0 33.3 MHz

TCK cycle time tTCLK 30 — ns

TCK clock pulse width measured at 1.4 V tJHJL 15 — ns

TCK rise and fall times tJR and tJF — 2 ns

TRST assert time tTRST 25 — ns 2

Input setup times:
Boundary-scan data
TMS, TDI 

tDVJH
tIVJH

4
0

—
—

ns 3

Input hold times:
Boundary-scan data
TMS, TDI 

tDXJH
tIXJH

20
25

—
—

ns 3

Valid times:
Boundary-scan data
TDO

tJLDV
tJLOV

4
4

20
25

ns 4

Output hold times:
Boundary-scan data
TDO

tJLDX
tJLOX

30
30

—
—

ns 4

TCK to output high impedance:
Boundary-scan data
TDO

tJLDZ
tJLOZ

3
3

19
9

ns 4, 5

Notes: 
1. All outputs are measured from the midpoint voltage of the falling/rising edge of TCLK to the midpoint of the signal in question. 

The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Figure 7). 
Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

2. TRST is an asynchronous level sensitive signal. The time is for test purposes only.

3. Non-JTAG signal input timing with respect to TCK.

4. Non-JTAG signal output timing with respect to TCK.

5. Guaranteed by design and characterization.
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Figure 7 provides the AC test load for TDO and the boundary-scan outputs of the MPC7448.

Figure 7. Alternate AC Test Load for the JTAG Interface

Figure 8 provides the JTAG clock input timing diagram.

Figure 8. JTAG Clock Input Timing Diagram

Figure 9 provides the TRST timing diagram.

Figure 9. TRST Timing Diagram

Figure 10 provides the boundary-scan timing diagram.

Figure 10. Boundary-Scan Timing Diagram

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω

VMVMVM

VM = Midpoint Voltage (OVDD/2)

tTCLK

tJR tJFtJHJL

TCLK

TRST
tTRST

VM = Midpoint Voltage (OVDD/2)

VM VM

VMTCK

Boundary

Boundary

Boundary

Data Outputs

Data Inputs

Data Outputs

VM = Midpoint Voltage (OVDD/2)

tDXJH

tDVJH

tJLDV

tJLDZ

Input
Data Valid

Output Data Valid

Output Data Valid

tJLDX

VM
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Figure 11 provides the test access port timing diagram.

Figure 11. Test Access Port Timing Diagram

5.3 Voltage and Frequency Derating
Voltage and frequency derating is no longer supported for part numbers described by this document 
beginning with datecode 0613. (See Section 11, “Part Numbering and Marking,” for information on date 
code markings.) It is supported by some MPC7448 part numbers which target low-power applications; see 
Section 11.2, “Part Numbers Not Fully Addressed by This Document” and the referenced MPC7448 
Hardware Specification Addenda for more information on these low-power devices. For those devices 
which previously supported this feature, information has been archived in the Chip Errata for the 
MPC7448 (document order no. MPC7448CE). 

VMTCK

TDI, TMS

TDO Output Data Valid

VM = Midpoint Voltage (OVDD/2)

tIXJH
tIVJH

tJLOV

tJLOZ

Input
Data Valid

TDO Output Data Valid

tJLOX

VM



MPC7448 RISC Microprocessor Hardware Specifications, Rev. 4

24 Freescale Semiconductor
 

Pin Assignments

6 Pin Assignments
Figure 12 (in Part A) shows the pinout of the MPC7448, 360 high coefficient of thermal expansion ceramic 
ball grid array (HCTE) package as viewed from the top surface. Part B shows the side profile of the HCTE 
package to indicate the direction of the top surface view.

Figure 12. Pinout of the MPC7448, 360 HCTE Package as Viewed from the Top Surface
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LVRAM B10 — — 12, 20, 22

NC (no connect) A6, A14, A15, B14, B15, C14, C15, C16, C17, C18, C19, D14, D15, D16, 
D17, D18, D19, E14, E15, F14, F15, G14, G15, H15, H16, J15, J16, J17, 
J18, J19, K15, K16, K17, K18, K19, L15, L16, L17, L18, L19

— — 11

LSSD_MODE E8 Low Input 6, 12

MCP C9 Low Input

OVDD B4, C2, C12, D5, F2, H3, J5, K2, L5, M3, N6, P2, P8, P11, R4, R13, R16, 
T6, T9, U2, U12, U16, V4, V7, V10, V14

— —

OVDD_SENSE E18, G18 — — 16

PLL_CFG[0:4] B8, C8, C7, D7, A7 High Input

PLL_CFG[5] D10 High Input 9, 20

PMON_IN D9 Low Input 13

PMON_OUT A9 Low Output

QACK G5 Low Input

QREQ P4 Low Output

SHD[0:1] E4, H5 Low I/O 3

SMI F9 Low Input

SRESET A2 Low Input

SYSCLK A10 — Input

TA K6 Low Input

TBEN E1 High Input

TBST F11 Low Output

TCK C6 High Input

TDI B9 High Input 6

TDO A4 High Output

TEA L1 Low Input

TEMP_ANODE N18 — — 17

TEMP_CATHODE N19 — — 17

TMS F1 High Input 6

TRST A5 Low Input 6, 14

TS L4 Low I/O 3

TSIZ[0:2] G6, F7, E7 High Output

TT[0:4] E5, E6, F6, E9, C5 High I/O

WT D3 Low Output

VDD H8, H10, H12, J7, J9, J11, J13, K8, K10, K12, K14, L7, L9, L11, L13, M8, 
M10, M12

— —

VDD A13, A16, A18, B17, B19, C13, E13, E16, F12, F17, F19, G11, G16, 
H14, H17, H19, M14, M16, M18, N15, N17, P16, P18

— — 15

Table 11. Pinout Listing for the MPC7448, 360 HCTE Package (continued)

Signal Name Pin Number Active I/O Notes
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9.1.2 System Bus Clock (SYSCLK) and Spread Spectrum Sources
Spread spectrum clock sources are an increasingly popular way to control electromagnetic interference 
emissions (EMI) by spreading the emitted noise to a wider spectrum and reducing the peak noise 
magnitude in order to meet industry and government requirements. These clock sources intentionally add 
long-term jitter in order to diffuse the EMI spectral content. The jitter specification given in Table 8 
considers short-term (cycle-to-cycle) jitter only and the clock generator’s cycle-to-cycle output jitter 
should meet the MPC7448 input cycle-to-cycle jitter requirement. Frequency modulation and spread are 
separate concerns, and the MPC7448 is compatible with spread spectrum sources if the recommendations 
listed in Table 13 are observed.

It is imperative to note that the processor’s minimum and maximum SYSCLK, core, and VCO frequencies 
must not be exceeded regardless of the type of clock source. Therefore, systems in which the processor is 
operated at its maximum rated core or bus frequency should avoid violating the stated limits by using 
down-spreading only.

9.2 Power Supply Design and Sequencing
The following sections provide detailed information regarding power supply design for the MPC7448.

9.2.1 Power Supply Sequencing
The MPC7448 requires its power rails and clock to be applied in a specific sequence to ensure proper 
device operation and to prevent device damage. The power sequencing requirements are as follows:

• AVDD must be delayed with respect to VDD by the RC time constant of the PLL filter circuit 
described in Section 9.2.2, “PLL Power Supply Filtering”. This time constant is nominally 100 µs.

• OVDD may ramp anytime before or after VDD and AVDD.

Additionally, the following requirements exist regarding the application of SYSCLK:

• The voltage at the SYSCLK input must not exceed VDD until VDD has ramped to 0.9 V.

• The voltage at the SYSCLK input must not exceed OVDD by more 20% during transients (see 
overshoot/undershoot specifications in Figure 2) or 0.3 V DC (see Table 2) at any time.

Table 13. Spread Spectrum Clock Source Recommendations
At recommended operating conditions. See Table 4.

Parameter Min Max Unit Notes

Frequency modulation — 50 kHz 1

Frequency spread — 1.0 % 1, 2

Notes: 
1. Guaranteed by design
2. SYSCLK frequencies resulting from frequency spreading, and the resulting core and VCO 

frequencies, must meet the minimum and maximum specifications given in Table 8.
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9.4 Output Buffer DC Impedance
The MPC7448 processor bus drivers are characterized over process, voltage, and temperature. To measure 
Z0, an external resistor is connected from the chip pad to OVDD or GND. The value of each resistor is 
varied until the pad voltage is OVDD/2. Figure 20 shows the driver impedance measurement.

Figure 20. Driver Impedance Measurement

The output impedance is the average of two components—the resistances of the pull-up and pull-down 
devices. When data is held low, SW2 is closed (SW1 is open), and RN is trimmed until the voltage at the 
pad equals OVDD/2. RN then becomes the resistance of the pull-down devices. When data is held high, 
SW1 is closed (SW2 is open), and RP is trimmed until the voltage at the pad equals OVDD/2. RP then 
becomes the resistance of the pull-up devices. RP and RN are designed to be close to each other in value. 
Then, Z0 = (RP + RN)/2.

Table 15 summarizes the signal impedance results. The impedance increases with junction temperature 
and is relatively unaffected by bus voltage.

9.5 Pull-Up/Pull-Down Resistor Requirements
The MPC7448 requires high-resistive (weak: 4.7-KΩ) pull-up resistors on several control pins of the bus 
interface to maintain the control signals in the negated state after they have been actively negated and 
released by the MPC7448 or other bus masters. These pins are: TS, ARTRY, SHDO, and SHD1.

Some pins designated as being factory test pins must be pulled up to OVDD or down to GND to ensure 
proper device operation. The pins that must be pulled up to OVDD are LSSD_MODE and TEST[0:3]; the 
pins that must be pulled down to GND are L1_TSTCLK and TEST[4]. The CKSTP_IN signal should 

Table 15. Impedance Characteristics
At recommended operating conditions. See Table 4

Impedance Processor Bus Unit

Z0 Typical 33–42 Ω

Maximum 31–51 Ω

OVDD

OGND

RP

RN

Pad
Data

SW1

SW2
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to fully control the processor. If the target system has independent reset sources, such as voltage monitors, 
watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be 
merged into these signals with logic.

The arrangement shown in Figure 21 allows the COP port to independently assert HRESET or TRST, 
while ensuring that the target can drive HRESET as well. If the JTAG interface and COP header will not 
be used, TRST should be tied to HRESET through a 0-Ω isolation resistor so that it is asserted when the 
system reset signal (HRESET) is asserted, ensuring that the JTAG scan chain is initialized during 
power-on. Although Freescale recommends that the COP header be designed into the system as shown in 
Figure 21, if this is not possible, the isolation resistor will allow future access to TRST in the case where 
a JTAG interface may need to be wired onto the system in debug situations.

The COP header shown in Figure 21 adds many benefits—breakpoints, watchpoints, register and memory 
examination/modification, and other standard debugger features are possible through this interface—and 
can be as inexpensive as an unpopulated footprint for a header to be added when needed.

The COP interface has a standard header for connection to the target system, based on the 0.025" 
square-post, 0.100" centered header assembly (often called a Berg header). The connector typically has 
pin 14 removed as a connector key.

There is no standardized way to number the COP header shown in Figure 21; consequently, many different 
pin numbers have been observed from emulator vendors. Some are numbered top-to-bottom then 
left-to-right, while others use left-to-right then top-to-bottom, while still others number the pins counter 
clockwise from pin 1 (as with an IC). Regardless of the numbering, the signal placement recommended in 
Figure 21 is common to all known emulators.

The QACK signal shown in Figure 21 is usually connected to the bridge chip or other system control logic 
in a system and is an input to the MPC7448 informing it that it can go into the quiescent state. Under 
normal operation this occurs during a low-power mode selection. In order for COP to work, the MPC7448 
must see this signal asserted (pulled down). While shown on the COP header, not all emulator products 
drive this signal. If the product does not, a pull-down resistor can be populated to assert this signal. 
Additionally, some emulator products implement open-drain type outputs and can only drive QACK 
asserted; for these tools, a pull-up resistor can be implemented to ensure this signal is negated when it is 
not being driven by the tool. Note that the pull-up and pull-down resistors on the QACK signal are 
mutually exclusive and it is never necessary to populate both in a system. To preserve correct power-down 
operation, QACK should be merged through logic so that it also can be driven by the bridge or system 
logic.
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Figure 21. JTAG Interface Connection
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Notes:
1. RUN/STOP, normally found on pin 5 of the COP header, is not implemented on the MPC7448. Connect 

pin 5 of the COP header to OVDD with a 10-KΩ pull-up resistor.

2. Key location; pin 14 is not physically present on the COP header.

3. Component not populated. Populate only if debug tool does not drive QACK.

4. Populate only if debug tool uses an open-drain type output and does not actively negate QACK.

5. If the JTAG interface is implemented, connect HRESET from the target source to TRST from the COP 
header though an AND gate to TRST of the part. If the JTAG interface is not implemented, connect 
HRESET from the target source to TRST of the part through a 0-Ω isolation resistor.

6. The COP port and target board should be able to independently assert HRESET and TRST to the 
processor in order to fully control the processor as shown above.

TRST 6

10 KΩ
OVDD



MPC7448 RISC Microprocessor Hardware Specifications, Rev. 4

48 Freescale Semiconductor
 

System Design Information

9.7.1 Internal Package Conduction Resistance
For the exposed-die packaging technology described in Table 5, the intrinsic conduction thermal resistance 
paths are as follows:

• The die junction-to-case thermal resistance (the case is actually the top of the exposed silicon die)

• The die junction-to-board thermal resistance

Figure 24 depicts the primary heat transfer path for a package with an attached heat sink mounted to a 
printed-circuit board.

Figure 24. C4 Package with Heat Sink Mounted to a Printed-Circuit Board

Heat generated on the active side of the chip is conducted through the silicon, through the heat sink attach 
material (or thermal interface material), and, finally, to the heat sink, where it is removed by forced-air 
convection.

Because the silicon thermal resistance is quite small, the temperature drop in the silicon may be neglected 
for a first-order analysis. Thus, the thermal interface material and the heat sink conduction/convective 
thermal resistances are the dominant terms.

9.7.2 Thermal Interface Materials
A thermal interface material is recommended at the package lid-to-heat sink interface to minimize the 
thermal contact resistance. For those applications where the heat sink is attached by spring clip 
mechanism, Figure 25 shows the thermal performance of three thin-sheet thermal-interface materials 
(silicone, graphite/oil, fluoroether oil), a bare joint, and a joint with thermal grease as a function of contact 
pressure. As shown, the performance of these thermal interface materials improves with increasing contact 
pressure. The use of thermal grease significantly reduces the interface thermal resistance. That is, the bare 
joint results in a thermal resistance approximately seven times greater than the thermal grease joint. 

Often, heat sinks are attached to the package by means of a spring clip to holes in the printed-circuit board 
(see Figure 22). Therefore, synthetic grease offers the best thermal performance due to the low interface 
pressure and is recommended due to the high power dissipation of the MPC7448. Of course, the selection 

External Resistance

External Resistance

Internal Resistance

Radiation Convection

Radiation Convection

Heat Sink

Printed-Circuit Board

Thermal Interface Material

Package/Leads
Die Junction
Die/Package

(Note the internal versus external package resistance.)
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Due to the complexity and variety of system-level boundary conditions for today's microelectronic 
equipment, the combined effects of the heat transfer mechanisms (radiation, convection, and conduction) 
may vary widely. For these reasons, we recommend using conjugate heat transfer models for the board as 
well as system-level designs.

For system thermal modeling, the MPC7448 thermal model is shown in Figure 26. Four volumes represent 
this device. Two of the volumes, solder ball-air and substrate, are modeled using the package outline size 
of the package. The other two, die and bump-underfill, have the same size as the die. The silicon die should 
be modeled 8.0 × 7.3 × 0.86 mm3 with the heat source applied as a uniform source at the bottom of the 
volume. The bump and underfill layer is modeled as 8.0 × 7.3 × 0.07 mm3collapsed in the z-direction with 
a thermal conductivity of 5.0 W/(m • K) in the z-direction. The substrate volume is 25 × 25 × 1.14 mm3 
and has 9.9 W/(m • K) isotropic conductivity in the xy-plane and 2.95 W/(m • K) in the direction of the 
z-axis. The solder ball and air layer are modeled with the same horizontal dimensions as the substrate and 
is 0.8 mm thick. For the LGA package the solder and air layer is 0.1 mm thick, but the material properties 
are the same. It can also be modeled as a collapsed volume using orthotropic material properties: 
0.034 W/(m • K) in the xy-plane direction and 11.2 W/(m • K) in the direction of the z-axis.

Figure 26. Recommended Thermal Model of MPC7448
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Solder Ball and Air (25 × 25 × 0.8 mm3)

kx 0.034 W/(m • K)

ky 0.034

kz 11.2
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9.7.4 Temperature Diode
The MPC7448 has a temperature diode on the microprocessor that can be used in conjunction with other 
system temperature monitoring devices (such as Analog Devices, ADT7461™). These devices use the 
negative temperature coefficient of a diode operated at a constant current to determine the temperature of 
the microprocessor and its environment. For proper operation, the monitoring device used should 
auto-calibrate the device by canceling out the VBE variation of each MPC7448’s internal diode.

The following are the specifications of the MPC7448 on-board temperature diode:

Vf > 0.40 V 

Vf < 0.90 V

Operating range 2–300 μA

Diode leakage < 10 nA @ 125°C

Ideality factor over 5–150 μA at 60°C: n = 1.0275 ± 0.9%

Ideality factor is defined as the deviation from the ideal diode equation:

Another useful equation is:

Where:

Ifw = Forward current

Is = Saturation current

Vd = Voltage at diode

Vf = Voltage forward biased

VH = Diode voltage while IH is flowing

VL = Diode voltage while IL is flowing

IH = Larger diode bias current

IL = Smaller diode bias current

q = Charge of electron (1.6 x 10 –19 C)

n = Ideality factor (normally 1.0)

K = Boltzman’s constant (1.38 x 10–23 Joules/K)

T = Temperature (Kelvins)

The ratio of IH to IL is usually selected to be 10:1. The previous equation simplifies to the following:

 Ifw = Is e  – 1 

 qVf___
nKT

 VH – VL = n ln  – 1 
KT__
q

 IH__
IL

 VH – VL = 1.986 × 10–4 × nT 
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Solving for T, the equation becomes:

9.7.5 Dynamic Frequency Switching (DFS)
The DFS feature in the MPC7448 adds the ability to divide the processor-to-system bus ratio by two or 
four during normal functional operation. Divide-by-two mode is enabled by setting the HID1[DFS2] bit 
in software or by asserting the DFS2 pin via hardware. The MPC7448 can be returned for full speed by 
clearing HID1[DFS2] or negating DFS2. Similarly, divide-by-four mode is enabled by setting 
HID1[DFS4] in software or by asserting the DFS4 pin. In all cases, the frequency change occurs in 1 clock 
cycle and no idle waiting period is required to switch between modes. Note that asserting either DFS2 or 
DFS4 overrides software control of DFS, and that asserting both DFS2 and DFS4 disables DFS 
completely, including software control. Additional information regarding DFS can be found in the 
MPC7450 RISC Microprocessor Family Reference Manual. Note that minimum core frequency 
requirements must be observed when enabling DFS, and the resulting core frequency must meet the 
requirements for fcore_DFS given in Table 8.

9.7.5.1 Power Consumption with DFS Enabled
Power consumption with DFS enabled can be approximated using the following formula:

Where:

PDFS = Power consumption with DFS enabled

fDFS = Core frequency with DFS enabled

f = Core frequency prior to enabling DFS

P = Power consumption prior to enabling DFS (see Table 7)

PDS = Deep sleep mode power consumption (see Table 7)

The above is an approximation only. Power consumption with DFS enabled is not tested or guaranteed.

9.7.5.2 Bus-to-Core Multiplier Constraints with DFS
DFS is not available for all bus-to-core multipliers as configured by PLL_CFG[0:5] during hard reset. The 
complete listing is shown in Table 16. Shaded cells represent DFS modes that are not available for a 
particular PLL_CFG[0:5] setting. Should software or hardware attempt to transition to a multiplier that is 
not supported, the device will remain at its current multiplier. For example, if a transition from 
DFS-disabled to an unsupported divide-by-2 or divide-by-4 setting is attempted, the bus-to-core multiplier 
will remain at the setting configured by the PLL_CFG[0:5] pins. In the case of an attempted transition from 
a supported divide-by-2 mode to an unsupported divide-by-4 mode, the device will remain in divide-by-2 
mode. In all cases, the HID1[PC0-5] bits will correctly reflect the current bus-to-core frequency multiplier.

 nT =   
 VH – VL__________

1.986 × 10–4

 PDFS =   (P – PDS)  + PDS
fDFS___

f
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11.2 Part Numbers Not Fully Addressed by This Document
Parts with application modifiers or revision levels not fully addressed in this specification document are 
described in separate hardware specification addenda which supplement and supersede this document. As 
such parts are released, these specifications will be listed in this section.

Table 19. Part Numbers Addressed by MC7448xxnnnnNx Series Hardware Specification Addendum
(Document Order No. MPC7448ECS01AD)

xx 7448 xx nnnn N x
Product 

Code
Part 

Identifier
Package

Processor 
Frequency

Application Modifier Revision Level

MC 7448 HX = HCTE BGA
VS = RoHS LGA
VU = RoHS BGA

1400 N: 1.15 V ± 50 mV 
0 to 105 °C

(date code 0613 and later) 2

C: 2.1; PVR = 0x8004_0201
D: 2.2; PVR = 0x8004_0202

MC
PPC1

1400 N: 1.1 V ± 50 mV 
0 to 105 °C

(date code 0612 and prior) 2

MC
PPC1

1267
Revision C only

N: 1.1 V ± 50 mV 
0 to 105 °C

MC
PPC1

1267
Revision D only

N: 1.05 V ± 50 mV 
0 to 105 °C

MC
PPC1

1250 N: 1.1 V ± 50 mV 
0 to 105 °C

MC
PPC1

1000
867
800
667
600

N: 1.0 V ± 50 mV 
0 to 105 °C

Notes: 
1. The P prefix in a Freescale part number designates a “Pilot Production Prototype” as defined by Freescale SOP 3-13. These 

parts have only preliminary reliability and characterization data. Before pilot production prototypes can be shipped, written 
authorization from the customer must be on file in the applicable sales office acknowledging the qualification status and the 
fact that product changes may still occur as pilot production prototypes are shipped.

2. Core voltage for 1400 MHz devices currently in production (date code of 0613 and later) is 1.15 V ± 50 mV; all such devices 
have the MC product code. The 1400 MHz devices with date code of 0612 and prior specified core voltage of 1.1 V ± 50 mV; 
this includes all 1400 MHz devices with the PPC product code. See Section 11.3, “Part Marking,” for information on part 
marking.


