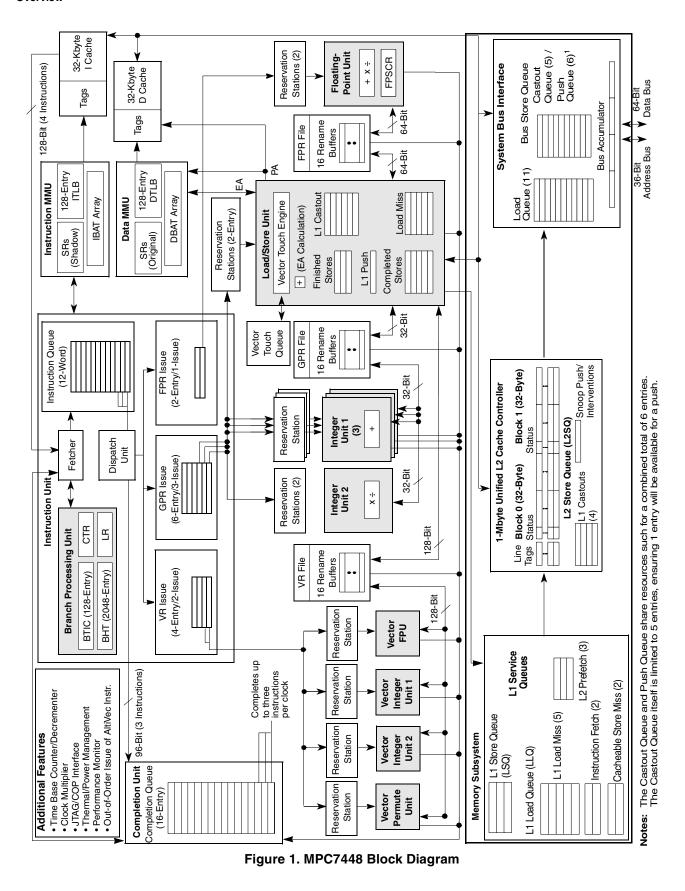


Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**


Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC G4
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	1.7GHz
Co-Processors/DSP	Multimedia; SIMD
RAM Controllers	-
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	
SATA	-
USB	-
Voltage - I/O	1.5V, 1.8V, 2.5V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	360-BCBGA, FCCBGA
Supplier Device Package	360-FCCBGA (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmc7448hx1700ld

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MPC7448 RISC Microprocessor Hardware Specifications, Rev. 4

Overview

NM

Features

— Four vector units and 32-entry vector register file (VRs)

- Vector permute unit (VPU)
- − Vector integer unit 1 (VIU1) handles short-latency AltiVecTM integer instructions, such as vector add instructions (for example, vaddsbs, vaddsbs, and vaddsws).
- Vector integer unit 2 (VIU2) handles longer-latency AltiVec integer instructions, such as vector multiply add instructions (for example, vmhaddshs, vmhraddshs, and vmladduhm).
- Vector floating-point unit (VFPU)
- Three-stage load/store unit (LSU)
 - Supports integer, floating-point, and vector instruction load/store traffic
 - Four-entry vector touch queue (VTQ) supports all four architected AltiVec data stream operations
 - Three-cycle GPR and AltiVec load latency (byte, half word, word, vector) with one-cycle throughput
 - Four-cycle FPR load latency (single, double) with one-cycle throughput
 - No additional delay for misaligned access within double-word boundary
 - A dedicated adder calculates effective addresses (EAs).
 - Supports store gathering
 - Performs alignment, normalization, and precision conversion for floating-point data
 - Executes cache control and TLB instructions
 - Performs alignment, zero padding, and sign extension for integer data
 - Supports hits under misses (multiple outstanding misses)
 - Supports both big- and little-endian modes, including misaligned little-endian accesses
- Three issue queues, FIQ, VIQ, and GIQ, can accept as many as one, two, and three instructions, respectively, in a cycle. Instruction dispatch requires the following:
 - Instructions can only be dispatched from the three lowest IQ entries—IQ0, IQ1, and IQ2.
 - A maximum of three instructions can be dispatched to the issue queues per clock cycle.
 - Space must be available in the CQ for an instruction to dispatch (this includes instructions that are assigned a space in the CQ but not in an issue queue).
- Rename buffers
 - 16 GPR rename buffers
 - 16 FPR rename buffers
 - 16 VR rename buffers
- Dispatch unit
 - Decode/dispatch stage fully decodes each instruction
- Completion unit
 - Retires an instruction from the 16-entry completion queue (CQ) when all instructions ahead of it have been completed, the instruction has finished executing, and no exceptions are pending
 - Guarantees sequential programming model (precise exception model)

Features

- Efficient data flow
 - Although the VR/LSU interface is 128 bits, the L1/L2 bus interface allows up to 256 bits.
 - The L1 data cache is fully pipelined to provide 128 bits/cycle to or from the VRs.
 - The L2 cache is fully pipelined to provide 32 bytes per clock every other cycle to the L1 caches.
 - As many as 16 out-of-order transactions can be present on the MPX bus.
 - Store merging for multiple store misses to the same line. Only coherency action taken (address-only) for store misses merged to all 32 bytes of a cache block (no data tenure needed).
 - Three-entry finished store queue and five-entry completed store queue between the LSU and the L1 data cache
 - Separate additional queues for efficient buffering of outbound data (such as castouts and write-through stores) from the L1 data cache and L2 cache
- Multiprocessing support features include the following:
 - Hardware-enforced, MESI cache coherency protocols for data cache
 - Load/store with reservation instruction pair for atomic memory references, semaphores, and other multiprocessor operations
- Power and thermal management
 - Dynamic frequency switching (DFS) feature allows processor core frequency to be halved or quartered through software to reduce power consumption.
 - The following three power-saving modes are available to the system:
 - Nap—Instruction fetching is halted. Only the clocks for the time base, decrementer, and JTAG logic remain running. The part goes into the doze state to snoop memory operations on the bus and then back to nap using a <u>QREQ</u>/<u>QACK</u> processor-system handshake protocol.
 - Sleep—Power consumption is further reduced by disabling bus snooping, leaving only the PLL in a locked and running state. All internal functional units are disabled.
 - Deep sleep—When the part is in the sleep state, the system can disable the PLL. The system
 can then disable the SYSCLK source for greater system power savings. Power-on reset
 procedures for restarting and relocking the PLL must be followed upon exiting the deep
 sleep state.
 - Instruction cache throttling provides control of instruction fetching to limit device temperature.
 - A new temperature diode that can determine the temperature of the microprocessor
- Performance monitor can be used to help debug system designs and improve software efficiency.
- In-system testability and debugging features through JTAG boundary-scan capability
- Testability
 - LSSD scan design
 - IEEE Std. 1149.1TM JTAG interface

4 General Parameters

The following list summarizes the general parameters of the MPC7448:

Technology	90 nm CMOS S	OI, nine-layer metal
Die size	$8.0 \text{ mm} \times 7.3 \text{ m}$	m
Transistor count	90 million	
Logic design	Mixed static and	d dynamic
Packages	Surface mount 3	360 ceramic ball grid array (HCTE)
	Surface mount 3	360 ceramic land grid array (HCTE)
	Surface mount 3	360 ceramic ball grid array with lead-free spheres (HCTE)
Core power supply	1.30 V	(1700 MHz device)
	1.25 V	(1600 MHz device)
	1.20 V	(1420 MHz device)
	1.15 V	(1000 MHz device)
I/O power supply	1.5 V, 1.8 V, or	2.5 V

5 Electrical and Thermal Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC7448.

5.1 DC Electrical Characteristics

The tables in this section describe the MPC7448 DC electrical characteristics. Table 2 provides the absolute maximum ratings. See Section 9.2, "Power Supply Design and Sequencing," for power sequencing requirements.

Characteristic			Maximum Value	Unit	Notes
Core supply voltage			-0.3 to 1.4	V	2
PLL supply voltage	supply voltage			V	2
Processor bus supply voltage I/O Voltage Mode = 1.5 V I/O Voltage Mode = 1.8 V I/O Voltage Mode = 2.5 V		OV _{DD}	-0.3 to 1.8	V	3
			-0.3 to 2.2		3
			-0.3 to 3.0		3
Input voltage	Processor bus	V _{in}	-0.3 to OV _{DD} + 0.3	V	4
	JTAG signals	V _{in}	-0.3 to OV _{DD} + 0.3	V	
Storage temperature range		T _{stg}	– 55 to 150	•C	

Table 2. Absolute Maximum Ratings ¹

Notes:

1. Functional and tested operating conditions are given in Table 4. Absolute maximum ratings are stress ratings only and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.

- 2. See Section 9.2, "Power Supply Design and Sequencing" for power sequencing requirements.
- 3. Bus must be configured in the corresponding I/O voltage mode; see Table 3.
- 4. Caution: V_{in} must not exceed OV_{DD} by more than 0.3 V at any time including during power-on reset except as allowed by the overshoot specifications. V_{in} may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.

MPC7448 RISC Microprocessor Hardware Specifications, Rev. 4

Electrical and Thermal Characteristics

Table 5 provides the package thermal characteristics for the MPC7448. For more information regarding thermal management, see Section 9.7, "Power and Thermal Management Information."

Characteristic	Symbol	Value	Unit	Notes
Junction-to-ambient thermal resistance, natural convection, single-layer (1s) board	$R_{ extsf{ heta}JA}$	26	•C/W	2, 3
Junction-to-ambient thermal resistance, natural convection, four-layer (2s2p) board	$R_{ extsf{ heta}JMA}$	19	•C/W	2, 4
Junction-to-ambient thermal resistance, 200 ft/min airflow, single-layer (1s) board	$R_{ extsf{ heta}JMA}$	22	•C/W	2, 4
Junction-to-ambient thermal resistance, 200 ft/min airflow, four-layer (2s2p) board	$R_{ extsf{ heta}JMA}$	16	•C/W	2, 4
Junction-to-board thermal resistance	$R_{ extsf{ heta}JB}$	11	•C/W	5
Junction-to-case thermal resistance	$R_{ extsf{ heta}JC}$	< 0.1	•C/W	6

Table 5. Package Thermal Characteristics¹

Notes:

- 1. Refer to Section 9.7, "Power and Thermal Management Information," for details about thermal management.
- Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal resistance.
- 3. Per JEDEC JESD51-2 with the single-layer board horizontal
- 4. Per JEDEC JESD51-6 with the board horizontal
- 5. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 6. This is the thermal resistance between die and case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the calculated case temperature. The actual value of R_{θJC} for the part is less than 0.1°C/W.

Table 6 provides the DC electrical characteristics for the MPC7448.

Table 6. DC Electrical Specifications

At recommended operating conditions. See Table 4.

Characteristic	Nominal Bus Voltage ¹	Symbol	Min	Мах	Unit	Notes
Input high voltage	1.5	V _{IH}	$\mathrm{OV}_\mathrm{DD} imes 0.65$	OV _{DD} + 0.3	V	2
(all inputs)	1.8	-	$\mathrm{OV}_\mathrm{DD} imes 0.65$	OV _{DD} + 0.3		
	2.5		1.7	OV _{DD} + 0.3		
Input low voltage	1.5	V _{IL}	-0.3	$\mathrm{OV}_\mathrm{DD} imes 0.35$	V	2
(all inputs)	1.8	-	-0.3	$\mathrm{OV}_\mathrm{DD} imes 0.35$		
	2.5		-0.3	0.7		
Input leakage current, all signals except BVSEL0, LSSD_MODE, TCK, TDI, TMS, TRST: V _{in} = OV _{DD}	_	l _{in}	—	50	μA	2, 3
V _{in} = GND				- 50		
Input leakage current, BVSEL0, <u>LSSD_MODE</u> , <u>TCK</u> , TDI, TMS, <u>TRST</u> : V _{in} = OV _{DD} V _{in} = GND	—	l _{in}	_	50 - 2000	μA	2, 6

Table 6. DC Electrical Specifications (continued)

At recommended operating conditions. See Table 4.

Character	istic	Nominal Bus Voltage ¹	Symbol	Min	Мах	Unit	Notes
High-impedance (off-state) leakage current: $V_{in} = OV_{DD}$ $V_{in} = GND$		_	I _{TSI}	_	50 - 50	μA	2, 3, 4
Output high voltage @ IC	_{0H} = -5 mA	1.5	V _{OH}	OV _{DD} - 0.45	_	V	
				OV _{DD} - 0.45	_		
				1.8	_		
Output low voltage @ I _{OI}	= 5 mA	1.5	V _{OL}	_	0.45	V	
				_	0.45		
		2.5		_	0.6		
Capacitance, V _{in} = 0 V, f = 1 MHz	All inputs		C _{in}	_	8.0	pF	5

Notes:

1. Nominal voltages; see Table 4 for recommended operating conditions.

2. All I/O signals are referenced to OV_{DD}.

3. Excludes test signals and IEEE Std. 1149.1 boundary scan (JTAG) signals

4. The leakage is measured for nominal OV_{DD} and V_{DD} , or both OV_{DD} and V_{DD} must vary in the same direction (for example, both OV_{DD} and V_{DD} vary by either +5% or -5%).

5. Capacitance is periodically sampled rather than 100% tested.

6. These pins have internal pull-up resistors.

Table 7 provides the power consumption for the MPC7448 part numbers described by this document; see Section 11.1, "Part Numbers Fully Addressed by This Document," for information regarding which part numbers are described by this document. Freescale also offers MPC7448 part numbers that meet lower power consumption specifications by adhering to lower core voltage and core frequency specifications. For more information on these devices, including references to the MPC7448 Hardware Specification Addenda that describe these devices, see Section 11.2, "Part Numbers Not Fully Addressed by This Document."

The power consumptions provided in Table 7 represent the power consumption of each speed grade when operated at the rated maximum core frequency (see Table 8). Freescale sorts devices by power as well as by core frequency, and power limits for each speed grade are independent of each other. Each device is tested at its maximum core frequency only. (Note that Deep Sleep Mode power consumption is independent of clock frequency.) Operating a device at a frequency lower than its rated maximum is fully supported provided the clock frequencies are within the specifications given in Table 8, and a device operated below its rated maximum will have lower power consumption. However, inferences should not be made about a device's power consumption based on the power specifications of another (lower) speed grade. For example, a 1700 MHz device operated at 1420 MHz may not exhibit the same power consumption as a 1420 MHz device operated at 1420 MHz.

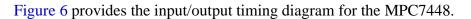
For all MPC7448 devices, the following guidelines on the use of these parameters for system design are suggested. The Full-Power Mode–Typical value represents the sustained power consumption of the device

MPC7448 RISC Microprocessor Hardware Specifications, Rev. 4

Electrical and Thermal Characteristics

when running a typical benchmark at temperatures in a typical system. The Full-Power Mode–Thermal value is intended to represent the sustained power consumption of the device when running a typical code sequence at high temperature and is recommended to be used as the basis for designing a thermal solution; see Section 9.7, "Power and Thermal Management Information" for more information on thermal solutions. The Full-Power Mode–Maximum value is recommended to be used for power supply design because this represents the maximum peak power draw of the device that a power supply must be capable of sourcing without voltage droop. For information on power consumption when dynamic frequency switching is enabled, see Section 9.7.5, "Dynamic Frequency Switching (DFS)."

	Die Junction					11	Neter
	Temperature - (T _j)	1000 MHz	1420 MHz	1600 MHz	1700 MHz	Unit	Notes
			Full-Power M	lode			
Typical	65 •C	15.0	19.0	20.0	21.0	W	1, 2
Thermal	105 • C	18.6	23.3	24.4	25.6	W	1, 5
Maximum	105 • C	21.6	27.1	28.4	29.8	W	1, 3
			Nap Mode	e			
Typical	105 • C	11.1	11.8	13.0	13.0	W	1,6
			Sleep Mod	le			
Typical	105 •C	10.8	11.4	12.5	12.5	W	1, 6
	Deep Sleep Mode (PLL Disabled)						
Typical	105 • C	10.4	11.0	12.0	12.0	W	1, 6


Table 7. Power Consumption for MPC7448 at Maximum Rated Frequency

Notes:

- These values specify the power consumption for the core power supply (V_{DD}) at nominal voltage and apply to all valid processor bus frequencies and configurations. The values do not include I/O supply power (OV_{DD}) or PLL supply power (AV_{DD}). OV_{DD} power is system dependent but is typically < 5% of V_{DD} power. Worst case power consumption for AV_{DD} < 13 mW. Freescale also offers MPC7448 part numbers that meet lower power consumption specifications; for more information on these devices, see Section 11.2, "Part Numbers Not Fully Addressed by This Document."
- 2. Typical power consumption is an average value measured with the processor operating at its rated maximum processor core frequency (except for Deep Sleep Mode), at nominal recommended V_{DD} (see Table 4) and 65°C while running the Dhrystone 2.1 benchmark and achieving 2.3 Dhrystone MIPs/MHz. This parameter is not 100% tested but periodically sampled.b
- 3. Maximum power consumption is the average measured with the processor operating at its rated maximum processor core frequency, at nominal V_{DD} and maximum operating junction temperature (see Table 4) while running an entirely cache-resident, contrived sequence of instructions to keep all the execution units maximally busy.
- 4. Doze mode is not a user-definable state; it is an intermediate state between full-power and either nap or sleep mode. As a result, power consumption for this mode is not tested.
- Thermal power consumption is an average value measured at the nominal recommended V_{DD} (see Table 4) and 105 °C while running the Dhrystone 2.1 benchmark and achieving 2.3 Dhrystone MIPs/MHz. This parameter is not 100% tested but periodically sampled.
- 6. Typical power consumption for these modes is measured at the nominal recommended V_{DD} (see Table 4) and 105 °C in the mode described. This parameter is not 100% tested but is periodically sampled.

Electrical and Thermal Characteristics

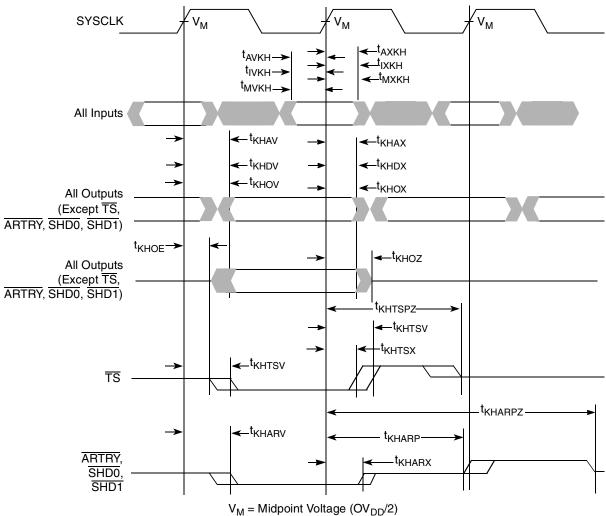


Figure 6. Input/Output Timing Diagram

8 Package Description

The following sections provide the package parameters and mechanical dimensions for the HCTE package.

8.1 Package Parameters for the MPC7448, 360 HCTE BGA

The package parameters are as provided in the following list. The package type is 25×25 mm, 360-lead high coefficient of thermal expansion ceramic ball grid array (HCTE).

Package outline	$25 \times 25 \text{ mm}$			
Interconnects	360 (19 × 19 ball array – 1)			
Pitch	1.27 mm (50 mil)			
Minimum module height	2.32 mm			
Maximum module height	2.80 mm			
Ball diameter	0.89 mm (35 mil)			
Coefficient of thermal expansion12.3 ppm/°C				

Package Description

8.2 Mechanical Dimensions for the MPC7448, 360 HCTE BGA

Figure 13 provides the mechanical dimensions and bottom surface nomenclature for the MPC7448, 360 HCTE BGA package.

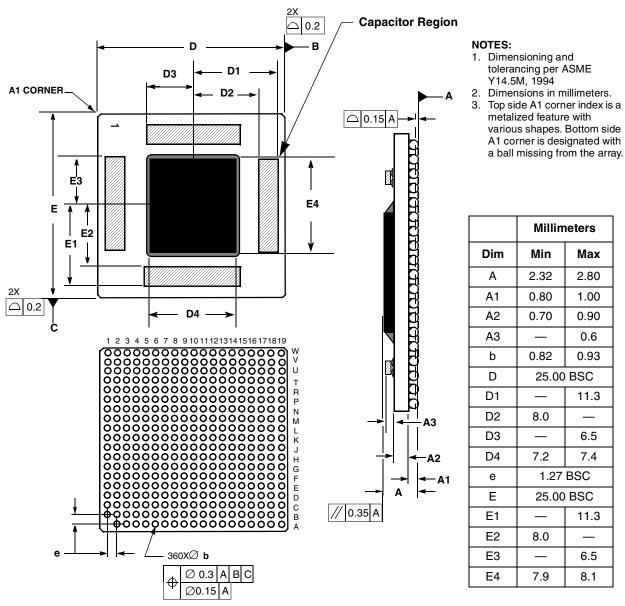


Figure 13. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC7448, 360 HCTE BGA Package

8.3 Package Parameters for the MPC7448, 360 HCTE LGA

The package parameters are as provided in the following list. The package type is 25×25 mm, 360 pin high coefficient of thermal expansion ceramic land grid array (HCTE).

Package outline	$25 \times 25 \text{ mm}$			
Interconnects	360 (19 × 19 ball array – 1)			
Pitch	1.27 mm (50 mil)			
Minimum module height	1.52 mm			
Maximum module height	1.80 mm			
Pad diameter	0.89 mm (35 mil)			
Coefficient of thermal expansion12.3 ppm/°C				

9.1.2 System Bus Clock (SYSCLK) and Spread Spectrum Sources

Spread spectrum clock sources are an increasingly popular way to control electromagnetic interference emissions (EMI) by spreading the emitted noise to a wider spectrum and reducing the peak noise magnitude in order to meet industry and government requirements. These clock sources intentionally add long-term jitter in order to diffuse the EMI spectral content. The jitter specification given in Table 8 considers short-term (cycle-to-cycle) jitter only and the clock generator's cycle-to-cycle output jitter should meet the MPC7448 input cycle-to-cycle jitter requirement. Frequency modulation and spread are separate concerns, and the MPC7448 is compatible with spread spectrum sources if the recommendations listed in Table 13 are observed.

Table 13. Spread Spectrum	Clock Source Recommendations
---------------------------	-------------------------------------

At recommended operating conditions. See Table 4.

Parameter	Min	Мах	Unit	Notes
Frequency modulation	—	50	kHz	1
Frequency spread	—	1.0	%	1, 2

Notes:

2. SYSCLK frequencies resulting from frequency spreading, and the resulting core and VCO frequencies, must meet the minimum and maximum specifications given in Table 8.

It is imperative to note that the processor's minimum and maximum SYSCLK, core, and VCO frequencies must not be exceeded regardless of the type of clock source. Therefore, systems in which the processor is operated at its maximum rated core or bus frequency should avoid violating the stated limits by using down-spreading only.

9.2 Power Supply Design and Sequencing

The following sections provide detailed information regarding power supply design for the MPC7448.

9.2.1 Power Supply Sequencing

The MPC7448 requires its power rails and clock to be applied in a specific sequence to ensure proper device operation and to prevent device damage. The power sequencing requirements are as follows:

- AV_{DD} must be delayed with respect to V_{DD} by the RC time constant of the PLL filter circuit described in Section 9.2.2, "PLL Power Supply Filtering". This time constant is nominally 100 μs.
- OV_{DD} may ramp anytime before or after V_{DD} and AV_{DD} .

Additionally, the following requirements exist regarding the application of SYSCLK:

- The voltage at the SYSCLK input must not exceed V_{DD} until V_{DD} has ramped to 0.9 V.
- The voltage at the SYSCLK input must not exceed OV_{DD} by more 20% during transients (see overshoot/undershoot specifications in Figure 2) or 0.3 V DC (see Table 2) at any time.

^{1.} Guaranteed by design

9.2.4 Decoupling Recommendations

Due to the MPC7448 dynamic power management feature, large address and data buses, and high operating frequencies, the MPC7448 can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the MPC7448 system, and the MPC7448 itself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer use sufficient decoupling capacitors, typically one capacitor for every V_{DD} pin, and a similar amount for the OV_{DD} pins, placed as close as possible to the power pins of the MPC7448. It is also recommended that these decoupling capacitors receive their power from separate V_{DD} , OV_{DD}, and GND power planes in the PCB, using short traces to minimize inductance.

These capacitors should have a value of 0.01 or 0.1 μ F. Only ceramic surface mount technology (SMT) capacitors should be used to minimize lead inductance. Orientations where connections are made along the length of the part, such as 0204, are preferable but not mandatory. Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993) and contrary to previous recommendations for decoupling Freescale microprocessors, multiple small capacitors of equal value are recommended over using multiple values of capacitance.

In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, feeding the V_{DD} and OV_{DD} planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should have a low equivalent series resistance (ESR) rating to ensure the quick response time necessary. They should also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors are 100–330 μ F (AVX TPS tantalum or Sanyo OSCON).

9.3 Connection Recommendations

To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal level. Unless otherwise noted, unused active low inputs should be tied to OV_{DD} and unused active high inputs should be connected to GND. All NC (no connect) signals must remain unconnected.

Power and ground connections must be made to all external V_{DD} , OV_{DD} , and GND pins in the MPC7448. For backward compatibility with the MPC7447, MPC7445, and MP7441, or for migrating a system originally designed for one of these devices to the MPC7448, the new power and ground signals (formerly NC, see Table 11) may be left unconnected if the core frequency is 1 GHz or less. Operation above 1 GHz requires that these additional power and ground signals be connected, and it is strongly recommended that all new designs include the additional connections. See also Section 7, "Pinout Listings," for additional information.

The MPC7448 provides VDD_SENSE, OVDD_SENSE, and GND_SENSE pins. These pins connect directly to the power/ground planes in the device package and are intended to allow an external device to measure the voltage present on the V_{DD} , OV_{DD} and GND planes in the device package. The most common use for these signals is as a feedback signal to a power supply regulator to allow it to compensate for board losses and supply the correct voltage at the device. (Note that all voltage parameters are specified at the pins of the device.) If not used for this purpose, it is recommended that these signals be connected to test points that can be used in the event that an accurate measurement of the voltage at the device is needed during system debug. Otherwise, these signals should be connected to the appropriate power/ground planes on the circuit board or left unconnected.

likewise be pulled up through a pull-up resistor (weak or stronger: 4.7–1 K Ω) to prevent erroneous assertions of this signal.

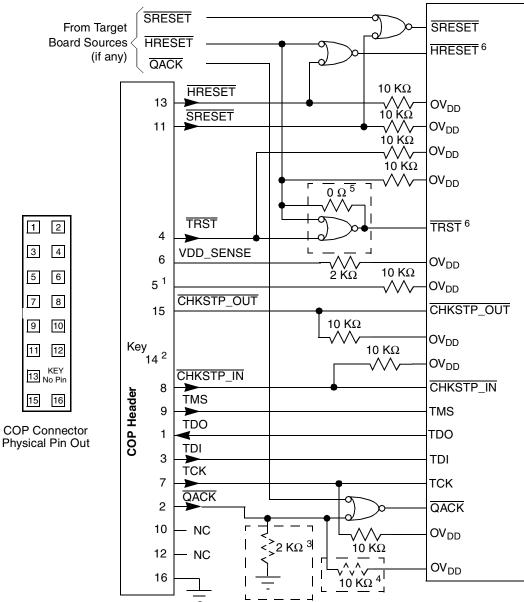
In addition, the MPC7448 has one open-drain style output that requires a pull-up resistor (weak or stronger: $4.7-1 \text{ K}\Omega$) if it is used by the system. This pin is CKSTP_OUT.

BVSEL0 and BVSEL1 should not be allowed to float, and should be configured either via pull-up or pull-down resistors or actively driven by external logic. If pull-down resistors are used to configure BVSEL0 or BVSEL1, the resistors should be less than 250 Ω (see Table 11). Because PLL_CFG[0:5] must remain stable during normal operation, strong pull-up and pull-down resistors (1 K Ω or less) are recommended to configure these signals in order to protect against erroneous switching due to ground bounce, power supply noise, or noise coupling.

During inactive periods on the bus, the address and transfer attributes may not be driven by any master and may, therefore, float in the high-impedance state for relatively long periods of time. Because the MPC7448 must continually monitor these signals for snooping, this float condition may cause excessive power draw by the input receivers on the MPC7448 or by other receivers in the system. These signals can be pulled up through weak (10-K Ω) pull-up resistors by the system, address bus driven mode enabled (see the *MPC7450 RISC Microprocessor Family Users' Manual* for more information on this mode), or they may be otherwise driven by the system during inactive periods of the bus to avoid this additional power draw. Preliminary studies have shown the additional power draw by the MPC7448 input receivers to be negligible and, in any event, none of these measures are necessary for proper device operation. The snooped address and transfer attribute inputs are: A[0:35], AP[0:4], TT[0:4], CI, WT, and GBL.

If address or data parity is not used by the system, and respective parity checking is disabled through HID1, the input receivers for those pins are disabled and do not require pull-up resistors, therefore they may be left unconnected by the system. If extended addressing is not used (HID0[XAEN] = 0), A[0:3] are unused and must be pulled low to GND through weak pull-down resistors; additionally, if address parity checking is enabled (HID1[EBA] = 1) and extended addressing is not used, AP[0] must be pulled up to OV_{DD} through a weak pull-up resistor. If the MPC7448 is in 60x bus mode, DTI[0:3] must be pulled low to GND through weak pull-down resistors.

The data bus input receivers are normally turned off when no read operation is in progress and, therefore, do not require pull-up resistors on the bus. Other data bus receivers in the system, however, may require pull-ups or require that those signals be otherwise driven by the system during inactive periods. The data bus signals are D[0:63] and DP[0:7].


9.6 JTAG Configuration Signals

Boundary-scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the IEEE 1149.1 standard specification, but is typically provided on all processors that implement the PowerPC architecture. While it is possible to force the TAP controller to the reset state using only the TCK and TMS signals, more reliable power-on reset performance will be obtained if the TRST signal is asserted during power-on reset. Because the JTAG interface is also used for accessing the common on-chip processor (COP) function, simply tying TRST to HRESET is not practical.

The COP function of these processors allows a remote computer system (typically a PC with dedicated hardware and debugging software) to access and control the internal operations of the processor. The COP interface connects primarily through the JTAG port of the processor, with some additional status monitoring signals. The COP port requires the ability to independently assert HRESET or TRST in order

System Design Information

Notes:

- 1. RUN/STOP, normally found on pin 5 of the COP header, is not implemented on the MPC7448. Connect pin 5 of the COP header to OV_{DD} with a 10-K Ω pull-up resistor.
- 2. Key location; pin 14 is not physically present on the COP header.
- 3. Component not populated. Populate only if debug tool does not drive QACK.
- 4. Populate only if debug tool uses an open-drain type output and does not actively negate QACK.
- 5. If the JTAG interface is implemented, connect $\overline{\text{HRESET}}$ from the target source to $\overline{\text{TRST}}$ from the COP header though an AND gate to $\overline{\text{TRST}}$ of the part. If the JTAG interface is not implemented, connect $\overline{\text{HRESET}}$ from the target source to $\overline{\text{TRST}}$ of the part through a 0- Ω isolation resistor.
- 6. The COP port and target board should be able to independently assert HRESET and TRST to the processor in order to fully control the processor as shown above.

Figure 21. JTAG Interface Connection

MPC7448 RISC Microprocessor Hardware Specifications, Rev. 4

System Design Information

DFS mode disabled		DFS divide-by-2 (HID1[DFS2] = 1	mode enabled or DFS2 = 0)	DFS divide-by-4 mode enabled (HID1[DFS4] = 1 or DFS4 = 0)		
Bus-to-Core Multiplier Configured by PLL_CFG[0:5] (see Table 12)	HID1[PC0-5] ³	Bus-to-Core Multiplier	HID1[PC0-5] ³	Bus-to-Core Multiplier	HID1[PC0-5] ³	
2x ⁴	010000	N/A (unchanged) ¹	unchanged ¹	N/A (unchanged) ¹	unchanged ¹	
3x ⁴	100000	N/A (unchanged) ¹	unchanged ¹	N/A (unchanged) ¹	unchanged ¹	
4x ⁴	101000	2x ⁴	010000	N/A (unchanged) ¹	unchanged ¹	
5x	101100	2.5x ⁴	010101	N/A (unchanged) ¹	unchanged ¹	
5.5x	100100	2.75x ⁴	110101 ²	N/A (unchanged) ¹	unchanged ¹	
6x	110100	3x ⁴	100000	N/A (unchanged) ¹	unchanged ¹	
6.5x	010100	3.25x ⁴	100000 ²	N/A (unchanged) ¹	unchanged ¹	
7x	001000	3.5x ⁴	110101	N/A (unchanged) ¹	unchanged ¹	
7.5x	000100	3.75x ⁴	110101 ²	N/A (unchanged) ¹	unchanged ¹	
8x	110000	4x ⁴	101000 ⁴	2x ⁴	010000	
8.5x	011000	4.25x ⁴	101000 ²	N/A (unchanged) ¹	unchanged ¹	
9x	011110	4.5x ⁴	011101	2.25x ⁴	010000 ²	
9.5x	011100	4.75x ⁴	011101 ²	N/A (unchanged) ¹	unchanged ¹	
10x	101010	5x	101100	2.5x ⁴	010101	
10.5x	100010	5.25x	101100 ²	N/A (unchanged) ¹	unchanged ¹	
11x	100110	5.5x	100100	2.75x ⁴	010101 ²	
11.5x	000000	5.75x	100100 ²	N/A (unchanged) ¹	unchanged ¹	
12x	101110	6x	110100	3x ⁴	100000	
12.5x	111110	6.25x	110100 ²	N/A (unchanged) ¹	unchanged ¹	
13x	010110	6.5x	010100	3.25x ⁴	100000 ²	
13.5x	111000	6.75	010100 ²	N/A (unchanged) ¹	unchanged ¹	
14x	110010	7x	001000	3.5x ⁴	110101	
15x	000110	7.5x	000100	3.75x ⁴	110101 ²	
16x	110110	8x	110000	4x ⁴	101000	
17x	000010	8.5x	011000	4.25x ⁴	101000 ²	
18x	001010	9x	011110	4.5x ⁴	011101	
20x	001110	10x	101010	5x	101100	
21x	010010	10.5x	100010	5.25x	101100 ²	

Table 16. Valid Divide Ratio Configurations

MPC7448 RISC Microprocessor Hardware Specifications, Rev. 4

DFS mode dis	abled	DFS divide-by-2 (HID1[DFS2] = 1		DFS divide-by-4 mode enabled (HID1[DFS4] = 1 or DFS4 = 0)	
Bus-to-Core Multiplier Configured by PLL_CFG[0:5] (see Table 12)		Bus-to-Core Multiplier	HID1[PC0-5] ³	Bus-to-Core Multiplier	HID1[PC0-5] ³
24x	011010	12x	101110	6x	110100
28x	111010	14x	110010	7x	001000

Notes:

1. DFS mode is not supported for this combination of DFS mode and PLL_CFG[0:5] setting. As a result, the processor will ignore these settings and remain at the previous multiplier, as reflected by the HID1[PC0-PC5] bits.

2. Though supported by the MPC7448 clock circuitry, multipliers of *n*.25x and *n*.75x cannot be expressed as valid PLL configuration codes. As a result, the values displayed in HID1[PC0-PC5] are rounded down to the nearest valid PLL configuration code. However, the actual bus-to-core multiplier is as stated in this table.

- 3. Note that in the HID1 register of the MPC7448, the PC0, PC1, PC2, PC3, PC4, and PC5 bits are bits 15, 16, 17, 18, 19, and 14 (respectively). See the *MPC7450 RISC Microprocessor Reference Manual* for more information.
- 4. Special considerations regarding snooped transactions must be observed for bus-to-core multipliers less than 5x. See the *MPC7450 RISC Microprocessor Reference Manual* for more information.

9.7.5.3 Minimum Core Frequency Requirements with DFS

In many systems, enabling DFS can result in very low processor core frequencies. However, care must be taken to ensure that the resulting processor core frequency is within the limits specified in Table 8. Proper operation of the device is not guaranteed at core frequencies below the specified minimum f_{core} .

10 Document Revision History

Table 17 provides a revision history for this hardware specification.

Table 17.	Document	Revision	History
-----------	----------	----------	---------

Revision	Date	Substantive Change(s)				
4	3/2007	Table 19: Added 800 MHz processor frequency.				
3	10/2006	Section 9.7, "Power and Thermal Management Information": Updated contact information. Table 18, Table 20, and Table 19: Added Revision D PVR. Table 19: Added 600 processor frequency, additional product codes, date codes for 1400 processor frequency, and footnotes 1 and 2. Table 20: Added PPC product code and footnote 1. Table 19 and Table 20: Added Revision D information for 1267 processor frequency.				

Document Revision History

Revision	Date	Substantive Change(s)					
2		Table 6: Added separate input leakage specification for BVSEL0, LSSD_MODE, TCK, TDI, TMS, TRST signals to correctly indicate leakage current for signals with internal pull-up resistors.					
		Section 5.1: Added paragraph preceding Table 7 and edited notes in Table 7 to clarify core frequencies at which power consumption is measured.					
		Section 5.3: Removed voltage derating specifications; this feature has been made redundant by new device offerings and is no longer supported.					
		Changed names of "Typical–Nominal" and "Typical–Thermal" power consumption parameters to "Typical" and "Thermal", respectively. (Name change only–no specifications were changed.)					
		Table 11: Revised Notes 16, 18, and 19 to reflect current recommendations for connection of SENSE pins. Section 9.3: Added paragraph explaining connection recommendations for SENSE pins. (See also Table 11 entry above.)					
		Table 19: Updated table to reflect changes in specifications for MC7448xxnnnnNC devices.Table 9: Changed all instances of TT[0:3] to TT[0:4]					
		Removed mention of these input signals from output valid times and output hold times: • AACK, CKSTP_IN, DT[0:3]					
		Figure 17: Modified diagram slightly to correctly show constraint on SYSCLK ramping is related to V_{DD} voltage, not AV _{DD} voltage. (Diagram clarification only; no change in power sequencing requirements.) Added Table 20 to reflect introduction of extended temperature devices and associated hardware specification addendum.					
1		Added 1600 MHz, 1420 MHz, and 1000 MHz devices					
		Section 4: corrected die size					
		Table 2: Revised Note 4 to consider overshoot/undershoot and combined with Note 5.					
		Table 4: Revised operating voltage for 1700 MHz device from \pm 50 mV to +20 mV / –50 mV.					
		Table 7: Updated and expanded table to include Typical – Nominal power consumption. Table 11: Added voltage derating information for 1700 MHz devices; this feature is not supported at this time for other speed grades.					
		Added transient specifications for VDD power supply in Section 9.2.3, added Table 15 and Figure 19 and renumbered subsequent tables and figures.					
		Moved Decoupling Recommendations from Section 9.4 to Section 9.2.4 and renumbered subsequent sections.					
		Section 9.2.1: Revised power sequencing requirements.					
		Section 9.7.4: Added thermal diode ideality factor information (previously TBD).					
		Table 17: Expanded table to show HID1 register values when DFS modes are enabled.					
		Section 11.2: updated to include additional N-spec device speed grades					
		Tables 18 and 19: corrected PVR values and added "MC" product code prefix					
0		Initial public release.					

Table 17. Document Revision History (continued)

11 Part Numbering and Marking

Ordering information for the part numbers fully covered by this specification document is provided in Section 11.1, "Part Numbers Fully Addressed by This Document." Note that the individual part numbers correspond to a maximum processor core frequency. For available frequencies, contact a local Freescale sales office. In addition to the processor frequency, the part numbering scheme also includes an application modifier that may specify special application conditions. An optional specification modifier may also apply for parts to indicate a specific change in specifications, such as support for an extended temperature range. Finally, each part number contains a revision level code that refers to the die mask revision number. Section 11.2, "Part Numbers Not Fully Addressed by This Document," lists the part numbers that do not fully conform to the specifications of this document. These special part numbers require an additional document called a hardware specification addendum.

11.1 Part Numbers Fully Addressed by This Document

Table 18 provides the Freescale part numbering nomenclature for the MPC7448 part numbers fully addressed by this document. For information regarding other MPC7448 part numbers, see Section 11.2, "Part Numbers Not Fully Addressed by This Document."

XX	7448	XX	nnnn	L	X
Product Code	Part Identifier	Package	Processor Frequency	Application Modifier	Revision Level
MC PPC ¹	7448	HX = HCTE BGA VS = RoHS LGA	1700	L: 1.3 V +20/–50 mV 0 to 105 °C	C: 2.1; PVR = 0x8004_0201 D: 2.2; PVR = 0x8004_0202
		VU = RoHS BGA	1600	L: 1.25 V ± 50 mV 0 to 105 °C	
			1420	L: 1.2 V ± 50 mV 0 to 105 °C	
			1000	L: 1.15 V ± 50 mV 0 to 105 °C	

Table 18. Part Numbering Nomenclature

Notes:

1. The P prefix in a Freescale part number designates a "Pilot Production Prototype" as defined by Freescale SOP 3-13. These parts have only preliminary reliability and characterization data. Before pilot production prototypes may be shipped, written authorization from the customer must be on file in the applicable sales office acknowledging the qualification status and the fact that product changes may still occur as pilot production prototypes are shipped.

Table 20. Part Numbers Addressed by MC7448TxxnnnnNx Series Hardware Specification Addendum (Document Order No. MPC7448ECS02AD)


XX	7448	т	XX	nnnn	Ν	X
Product Code	Part Identifier	Specificatio n Modifier	Package	Processor Frequency	Application Modifier	Revision Level
MC PPC ¹	7448	T = Extended Temperature	HX = HCTE BGA	1400	N: 1.15 V ± 50 mV - 40 to 105 °C	C: 2.1; PVR = 0x8004_0201 D: 2.2; PVR = 0x8004_0202
		Device		1267 Revision C only	N: 1.1 V ± 50 mV - 40 to 105 °C	
				1267 Revision D only	N: 1.05 V ± 50 mV - 40 to 105 °C	
				1000	N: 1.0 V ± 50 mV - 40 to 105 °C	

Notes:

 The P prefix in a Freescale part number designates a "Pilot Production Prototype" as defined by Freescale SOP 3-13. These parts have only preliminary reliability and characterization data. Before pilot production prototypes can be shipped, written authorization from the customer must be on file in the applicable sales office acknowledging the qualification status and the fact that product changes may still occur as pilot production prototypes are shipped.

11.3 Part Marking

Parts are marked as the example shown in Figure 27.

Notes:

AWLYYWW is the test code, where YYWW is the date code (YY = year, WW = work week) MMMMMM is the M00 (mask) number. YWWLAZ is the assembly traceability code.

Figure 27. Part Marking for BGA and LGA Device